【备战2016】(上海版)高考数学分项汇编 专题13 推理与证明、新定义(含解析)文

合集下载

2016年上海市高考数学试卷真题及答案(文科)

2016年上海市高考数学试卷真题及答案(文科)

2016年上海市高考数学试卷(文科)一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x∈R,则不等式|x﹣3|<1的解集为.2.(4分)设z=,其中i为虚数单位,则z的虚部等于.3.(4分)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米).5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a=.6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=.7.(4分)若x,y满足,则x﹣2y的最大值为.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为.9.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.12.(4分)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是.14.(4分)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C117.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.418.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T 为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F 的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.22.(16分)对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.23.(18分)已知a∈R,函数f(x)=log2(+a).(1)当a=1时,解不等式f(x)>1;(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.2016年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)(2016•上海)设x∈R,则不等式|x﹣3|<1的解集为(2,4).【分析】由含绝对值的性质得﹣1<x﹣3<1,由此能求出不等式|x﹣3|<1的解集.【解答】解:∵x∈R,不等式|x﹣3|<1,∴﹣1<x﹣3<1,解得2<x<4.∴不等式|x﹣3|<1的解集为(2,4).故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)(2016•上海)设z=,其中i为虚数单位,则z的虚部等于﹣3.【分析】利用复数的运算法则即可得出.【解答】解:z===﹣3i+2,则z的虚部为﹣3.故答案为:﹣3.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.3.(4分)(2016•上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)(2016•上海)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是 1.76(米).【分析】将数据从小到大进行重新排列,根据中位数的定义进行求解即可.【解答】解:将5位同学的身高按照从小到大进行排列为1.69,1.72,1.76,1.78,1.80.则位于中间的数为1.76,即中位数为1.76,故答案为:1.76【点评】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.5.(4分)(2016•上海)若函数f(x)=4sinx+acosx的最大值为5,则常数a=±3.【分析】利用辅助角公式化简函数f(x)的解析式,再利用正弦函数的最大值为5,求得a的值.【解答】解:由于函数f(x)=4sinx+acosx=sin(x+θ),其中,cosθ=,sinθ=,故f(x)的最大值为=5,∴a=±3,故答案为:±3.【点评】本题主要考查辅助角公式,正弦函数的值域,属于基础题.6.(4分)(2016•上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=log2(x﹣1)(x>1).【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换即可得出f(x)的反函数f﹣1(x).【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.∴f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换可得:f(x)的反函数f﹣1(x)=log2(x﹣1).故答案为:log2(x﹣1),(x>1).【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.7.(4分)(2016•上海)若x,y满足,则x﹣2y的最大值为﹣2.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:画出可行域(如图),设z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(0,1)时,z最大,且最大值为z max=0﹣2×1=﹣2.故答案为:﹣2.【点评】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8.(4分)(2016•上海)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2﹣2sin2x,即2sin2x+3sinx﹣2=0.可得sinx=﹣2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.9.