新人教版八年级(下)数学竞赛试卷及答案

合集下载

人教版初二数学竞赛试题及答案

人教版初二数学竞赛试题及答案

八 年 级 数 学 竞 赛 试 题一、精心选一选,相信你选得准!(每小题5分,共30分)1.三角形的三边长分别为6,1-3a ,10,则a 的取值范围是( )A .-6<a <-3B .5<a <1C .-5<a <-1D .a >-1或a <-52.使分式xx y z x 5201020092010201020092008--+有意义的x 的取值范围是( )A .x ≠0B .x ≠0且x ≠±402C .x ≠0且x ≠402D .x ≠0且x ≠-402 3.如图,将纸片△ABC 沿着DE 折叠压平,且∠1+∠2=72°,则∠A =( )A .72°B .24°C .36°D .18° 4.已知一个梯形的四条边长分别为2、3、4、5,则此梯形的面积为( )A .5B .8C .3310 D .3514 5.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连CE 、AF ,设CE 、AF相交于G ,则S BEGF 四边形∶S ABCD 四边形等于( )A .41B .92C .61 D .1036.已知x 为实数,且13-x +14-x +15-x +…+117-x 的值是一个确定的常数,则这个常数是( ) A .5 B .10 C .15 D .75二、细心填一填,相信你填得对!(每小题5分,共30分)7.已知实数x 、y 满足x 2—3x +4y =7,则3x +4y 的最大值为__________. 8.如果a 、b 是整数,且x 2+x —1是a x 3+b x +1的因式,则b 的值为__________. 9.如图,E 、F 分别是矩形ABCD 的BC 边和CD 边上的点,且S △ABE =3,S △ECF =8,S △ADF =5,则矩形ABCD 的面积为__________. 10.如图△ABC 中,AD 平分∠BAC ,且AB +BD =AC ,若∠B =62°,则∠C =__________. 11.已知k =acb a bc b a c c b a ++-=+-=-+,且n 2+16+ BDECA 12(第3题图) C(第9题图) (第10题图)ABCDC FB(第5题图)6 m =8n ,则关于x 的一次函数y =-kx +n -m 的图象一定经过第__________象限.12.若a +x 2=2008,b +x 2=2009,c +x 2=2010,且abc =24,则bc a +ac b +abc -a1-b1-c1的值为__________.三、用心做一做,试试你能行!(共40分) 13.(8分)蕲春红人电器行“家电下乡”指定型号的冰箱彩电的进价和售价如右表所示: ⑴按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴;农民蕲大伯到该电器行购买了冰箱一台,彩电两台,可以享受多少元的政府补贴?(2分)⑵为满足农民需求,红人电器行决定用不超过85000元采购冰箱和彩电共40台,且冰箱的数量不少于彩电数量的65.①请你帮助该电器行设计相应的进货方案;(3分)②哪种进货方案电器行获得的利润最大?(利润=售价-进价)最大利润是多少?(3分)14.(8分)如图,已知 :正△OAB 的面积为34,双曲线y =xk经过点B ,点P (m ,n )(m >0)在双曲线y =xk 上,PC ⊥x 轴于点C ,PD ⊥y 轴于点D ,设矩形OCPD 与正△OAB 不重叠部分的面积为S . ⑴求点B 的坐标及k 的值; ⑵求m =1和m =3时,S 的值.15.(8分)已知a 、b 、c 均为正数,且满足如下两个条件:⎪⎩⎪⎨⎧=-++-++-+=++4132ab c b a ac b a c bca cbc b a证明:以a 、b 、c 为三边长可构成一个直角三角形.16.(加油啊!加油!加油!!)(8分)2010年4月14日青海省玉树发生了7.1级大地震,驻军某部(位于距玉树县城结古镇91公里处的上拉秀镇)接到上级命令,须火速前往结古镇救援.已知该部有120名官兵,且步行的速度为每小时10公里,现仅有一辆时速为80公里的卡车,可乘坐40人,请你设计一个乘车兼步行方案,使该部120人能在最短时间内赶往重灾区结古镇救x援.其中中途换车(上、下车)的时间均忽略不计,最快多少时间可以赶到?(可用分数表示)17.(6分)计算:2sin 45°+sin 2α+cos 2α+330cos 2360tan ︒-︒18.(8分)如图,△ABC 的边AB =3,AC =2,Ⅰ、Ⅱ、Ⅲ 分别表示以AB 、AC 、BC 为边的正方形,求图中三个阴影部分的面积之和的最大值是多少?H(第18题图)。

