怎么用扬声器的参数计算腔体的体积

怎么用扬声器的参数计算腔体的体积
怎么用扬声器的参数计算腔体的体积

不要单纯这样来计算,问题最主要的是你要低音效果好还是别的,音箱大小对高音要求不高,但高音对音箱高度有关,也就是高音喇叭的高度,相对条件下音箱越大低音效果越好,另外还要考虑低音喇叭的特性,每种品牌的喇叭性能都有区别,如早前的长冲程"惠威"低音效国本身就好,加上你合理的音箱设计可以完美再现强劲的低音效果,不过"惠威"低音要求功放的输出功率很大,同样

大小的喇叭对功率要求大小主要看音圈和磁柱之间的间隙大小有直接关系,呵呵,,,看我说着说着就跑远了,,,

回答人的补充2009-05-11 20:59

(一)箱体的比例当爱好者制作扬声器箱体时,有各种不同的结构选择包括从立方体,圆管形,或矩形到许多其它的形状。每种形状都有特殊的特性、优点和缺陷。但是,常用的音箱不管是闭箱还是倒相箱大都是长方形的箱体,所以,本文就是对长方形箱体尺寸关系进行的讨论。假定扬声器特性表中建议箱体容积Vb为0.09056立方米。爱好者就能用这个值为实际扬声器单元确定理想的箱体尺寸了。如容积已定,先要把所要求的内部容积的立方米单位转换为立方厘米,然后再求得结果的立方根,就可以得出所要求的高度、宽度、厚度了。正方形箱体(即高度、宽度、厚度相同的箱体)对用于超低音箱是很满意的,因为这种箱体能通过增强内部驻波而提升箱体的总输出。许多市售的超低音箱都是按这种样子设计的。但是,本文的用意并非是用于超低音箱的,而是能覆盖全音频范围的两分频或三分频的音箱。回答人的补充2009-05-11 21:14

通过实践,许多音箱制造商已经采用了靠经验得到的“黄金”比率或“黄金”分割率,这个比例或比率与根据理想比率0.618而确定的箱体尺寸比有关。举例来说,应用的是整数尺寸,如6单位的深度,10单位的宽度,16单位的高度,深度对宽度的比率=6:10=0.60,而宽度对高度的比率=10:16=0.625,这些最终尺寸的纵横比与理想的0.618值相当接近的,因为该比率可使选出的近似尺寸不会出现增强内部共振的公共简正频率,所以这个比率已被确认为能产生最佳的声音。(二)计算内部尺寸假定所要求的内部纯容积为0.0864立方米,计算过程如下:1、把0.09056立方米转换为90560立方厘米。2、假定取纵横比为6:10:16,将这三个数相乘,得到积为960。3、把总立方厘米90560除以960,得到的商为94.3。4、现在,求出94.3的立方根,大约为4.55。5、最后,用4.55乘以纵横比的三个值,分别为,6×4.55=27.3(厚度),10×4.55=45.5(宽度),而16×4.55=72.8(高度)。6、经过这些计算,将箱体的宽度、高度和厚度值相乘,和原来要求的箱体容积90620cm3相比较。由于要化为整数,乘积可以稍有不同,当有1%误差时可以认为是无关紧要的。以上就是决定箱体最佳尺寸的全过程。作为例子,读者也能选择其他的7:11:17纵横比,或34:55:89而且按前面举例的同样方法进行。当最佳值有5%左右误差时,对放音质量仅有很小的影响。(三)关于误差假如读者遇到的是小容积的音箱,那么此时容积是与扬声器单元装在箱内占有的容积有关的。读者可以把箱体容积做得稍为大些以补偿扬声器单元的容积。假如在扬声器单元特性中没有给出扬声器单元的位移值,那么可以根据下述公式计算近似的位移值(或容积):V=πr 2h ,式中,r是磁体半径,而h是磁体的厚度或高度。设磁体直径为11.4cm(半径就是5.7cm),厚度为2.5cm,容积为:3.1416×5.7 2 ×2.5=255.2cm3 回答人的补充2009-05-11 21:21