(4分)(2016•上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于112.【分析】根据展开式中所有二项式系数的和等于2n=256,求得n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(﹣)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,==,∴(﹣)8中,T r+1∴当=0,即r=2时,常数项为T3=(﹣2)2=112.故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.10.(4分)(2016•上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值.【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===﹣,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.11.(4分)(2016•上海)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.【分析】利用分步乘法求出两同学总的选法种数,再求出选法相同的选法种数,利用古典概型概率计算公式得答案.【解答】解:甲同学从四种水果中选两种,选法种数为,乙同学的选法种数为,则两同学的选法种数为种.两同学相同的选法种数为.由古典概型概率计算公式可得:甲、乙两同学各自所选的两种水果相同的概率为.故答案为:.【点评】本题考查古典概型概率计算公式的应用,考查了组合及组合数公式,是基础题.12.(4分)(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P 是曲线y=上一个动点,则•的取值范围是[﹣1,] .【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].【点评】本题考查了向量的运算性质,考查三角函数问题,是一道基础题.13.(4分)(2016•上海)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是(2,+∞).【分析】根据方程组无解可知两直线平行,利用斜率得出a,b的关系,再使用基本不等式得出答案.【解答】解:∵关于x,y的方程组无解,∴直线ax+y﹣1=0与直线x+by﹣1=0平行,∴﹣a=﹣,且.即a=且b≠1.∵a>0,b>0.∴a+b=b+>2.故答案为:(2,+∞).【点评】本题考查了直线平行与斜率的关系,基本不等式的应用,属于基础题.14.(4分)(2016•上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.【分析】对任意n∈N*,S n∈{2,3},列举出n=1,2,3,4的情况,归纳可得n >4后都为0或1或﹣1,则k的最大个数为4.【解答】解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)(2016•上海)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1【分析】根据异面直线的定义便可判断选项A,B,C的直线都和直线EF异面,而由图形即可看出直线B1C1和直线相交,从而便可得出正确选项.【解答】解:根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF为异面直线;B1C1和EF在同一平面内,且这两直线不平行;∴直线B1C1和直线EF相交,即选项D正确.故选:D.【点评】考查异面直线的概念及判断,平行直线和相交直线的概念及判断,并熟悉正方体的图形形状.17.(5分)(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x ﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.18.(5分)(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f (x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h (x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①举反例说明命题不成立;②根据定义得f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),由此得出:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:对于①,举反例说明:f(x)=2x,g(x)=﹣x,h(x)=3x;f(x)+g(x)=x,f(x)+h(x)=5x,g(x)+h(x)=2x都是定义域R上的增函数,但g(x)=﹣x不是增函数,所以①是假命题;对于②,根据周期函数的定义,f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),所以②是真命题.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题目.三、简答题:本大题共5题,满分74分19.(12分)(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O 的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.【分析】(1)直接利用圆柱的体积公式,侧面积公式求解即可.(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.【解答】解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.侧面积为:2π•1=2π.(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,∴∠AOB=,异面直线O1B1与OC所成的角的大小就是∠COB,大小为:﹣=.