(word完整版)八年级数学竞赛题及答案解析

(word完整版)八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。

C.3错误!未找到引用源。

-错误!未找到引用源。

=3(a ≥0) D.错误!未找到引用源。

·错误!未找到引用源。

=错误!未找到引用源。

(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。

人教版初中数学八年级下册期末竞赛试卷

人教版初中数学八年级下册期末竞赛试卷

人教版初中数学八年级下册期末竞赛试卷数 学一.选择题 (每题3分,共27分) 1. 方程14-x =1的解是 A .x=1 B .x=3 C .x=5 D .x=72.甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊买了两条鱼,平均每条b 元,后来他又以每条2ba +的价钱把鱼全数卖给了乙,结果发觉赔了钱,缘故是A.b a >B.b a <C.b a =D.与b a 和的大小无关 3. 某足协举行了一次足球竞赛,记分规那么是:胜一场积3分,平一场积1分,负一场积0分,假设甲队竞赛了5场共积7分,那么甲队平了场 场 场 场4. 不等式组112x x ≤⎧⎨+>-⎩的解集在数轴上可表示为5. 多项式ab -b c+a 2-c 2分解因式的结果是A.(a -c )(a +b +c )B.(a -c )(a +b -c )C.(a +c )(a +b -c )D.(a +c )(a -b +c ) 6.已知ba=dc =fe =3,那么=++++fd b ec aA 1 B31C 3D 47. 已知,,,x y a b 都是正数,且 x a a b y b<=,,若是x y c +=,那么x y 与中较大的一个数的值是( ) A . ab a b + B . ab b c + C . ac a b + D .bca b+8. △ABC 的三边长别离为a 、b 、c ,且知足bc c ab a 2222+=+,那么△ABC 是A 、等边三角形B 、等腰三角形C 、直角三角形D 、不等边三角形9.下面两个三角形必然相似的是A .两个等腰三角形 B.两个直角三角形C .两个钝角三角形 D.两个等边三角形二.简答题 (每题3分,共18分)11. 不等式521x ->的正整数解是 .12.已知两个相似三角形的相似比是2:3,那么它们的面积比是 .13.假设点C 是线段AB 的黄金分割点,且AC>BC ,假设AB=10, 那么AC=______14.若13x x+=,那么2421x x x ++的值为_______________.15.规定任意两个实数对()()d c b a ,,和:当且仅当a=c 且b=d 时,()()d c b a ,,=.概念运算“⊗”: ()()()bc ad bd ac d c b a +-=⊗,,,.假设()()()0,5,2,1=⊗q p ,那么=+q p _________________.16. 用一样大小的黑色棋子按图8所示的方式摆图案,依照如此的规律摆下去,第2020个图案需填棋子 枚.三.解答题 (共55分)17.分解因式(4分)18.解分式方程(4分)11-x =12+x19.先化简,再求值:(4分) 2444122+-⨯+-a a a a 其中a=320.解不等式(4分) 481438x x x x -+⋯⋯⋯⋯⎧⎨++⋯⋯⋯⋯⎩<①≤②222449c bc b a -+-P ABQC21.(6分)如图,已知△ABC∽△ADE, AE=50 cm, EC=30 cm, BC=70 cm,∠BAC=45°,∠ACB=400,求:(1)∠AED和∠ADE的度数。

2019-八年级(下)数学竞赛试卷及答案

2019-八年级(下)数学竞赛试卷及答案

2019-2020 年八年级(下)数学比赛试卷及答案班级姓名得分一、(每7 分,共 21 分)1.如,正方形ABCD外有一点 P,P 在 BC外,并在平行AB与 CD之,若 PA=17 ,PB= 2 ,PC= 5 ,PD=()A.25B.19C.32D.172.如,四形ABCD中,∠ A=∠ C= 90°,∠ ABC= 60°, AD= 4, CD= 10, BD的等于()A. 413B.8 3C. 12D.103 3.如,△ ABC中, AB= AC=2, BC上有 10 个不一样的点P1, P2,⋯⋯ P10, M i AP i2P i B P i C(i=1,2,⋯⋯,10),那么M1M 2M 10的()A. 4 C. 40 D.不可以确立(第 1 )(第2)(第3)二、填空(每7 分,共 28 分)1.若一个等腰三角形的三均足方程x2- 6x+8= 0,个等腰三角形的周。