【点评】本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)(2016•上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C 上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF 的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y0),则y0=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y0),则y0=1,∴x0==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3﹣S△OMP+S△MGN=﹣××1+=,S1﹣S3==,S4﹣S1=﹣=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)(2016•上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.【分析】(1)由题意求出A点纵坐标,由△F1AB是等边三角形,可得tan∠AF1F2=tan=,从而求得b值,则双曲线的渐近线方程可求;(2)写出直线l的方程y﹣0=k(x﹣2),即y=kx﹣2k,与双曲线方程联立,利用弦长公式列式求得k值.【解答】解:(1)若l的倾斜角为,△F1AB是等边三角形,把x=c=代入双曲线的方程可得点A的纵坐标为b2,由tan∠AF1F2=tan==,求得b2=2,b=,故双曲线的渐近线方程为y=±bx=±x,即双曲线的渐近线方程为y=±x.(2)设b=,则双曲线为x2﹣=1,F2(2,0),若l的斜率存在,设l的斜率为k,则l的方程为y﹣0=k(x﹣2),即y=kx﹣2k,联立,可得(3﹣k2)x2+4k2x﹣4k2﹣3=0,由直线与双曲线有两个交点,则3﹣k2≠0,即k.△=36(1+k2)>0.x1+x2=,x1•x2=.∵|AB|=•|x1﹣x2|=•=•=4,化简可得,5k4+42k2﹣27=0,解得k2=,求得k=.∴l的斜率为.【点评】本题考查直线与圆锥曲线位置关系的应用,考查了双曲线的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.22.(16分)(2016•上海)对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A ∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.【分析】(1){a n}与{b n}不是无穷互补数列.由4∉A,4∉B,4∉A∪B=N*,即可判断;(2)由a n=2n,可得a4=16,a5=32,再由新定义可得b16=16+4=20,运用等差数列的求和公式,计算即可得到所求和;(3)运用等差数列的通项公式,结合首项大于等于1,可得d=1或2,讨论d=1,2求得通项公式,结合新定义,即可得到所求数列的通项公式.【解答】解:(1){a n}与{b n}不是无穷互补数列.理由:由a n=2n﹣1,b n=4n﹣2,可得4∉A,4∉B,即有4∉A∪B=N*,即有{a n}与{b n}不是无穷互补数列;(2)由a n=2n,可得a4=16,a5=32,由{a n}与{b n}是无穷互补数列,可得b16=16+4=20,即有数列{b n}的前16项的和为(1+2+3+…+20)﹣(2+4+8+16)=×20﹣30=180;(3)设{a n}为公差为d(d为正整数)的等差数列且a16=36,则a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,若d=1,则a1=21,a n=n+20,b n=n(1≤n≤20),与{a n}与{b n}是无穷互补数列矛盾,舍去;若d=2,则a1=6,a n=2n+4,b n=.综上可得,a n=2n+4,b n=.【点评】本题考查新定义的理解和运用,考查等差数列的通项公式和求和公式的运用,考查运算和推理能力,属于中档题.23.(18分)(2016•上海)已知a∈R,函数f(x)=log2(+a).(1)当a=1时,解不等式f(x)>1;(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.【分析】(1)当a=1时,不等式f(x)>1化为:>1,因此2,解出并且验证即可得出.(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,(+a)x2=1,化为:ax2+x﹣1=0,对a分类讨论解出即可得出.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,由题意可得﹣≤1,因此≤2,化为:a≥=g (t),t∈[,1],利用导数研究函数的单调性即可得出.【解答】解:(1)当a=1时,不等式f(x)>1化为:>1,∴2,化为:,解得0<x<1,经过验证满足条件,因此不等式的解集为:(0,1).(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,∴(+a)x2=1,化为:ax2+x﹣1=0,若a=0,化为x﹣1=0,解得x=1,经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.若a≠0,令△=1+4a=0,解得a=,解得x=2.经过验证满足:关于x的方程f (x)+log2(x2)=0的解集中恰有一个元素1.综上可得:a=0或﹣.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,∴﹣≤1,∴≤2,化为:a≥=g(t),t∈[,1],g′(t)===≤<0,∴g(t)在t∈[,1]上单调递减,∴t=时,g(t)取得最大值,=.∴.∴a的取值范围是.【点评】本题考查了对数函数的运算法则单调性、不等式的解法、利用导数研究函数的单调性极值与最值,考查了分类讨论方法、推理能力与计算能力,属于难题.。

【备战2016】(上海版)高考数学分项汇编 专题02 函数(含解析)文

【备战2016】(上海版)高考数学分项汇编 专题02 函数(含解析)文

专题02 函数一.基础题组1. 【2014上海,文3】设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = . 【答案】3【考点】函数的定义.2. 【2014上海,文9】设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 . 【答案】(,2]-∞【考点】函数的最值问题..3. 【2014上海,文11】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 . 【答案】(0,1)【考点】幂函数的性质. 4. 【2013上海,文8】方程9131x+-=3x的实数解为______. 【答案】log 345. 【2013上海,文15】函数f (x )=x 2-1(x ≥0)的反函数为f -1(x ),则f -1(2)的值是( )AB.C.D.1【答案】A6. 【2012上海,文6】方程4x-2x +1-3=0的解是__________.【答案】log237. 【2012上海,文9】已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(-1)=__________. 【答案】38. 【2012上海,文13】已知函数y=f(x)的图像是折线段ABC,其中A(0,0),B(12,1),C(1,0).函数y=xf(x)(0≤x≤1)的图像与x轴围成的图形的面积为__________.【答案】1 49. 【2011上海,文3】若函数f(x)=2x+1的反函数为f-1(x),则f-1(-2)=________.【答案】3 210. 【2011上海,文14】设g(x)是定义在R上、以1为周期的函数.若函数f(x)=x+g(x)在区间[0,1]上的值域为[-2,5],则f(x)在区间[0,3]上的值域为________.【答案】[-2,7]11. 【2011上海,文15】下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为( )A.y=x-2 B.y=x-1 C.y=x2 D.13 y x【答案】A12. 【2010上海,文9】函数f(x)=log3(x+3)的反函数的图像与y轴的交点坐标是________.【答案】 (0,-2)13. 【2010上海,文17】若x 0是方程lg x +x =2的解,则x 0属于区间 …( )A .(0,1)B .(1,1.25)C .(1.25,1.75)D .(1.75,2) 【答案】D14. (2009上海,文1)函数)(x f =x 3+1的反函数f -1(x)=__________. 【答案】31-x15. 【2008上海,文4】若函数()f x 的反函数为12()log f x x -=,则()f x = .【答案】()2xx R ∈16. 【2008上海,文9】若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = . 【答案】224x -+17. 【2008上海,文11】在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y , 是ABC △围成的区域(含边界)上的点,那么当xy ω=取到最大值时,点P 的坐标 是 . 【答案】5,52⎛⎫ ⎪⎝⎭18. 【2007上海,文1】方程9131=-x 的解是 . 【答案】1-=x19.【2007上海,文2】函数11)(-=x x f 的反函数=-)(1x f .【答案】)0(11≠+x x20. 【2007上海,文8】某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C ,完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 . 【答案】321.【2007上海,文15】设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A.若1)1(<f 成立,则100)10(<f 成立 B.若4)2(<f 成立,则(1)1f ≥成立 C.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 D.若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立 【答案】D22. 【2006上海,文3】若函数()(0,1)xf x a a a =>≠且的反函数的图像过点(2,1)-,则___a =. 【答案】2123. 【2006上海,文8】方程233log (10)1log x x -=+的解是_______.【答案】524. 【2005上海,文1】函数)1(log )(4+=x x f 的反函数)(1x f-=__________.【答案】14-x25. 【2005上海,文2】方程0224=-+xx的解是__________. 【答案】x=026.【2005上海,文13】若函数121)(+=xx f ,则该函数在()+∞∞-,上是( ) A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值 【答案】A二.能力题组1. 【2014上海,文20】(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数aa x f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.【答案】(1)121()2log 1x fx x -+⎛⎫=+ ⎪-⎝⎭,(,1)(1,)x ∈-∞-+∞;(2)1a =时()y f x =为奇函数,当0a =时()y f x =为偶函数,当0a ≠且1a ≠时()y f x =为非奇非偶函数.【考点】反函数,函数奇偶性.2. 【2013上海,文20】甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每一小时可获得的利润是3100(51)x x+-元.(1)求证:生产a 千克该产品所获得的利润为213100(5)a x x +-元; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润. 【答案】(1) 参考解析;(2) 甲厂应以 6千克/小时的速度生产,可获得最大利润为457 500元3. 【2013上海,文21】已知函数f (x )=2sin(ωx ),其中常数ω>0.(1)令ω=1,判断函数F (x )=f (x )+()2f x π+的奇偶性,并说明理由;(2)令ω=2,将函数y =f (x )的图像向左平移6π个单位,再向上平移1个单位,得到函数y =g (x )的图像.对任意a ∈R ,求y =g (x )在区间[a ,a +10π]上零点个数的所有可能值. 【答案】(1) F (x )既不是奇函数,也不是偶函数;(2) 可能值为21或204. 