2. 已知:ab1,且5a22010a 8 0 ,8b22010b 5 0 ,a=。

b3. 如,从等三角形内一点向三作垂,已知三条垂段的分1、3、5,个等三角形的。

4. 如, P 正方形ABCD内一点, PA∶PB∶ PC=1∶ 2∶ 3,∠ APD=。

(第 3 )(第4)三、解答以下各(每17 分,共 51 分)1. 已知: m , n 知足 m210m 10 , n 210n10 , 求 n m的值。

m na b822.已知:ab,试求方程, ,c 三实数知足方程组28bx cx aab c3c 48的根。

3.若△ ADE 、△ BEF 、△ CDF 的面积分别为 5、 3、 4,求△ DEF 的面积。

滁州市第五中学八年级数学比赛试卷答案一、选择题1. A2. A3. C 二、填空题1. 6 或 10 或 12;2.8; 3.6 3 ; °。

5三、解答以下各题 1. 当 m n 时,n m 1 2 ,m1n当 mn 时, m , n 是方程 x 210 x 10 0 的两个根,则 m n 10, mn10 。

最新人教版数学八年级下册竞赛试题W

最新人教版数学八年级下册竞赛试题W

最新人教版数学八年级下册竞赛试题W一、选择题(每题3分,共30分)1. 已知a、b、c是三角形的三边,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形2. 函数y = 2x - 3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 无法确定4. 已知x + y = 5,x - y = 1,求x和y的值,解得:A. x = 3, y = 2B. x = 2, y = 3C. x = 4, y = 1D. x = 1, y = 45. 已知一个正数的平方是16,这个数是:A. 2B. 4C. ±4C. ±26. 一个数的立方等于-27,这个数是:A. -3B. 3C. -27D. 277. 一个两位数,其十位数字比个位数字大3,且这个数比它的个位数字的平方大33,求这个数,解得:A. 41B. 52C. 63D. 748. 一个数的倒数加上这个数本身等于-1,设这个数为x,那么x满足的方程是:A. x + 1/x = -1B. x - 1/x = -1C. x² + 1 = -xD. x² - 1 = x9. 一个圆的直径是10厘米,那么这个圆的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米10. 一个长方体的长、宽、高分别是a、b、c,如果长方体的体积是120立方厘米,那么a×b×c等于:A. 120B. 240C. 360D. 480二、填空题(每题4分,共20分)11. 已知一个等腰三角形的两个腰长为5,底边长为6,那么这个三角形的周长是________。

12. 如果一个数的立方根等于它本身,那么这个数可以是________、________或________。

八年级数学竞赛试题含参考答案

八年级数学竞赛试题含参考答案

八年级竞赛试题(数学)(本卷满分150分,时间120分钟)一、填空题(每小题5分,共50分)1.点P (3,-5)关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 2.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,63.已知△ABC 中,AB=AC ,高BD ,CE 交于点O ,连接AO ,则图中全等三角形的对数为( )A .3B .4C .5D .64.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是( )A .4B .5C .6D .7 5.设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为( )A.M <NB.M >NC.M=N D .不能确定6.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面,已知正多边形的边数为x ,y ,z ,则zy x 111++的值为( )A .1B .32 C .21 D .31 7.如图,长方形ABCD 中,△ABP 的面积为a ,△CDQ 的面积为b ,则阴影四边形的面积等于( )A .b a +B . b a -C .2ba + D .无法确定 8.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( )A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-=9.已知3030--+-+-=a x x a x y ,其中0<a <30,30≤≤x a ,那么y 的最小值为.( ) A .10B .20C .30D .4010.如图,ABE ∆和ADC ∆是ABC ∆分别沿着AB ,AC 边翻折0180形成的,若∠1:∠2:∠3=28:5:3,则a ∠的度数为.( )A .60oB .70oC .80oD .90o二、填空题(每小题7分,共49分)11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 .12.将五个分数:23 ,58 ,1523 ,1017 ,1219 ;由小到大或由大到小排列,排在中间位置的分数是 13.x 表示a 与b 的和的平方,y 表示a 与b 的平方的和,则a=7,b=-5时,x -y 的值是14.计算:|11992 -11991 |+|11993 -11992 |-|11993 -11991 |= 15.观察下列运算:12=1;22=1+3;32=1+3+5;42=1+3+5+7;52=1+3+5+7+9;则n 2= (n 为正整数)。