【2012上海,文20】已知函数f (x )=lg(x +1).(1)若0<f (1-2x )-f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,有g (x )=f (x ),求函数y =g (x )(x ∈[1,2])的反函数. 【答案】(1) 2133x -<< ;(2) y =3-10x ,x ∈[0,lg 2]5. 【2012上海,文21】海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当t =0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?【答案】(1) 北偏东7arctan30弧度; (2) 时速至少是25海里才能追上失事船6. 【2011上海,文21】已知函数f(x)=a·2x+b·3x,其中常数a,b满足ab≠0.(1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x+1)>f(x)时的x的取值范围.【答案】(1) 函数f(x)单调递减; (2)参考解析7. 【2010上海,文19】已知0<x <2π,化简:lg(cos x ·tan x +1-2sin 22x )+cos(x -4π)]-lg(1+sin2x ). 【答案】08. 【2010上海,文22】若实数x 、y 、m 满足|x -m |<|y -m |,则称x 比y 接近m .(1)若x 2-1比3接近0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:a 2b +ab 2比a 3+b 3接近2;(3)已知函数f (x )的定义域D ={x |x ≠k π,k ∈Z ,x ∈R }.任取x ∈D ,f (x )等于1+sin x 和1-sin x 中接近0的那个值.写出函数f (x )的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).【答案】(1) (-2,2); (2)参考解析; (3)参考解析9. (2009上海,文21)有时可用函数⎪⎪⎩⎪⎪⎨⎧>--≤-+=6,44.4,6,ln 151.0)(x x x x xa a x f 描述学习某学科知识的掌握程度.其中x 表示某学科知识的学习次数(x∈N *),)(x f 表示对该学科知识的掌握程度,正实数a 与学科知识有关. (1)证明:当x≥7时,掌握程度的增长量f(x+1)-)(x f 总是下降;(2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科. 【答案】(1)参考解析; (2) 乙学科10. 【2008上海,文17】(本题满分13分)如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里,,且拐弯处的转角为120.已知某人从C沿CD走到D用了10分钟,从D沿有两条笔直的小路AD DCDA走到A用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).【答案】44511. 【2008上海,文19】(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数||1()22xx f x =-. (1)若()2f x =,求x 的值;(2)若2(2)()0tf t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.【答案】(1)(2log 1;(2)[5,)-+∞12.【2007上海,文18】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%. 以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%). (1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?【答案】(1)2499.8兆瓦;(2)%5.6113.【2007上海,文19】(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)当2=a 时,解不等式12)1()(->--x x f x f ; (2)讨论函数)(x f 的奇偶性,并说明理由. 【答案】(1)10<<x ;(2)参考解析14. 【2006上海,文22】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分已知函数ay x x=+有如下性质:如果常数0a >,那么该函数在(上是减函数,在)+∞上是增函数.(1)如果函数2(0)by x x x =+>在(]0,4上是减函数,在[)4,+∞上是增函数,求b 的值. (2)设常数[]1,4c ∈,求函数()(12)cf x x x x =+≤≤的最大值和最小值; (3)当n 是正整数时,研究函数()(0)n n cg x x c x=+>的单调性,并说明理由.【答案】(1)4;(2)参考解析;(3)参考解析15. 【2005上海,文19】(本题满分14分)已知函数b kx x f +=)(的图象与y x ,轴分别相交于点A 、B ,j i AB 22+=(j i ,分别是与y x ,轴正半轴同方向的单位向量),函数6)(2--=x x x g . (1)求b k ,的值;(2)当x 满足)()(x g x f >时,求函数)(1)(x f x g +的最小值. 【答案】(1)k=1,b=2;(2)-3【解后反思】要熟悉在其函数的定义域内,常见模型函数求最值的常规方法.如1(0)y x x x=+≠型. 16. 【2005上海,文20】(本题满分14分)假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价层的累计面积(以2004年为累计的第一年)将首次不少于4780万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? 【答案】(1)2013;(2)200917. 【2005上海,文22】(本题满分18分)对定义域是f D 、g D 的函数)(x f y =、)(x g y =,规定:函数⎪⎩⎪⎨⎧∈∉∉∈∈∈=g f g f gf Dx D x x g D x D x x f D x D x x g x f x h 且当且当且当),(),(),()()(.(1)若函数11)(-=x x f ,2)(x x g =,写出函数)(x h 的解析式; (2)求问题(1)中函数)(x h 的值域;(3)若)()(α+=x f x g ,其中α是常数,且[]πα,0∈,请设计一个定义域为R 的函数)(x f y =,及一个α的值,使得x x h 4cos )(=,并予以证明.【答案】(1)⎪⎩⎪⎨⎧=+∞⋃-∞∈-=11),1()1,(1)(2x x x x x h ;(2)(,0]{1}[4,)-∞+∞;(3)2,2sin 21)(πα=+=x x f。

专题14 推理与证明、新定义(第01期)-决胜2016年高考全国名校试题理数分项汇编(北京特刊)(解析版)

专题14 推理与证明、新定义(第01期)-决胜2016年高考全国名校试题理数分项汇编(北京特刊)(解析版)

一.基础题组1.(北京市东城区2015届高三5月综合练习(二)理8)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012a a a ,其中{0,1}i a ∈(0,1,2i =),传输信息为00121h a a a h ,001h a a =⊕,102h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如原信息为111,则传输信息为01111.传播信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是( )(A )11010 (B )01100 (C )10111 (D )00011【答案】C考点:1.创新题;2.推理.2.(北京市延庆县2014—2015学年度高二第二学期期末考试理7)“指数函数(1)x y a a =>是增函数,(1)y x αα=>是指数函数,所以y x α=(1)α>是增函数”,在以上演绎推理中,下列说法正确的是( ) A .推理完全正确 B.大前提不正确 C .小前提不正确 D .推理形式不正确【答案】C【解析】试题分析:以上推理中,(1)y x αα=>是幂函数,不是指数函数,所以小前提不正确,故选C. 考点:演绎推理. 二.能力题组1.(北京市丰台区2014-2015学年度第二学期统一练习(一)理8)有四张卡片,每张卡片有两个面,一个面写有一个数字,另一个面写有一个英文字母.现规定:当卡片的一面为字母P 时,它的另一面必须是数字2. 如图,下面的四张卡片的一个面分别写有,,2,3P Q ,为检验此四张卡片是否有违反规定的写法,则必须翻看的牌是( )A.第一张,第三张B.第一张,第四张C.第二张,第四张D.第二张,第三张【答案】B 考点:推理与证明 2.(北京市延庆县2014—2015学年度高二第二学期期末考试理16)“整数对”按如下规律排成一列: (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4), (2,3),(3,2),(4,1),……,则第50个数对是 .【答案】)6,5(【解析】试题分析:根据题中所给的“整数对”的规律可以发现,和为2的整数对有1个,和为3的有2个,以此类推,和为1n +的整数对有n 个,所以有(1)502n n +≤,解得9n ≤,所以一直到和为10的整数对排完,总共有45个,第50个数对是和为11的第5个,故为)6,5(.考点:数列的有关问题.3.(北京市石景山区2015届高三3月统一测试(一模)理14)已知集合{(,)|()}M x y y f x ==,若对于任意11(,)x y M ∈,都存在22(,)x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①1{(,)|}M x y y x==; ②2{(,)|log }M x y y x ==; ③{(,)|2}x M x y y e ==-; ④{(,)|sin 1}M x y y x ==+.其中是“垂直对点集”的序号是 .【答案】③④Q P2 3对于{(,)|sin 1}M x y y x ==+,结合sin 1y x =+的图象可知,在图象上任取点A ,图象上总存在点B ,使OA OB ⊥,即对任意11(,)x y M ∈,都存在22(,)x y M ∈,使得12120x x y y +=成立,所以,④是“垂直对点集”;综上知,答案为③④.考点:1.集合的概念;2.新定义问题;3.函数的图象和性质.三.拔高题组1.(北京市丰台区2014-2015学年度第二学期统一练习(一)理14)已知平面上的点集A 及点P ,在集合A 内任取一点Q ,线段PQ 长度的最小值称为点P 到集合A 的距离,记作(,)d P A .如果集合={(,)|1(01)}A x y x y x +=≤≤,点P 的坐标为(2,0),那么(,)d P A =1;如果点集A 所表示的图形是边长为2的正三角形及其内部,那么点集{|0(,)1}D P d P A =<≤所表示的图形的面积为__ __.【答案】6π+【解析】试题分析:根据题意,点P (,)20到线段={(,)|1(01)}A x y x y x +=≤≤最短距离为1,如图所示,考点:新定义题.2.(北京市东城区2015届高三5月综合练习(二)理14)如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.给出下列四个命题:① 若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个.② 若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个.③ 若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.④ 若p q =,则点M 的轨迹是一条过O 点的直线.其中所有正确命题的序号为 .【答案】①②③考点:1.平面点和直线的位置关系;2.分类讨论思想.3.(北京市延庆县2014—2015学年度高二第二学期期末考试理17)(Ⅰ)证明:sin 1cos 1cos sin αααα-=+. (Ⅱ)已知圆的方程是222x y r +=,则经过圆上一点00(,)M x y 的切线方程为200x x y y r +=,类比上述性质,试写出椭圆22221x y a b+=类似的性质. 【答案】(Ⅰ)证明略; (Ⅱ)椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b +=一点00(,)P x y 的切线方程为00221x x y y a b+=. 【解析】试题分析:第一问应用分析法证明等式即可,第二个类比着可以得出结果,属于基础题,很简单. 试题解析:(Ⅰ)证明:欲证sin 1cos 1cos sin αααα-=+, 只需证2sin (1cos )(1cos )ααα=-+,即证22sin 1cos αα=-,上式显然成立,故原等式成立. ……5分(Ⅱ)圆的性质中,经过圆上一点00(,)M x y 的切线方程就是将圆的方程中的一个x 与y 分别用00(,)M x y考点:分析法证明等式,类比推理.:。