八年级初二数学竞赛试习题及参考答案

八年级初二数学竞赛试习题及参考答案

欢迎阅读八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,ca b a b c k k +=-==++=,且那么的值为( ). A .2A .0x <C .3-<35++A .1015- C .10154E 、F 分别在A .100C .1105.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组2008200200720062008x y x y -=⎧⎨-=⎩的解8:79n 13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且.⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .1314、⑴ ⑵ ∴554343322322x y x x y y x x x x y y y y +=+++=+++++++ 15、证明:作∠OBF=∠OAE 交AD 于F∵∠BAD=∠ABE ∴OA=OB又∠AOE=∠BOF∴△AOE ≌△BOF (ASA ) ∴AE=BF ∵AE=BD∴BF=BD ∴∠BDF=∠BFD1、。

人教版八年级下数学竞赛题

人教版八年级下数学竞赛题

乔川九年制学校八年级数学、物理竞赛试卷 (总分:100分 考试时间:90分钟)数学部分(50分)一.选择题:(本大题共6小题,每小题3分,共18分) 1、下列各式中,不属于二次根式的是 ( ) A 、x (x ≤0) B 、21b C 、2a bD 、21x2、已知a <0,则化简3a b -的结果是( )A 、ab aB 、 a abC 、-a abD 、a ab -3、若12a 是一个不等于0的整数,则实数a 的最小值是( )A 、 12B 、 3C 、 6D 、 24、若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A 、k>3B 、0<k ≤3C 、0≤k<3D 、0<k<35、已知一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( )A 、y >0B 、y <0C 、-2<y <0D 、y <-26、如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),不等式2x<ax+4的解集为( )A 、x<B 、x<3C 、x>D 、x>3二、填空题:(本大题共4小题,每小题3分,共12分)7.要使代数式x +1x -2有意义,则x 的取值范围是 .8.已知直角三角形的两边长为3、5,则另一边长是 . 9.若a1b b 12,则a = ,b = .10、等腰三角形的周长为20,写出底边y 关于腰x 的函数_____________,并写出x 的取值范围______________;三、解答题:(共20分)22.(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD 的中点,BD是对角线,AM∥BD,交CB的延长线于点M.(1)求证:△ADE≌△CBF;(2)若四边形是BEDF菱形,AD=3,∠ABD=30°,求四边形AMBD 的面积.26.(10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?(物理部分50分)注意事项:本卷试题中g值均取10N/kg一.填空(每空1分,共 13分)1.在冬奥会滑雪比赛时,运动员用力撑雪杖使自己从山上由静止加速滑下,这表明力可以改变物体的;如图所示,是某运动员在滑下过程中碰撞标志杆时的情景,它说明力可以使物体的发生改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级第二学期数学科竞赛试题(考试时间:100分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320学校: 班级: 姓名: 座号:第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

D 、对角线互相垂直的四边形面积等于对角线乘积的一半。

11、如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为A .2B .2C .22D .4 12、如图,在一个由4×4个小正方形组成的正方形网格中, 阴影部分面积与正方形ABCD 的面积比是A. 3 :4B. 5 :8C. 9 :16D. 1 :2二、填空题(共4小题,每小题3分,共12分)13、若方程xmx x -=--223无解,则m= 。

14、如图,己知直线b kx y +=图象与反比例函数xky =图象交于A (1,m )、B (—4,n ),则不等式b kx +>xk 的 解集为 。

第14题图 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为 。

……第一个图 第二个图 第三个图16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),A B OyxBC若一反比例函数xky =的图象过点D ,则其解析式为 。

第16题图 三、解答题(共9题,共72分) 17、(本题6分)解方程13321-+=+x x x x18、(本题6分)先化简,再求值。

)121(12xx x x --÷-其中2=x19、(本题6分)有一道题:“先化简,再求值:41442222-÷⎪⎭⎫ ⎝⎛-++-x x x x x ,其中3-=x .”小玲做题时把“3-=x ”错钞成了“3=x ”,但她的计算结果是正确的,请你解释这是怎么回事.20、(本题7分)2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心。