高考数学总复习专题13推理与证明、新定义分项练习(含解析)(2021学年)

高考数学总复习专题13推理与证明、新定义分项练习(含解析)(2021学年)

(上海专用)2018版高考数学总复习专题13 推理与证明、新定义分项练习(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((上海专用)2018版高考数学总复习专题13 推理与证明、新定义分项练习(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(上海专用)2018版高考数学总复习专题13 推理与证明、新定义分项练习(含解析)的全部内容。

第十三章 推理与证明、新定义一.基础题组1。

【2011上海,理14】已知点O (0,0)、Q0(0,1)和点R 0(3,1),记Q0R 0的中点为P 1,取Q 0P 1和P 1R 0中的一条,记其端点为Q 1、R 1,使之满足(|OQ 1|-2)(|OR 1|-2)<0,记Q 1R 1的中点为P 2,取Q1P 2和P 2R 1中的一条,记其端点为Q 2、R 2,使之满足(|OQ 2|-2)(|OR 2|-2)<0,依次下去,得到P 1,P2,…,Pn,…,则0lim n n Q P →∞=______。

【答案】3 【解析】2。

(2009上海,理13)某地街道呈现东—西、南-北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(—2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)___________为发行站,使6个零售点沿街道到发行站之间路程的和最短。

【答案】(3,3)【解析】设确定的格点为(x,y),由题意知确定的格点到已知的6个格点路程的和最短,即为x,y 分别到6个格点的横.纵坐标距离和最小,6个格点的横坐标由小到大排列为—2,-2,3,3,4,6,所以x=3时到这6个数的距离和最小。

【备战2016】(四川版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

【备战2016】(四川版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

第十四章 推理与证明、新定义一.基础题组1.【2009四川,理12】已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有x (1)f x +=(1)x +()f x ,则5(())2f f 的值是( )(A )0 (B )12 (C )1 (D )522.【2011四川,理16】函数()f x 的定义域为A ,若1212()()x x A f x f x ∈=,且时总有12()x x f x =,则称为单函数.例如,函数()21()f x x x R =+∈是单函数.下列命题:①函数2()()f x x x R =∈是单函数;②若()f x 为单函数,121222,A ()()x x x x f x f x ∈≠≠且,则;③若:f A B →为单函数,则对于任意b ∈B ,它至多有一个原象;④函数()f x 在某区间上具有单调性,则()f x 一定是单函数.其中的真命题是 .(写出所有真命题的编号) 【答案】②③3.【2013四川,理15】设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B的中位点.则有下列命题: ①若,,A B C 三个点共线,C 在线段上,则C 是,,A B C 的中位点;②直角三角形斜边的点是该直角三角形三个顶点的中位点;③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号)4.【2014四川,理15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)【考点定位】1、新定义;2、函数的定义域值域.二.能力题组1.【2009四川,理16】设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题:①设f 是平面M 上的线性变换,则(0)0f =②对,()2a V f a a ∈=设,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对,()a V f a a e ∈=-设,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则(),()f a f b 也共线.其中真命题是 (写出所有真命题的序号)2.【2010四川,理16】设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈,则称S 为封闭集.下列命题:①集合S a bi =∣+∣ (a,b 为整数,i 为虚数单位)为封闭集; ②若S 为封闭集,则一定有0S ∈;③封闭集一定是无限集;④若S 为封闭集,则满足S T C ⊆⊆的任意集合T 也是封闭集.其中真命题是 (写出所有真命题的序号)3.【2012四川,理16】记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-。

【备战2016】(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

【备战2016】(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

专题14 推理与证明、新定义1. 【2006高考北京理第8题】下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( ) (A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >> 【答案】C2. 【2009高考北京理第8题】点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 ( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”【答案】A考点:创新题型.3. 【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B考点:合情推理,中等题.4. 【2005高考北京理第14题】已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( .如果在一种算法中,计算),,4,3,2(0n k x k=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P 10(x 0)的值共需要 次运算. 【答案】1(3)22n n n + 考点:信息题。

【备战2016】(陕西版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理科

【备战2016】(陕西版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理科

专题14 推理与证明、新定义一.基础题组1. 【2010高考陕西版理第12题】观察下列等式:13+23=32,13+23+32=62,13+23+33+43=102,……, 根据上述规律,第五个等式为 _13+23+__32__+43____+53__=212___________.【答案】13+23+33+43+53+63=212考点:推理与证明,容易题.2. 【2012高考陕西版理第11题】观察下列不等式213122+<, 231151233++<, 222111512343+++<, ……照此规律,第五个...不等式为____________________. 【答案】6116151413121122222<+++++考点:推理与证明,容易题.二.能力题组1. 【2006高考陕西版理第12题】为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d ,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A .4,6,1,7 B .7,6,1,4 C .6,4,1,7 D .1,6,4,7【答案】C【解析】考点:推理与证明.2. 【2008高考陕西版理第12题】为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A .11010B .01100C .10111D .00011【答案】C考点:推理与证明.3.【2011高考陕西版理第13题】观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第n 个等式为 .【答案】2(1)(32)(21)n n n n ++++-=-考点:推理与证明.5. 【2013高考陕西版理第14题】观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n 个等式可为__________.【答案】12-22+32-42+…+(-1)n +1n 2=(-1)n +112n n (+) 考点:推理与证明.5. 【2014高考陕西版理第14题】观察分析下表中的数据: 面 9 猜想一般凸多面体中,E V F ,,所满足的等式是_________.【答案】2F V E +-=考点:归纳推理.。

备战2016(重庆版)高考数学分项汇编专题14推理与证明、新定义(含解析)理

备战2016(重庆版)高考数学分项汇编专题14推理与证明、新定义(含解析)理

专题14 推理与证明、新定义
1. 【2005高考重庆理第22题】(本小题满分12分)
数列{a n }满足)1(2
1)11(1211≥+++==+n a n n a a n n n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;
(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数 e=2.71828….
2. (本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
设m 个不全相等的正数12,,,(7)m a a a m ≥ 依次围成一个圆圈.
(Ⅰ)若2009m =,且121005,,,a a a 是公差为d 的等差数列,而1200920081006,,,,a a a a 是公比为q d =的等比数列;数列12,,,m a a a 的前n 项和()n S n m ≤满足:320092007115,12S S S a ==+,求通项()n a n m ≤; (Ⅱ)若每个数()n a n m ≤是其左右相邻两数平方的等比中项,求证:22
16712m m a a a a ma a a +++++> ;
3. 【2013高考重庆理第22题】(本小题满分12分,(1)小问4分,(2)小问8分.)对正整数n ,记I n ={1,2,…,
n },,n n n P I k I ⎫=∈∈⎬⎭
.
(1)求集合P7中元素的个数;
(2)若P n的子集A中任意两个元素之和不是
..整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题13 推理与证明,新定义
一.基础题组
1. (2009上海,文14)某地街道呈现东—西,南—北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售点.请确定一个格点__________为发行站,使5个零售点沿街道到发行站之间路程的和最短.
【答案】
(3,3)
2. 【2008上海,文15】如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴,y 轴的正半轴分别相切于点C ,D 的定圆所围成的区域(含边界),A ,B ,C ,D 是该圆的四等分点.若点()P x y ,,点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D )
A.AB
B .B
C C .C
D D .DA
【答案】D
3. 【2006上海,文12】如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(),p q 是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是____________.
【答案】4
4. 【2005上海,文16】用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵.对第i 行in i i a a a ,,,21 ,记in n i i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i =.例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,
2412312212621-=⨯-⨯+-=+++b b b ,
那么,在用1,2,3,4,5形成的数阵中,12021b b b +++ 等于( )
A .—3600
B .1800
C .—1080
D .—720
【答案】-1080。

相关文档
最新文档