“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?21、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,AC=18,求DM的长。

22、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O ,且AC ⊥BD ,DH ⊥BC 。

⑴求证:DH=21(AD+BC )⑵若AC=6,求梯形ABCD 的面积。

学校: 班级: 姓名: 座号:23、(本题8分)某单位为了响应政府发出的“全民健身”的号召,打算在长和宽分别为20米和16米的矩形大厅内修建一个40平方米的矩形健身房ABCD,该健身房的四面墙壁中有两面沿用大厅的旧墙壁(如图为平面示意图),且每面旧墙壁上所沿用的旧墙壁长度不得超过其长度的一半,己知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米,设健身房高3米,健身房AB的长为x米,BC 的长为y米,修建健身房墙壁的总投资为w元。

⑴求y与x的函数关系式,并写出自变量x的范围。

⑵求w与x的函数关系,并求出当所建健身房AB长为8米时总投资为多少元?24、(12分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象交于 A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式; (2)求△AOB 的面积.ABOxy25、(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.八年级第二学期数学竞赛参考答案13、m=1 14、-4<x <0或x >1 15、32 16、xy 3=三、解答题(共9题,共72分)17、解:方程两边同时乘以3(x+1)得3x=2x -3x -3…………………………………………………………2分x =-43…………………………………………………………………4分检验:当x =-43时,3(x+1)≠0 ………………………………5分∴x =-43是原方程的解………………………………………………6分18、解:原式=xx x x x 1212+-÷- ………………………………………2分 =xxx x x -⋅-+1)1)(1(=1--x ………………………………4分 当2=x 时,原式=12-- ………………………………6分 19、20、解:设原计划每天生产x 吨纯净水,则依据题意,得:,35.118001800=-xx 整理,得:4.5x =900, 解之,得:x =200, 把x 代入原方程,成立, ∴x =200是原方程的解.答:原计划每天生产200吨纯净水.21、解:延长BD 交AC 于E∵BD ⊥AD …………………1分 ∴∠ADB=ADE=900∵AD 是∠A 的平分线∴∠BAD=EAD …………………2分在△ABD 与△AED 中⎪⎩⎪⎨⎧∠=∠=∠=∠ADE ADB AD AD EAD BAD ∴△ABD ≌△AED …………………3分 ∴BD=ED AE= AB=12 …………………4分 ∴EC=AC -AE=18-12=6 …………………5分 ∵M 是BC 的中点∴DM=21EC=3 …………………7分22、⑴证明:过D 作DE ∥AC 交BC 延长线于E ……1分∵AD ∥BC∴四边形ACED 为平行四边形……………2分 ∴CE=AD DE=AC ∵ABCD 为等腰梯形 ∴BD = AC=CE ∵AC ⊥BD∴DE ⊥BD ∴△DBE 为等腰直角三角形………………4分 ∵DH ⊥BC∴DH=21BE=21(CE+BC )=21(AD+BC )…………………5分⑵∵AD=CE∴DBE ABCD S DH BC CE DH BC AD S ∆=⋅+=⋅+=)(21)(21…………7分∵△DBE 为等腰直角三角形 BD=DE=6∴186621=⨯⨯=∆DBE S∴梯形ABCD 的面积为18……………………………………8分 注:此题解题方法并不唯一。

23、解:⑴xy 40= ……………………………………2分由题意知:⎪⎩⎪⎨⎧≤≤10840x x ……………………………………4分 ∴5≤x≤10 ……………………………………6分 ⑵203)40(803)40(⨯⨯++⨯⨯+=x x x x w=)40(300xx + ……………………………………10分当8=x 时,3900)8408(300=+=w (元)……………………………12分24、(1)y=x -4,y=-x3. (2)S △OAB =425、解:(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,∵EF垂直平分AC,垂足为O,∴OA=OC,∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形,②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,在Rt△ABF中,AB=4cm,由勾股定理得42+(8-x)2=x2,解得x=5,∴AF=5cm.(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12-4t,∴5t=12-4t,解得t=4 3 ,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4 3 秒.②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.综上所述,a与b满足的数量关系式是a+b=12(ab≠0).。

相关文档
最新文档