现在,计算用下面公式计算锥盆容积:V=πr2h /3设锥盆直径为22.9cm,而高度为5.1cm,所以锥盆容积为: 3.1416×11.52 ×5.1 /3=706.3cm3把磁路容积(255.2cm3)与锥盆容积(706.3cm3)相加,给出扬声器单元容积为961.5cm3。该值只不过比箱体所要求容积90560cm3的1%稍大些而已。所以在这种情况下扬声器单元的容积是并不重要的。只要扬声器单元的合成容积不超出总箱体容积的5%,在计算时就可以忽略不计了。无论读者用什么样的比例,深度、宽度和高度的尺寸都不应该存在任何一个数的整倍数。举例说来,不应该采用8,16和24,因为这些数都是8的整倍数,所以在箱内将会出现有害的共振。对超低音箱来说,因为这种箱需要共振,所以常常制成正方形的。而且,这种音箱放音仅覆盖较窄的频段,故而箱体的共振增强了输出。当然,也能利用开口箱形式进一步增强低音。四)数学上的黄金切割率表示黄金切割率的数(也称为黄金平均值,黄金比例和黄金分割)是从划分线段得出的。此时较短的部分对较长的部分之比等于较长的部分对线段总长之比值(图1)。设线段总长度为1,且取较长部

分为x,那么较短的部分就是1-x,这样导出的比率就是:[(1-x)/x]=(x/1)或x2=1-x (1)稍经排列,可给出一元二次方程:x2+x-1=0 (2)将此式与二次方程基本形式比较,可得ax2+bx+c=0,且应用该公式,x=(-b )/2a x的正值(较长的线段)可得0.61803…,作为实际应用四舍五入为0.618。通过相减,较短部分的长度即为0.382,正如方程(1)直接显示那样,该值是较长线段的平方。还可以(在理论上)找到一个通过几何结构分割而得到的正确的分割点。在图2上,ABC是一个直角三角形,为方便起见,选择AB为2单元,而BC(垂直于AB)选定为1,根据勾股定律,AC=。以C为圆心,半径=BC=1作圆弧,交于斜边上D点,得AD=-1。再以A为圆心,AD为半径作圆弧,交AB于G点,该点即为分割AB的黄金比率。较长部分AG=-1,而较短的部分GB=2-(-1)=3-。应用这些值,我们能够看出GB/AG =AG/AB是相同的。

圆柱体体积的计算

圆柱体体积的计算》教学设计 库伦旗三道洼中心校——杜秀文 概述 《圆柱体的体积计算》是小学数学人教版第十二册中第二单元中的一课时内容。本节课,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题,本节课的学习为学习圆锥体的体积计算奠定基础。 教学目标分析 一、知识技能: 1.理解圆柱体体积公式的推导过程,掌握计算公式. 2.会运用公式计算圆柱的体积,解决生活中的实际问题。 二、过程与方法: 通过学生的小组合作学习,充分利用资源、学具等去探究推导圆柱体体积的计算公式。 三、情感态度价值观: 1、充分利用资源、学具,,通过小组合作学习以及采用与课情、班情相匹配的激励机制,激励和培养学生的学习兴趣,求知欲望。 2、培养学生动手操作、实验、观察等良好的学习态度和良好的科学素养。 学习者特征分析 1、这是乡村六年级学生,是布局调整时,从各村小、初小、教学点汇集到一起后,进行分班,从而产生的班集体。 2、乡村学生的知识面窄,动手能力差,积累也少。 3、学生在五年级时学习过了长方体的体积计算,得出:“底面积×高=长方体体积”的结论,学生知道了只要知道底面积和高就可以求体积。 4、学生的学具准备充分,便于动手操作。 5、学生小组合作、探究、交流、观察、汇报的习惯已经养成。 6、学生的实际情况是师经过长期的作业评价、课堂情况反馈以及学生表现出来的学习习惯等来分析学生的总体特征。 教学策略选择与设计 本节课,以“三维”目标为依据,以学生的原有学习状况为基础,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题。基于本节课的具体情况,我采用“支架式”、“先行组织者策略”、“演示法”、“示范-模仿法”、“操练-反馈法”等教学策略。教学资源与工具设计 1、教学资源:多媒体课件(自制课件)、圆柱体教具。 2、学具:圆柱体模型教学重点圆柱体体积的计算. 教学难点理解圆柱体体积公式的推导过程. 教学过程 一、复习准备 (一)教师提问(课件出示)

扬声器参数

扬声器参数讲解 1.RMSE-free:此为所测得的参数值反推阻抗曲线,并以此估之阻抗曲线和原测得之阻抗曲线作一误差平方和的计算,故此值愈大,表示所测得的参数愈不可靠,须重新检测测试程序及接法. 2.Fs:即Fo,最低共振频率,这个参数决定了扬声器声音重现的低频界限,它决定于扬声器振动系统的等效质量和等效力顺,即Fs=(1/2)(MmsCms)-1/2 2.1增加边的硬度可提高Fs,增加弹波的硬度可提高Fs。 2.2增加等效振动质量,即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可降低Fs。 3.Re:线圈的直流阻抗,Re=*L/S:音圈导线的电阻率,L:音圈导线的长度,S:音圈导线的横截在积。 Zmax:扬声器阻抗曲线上的峰值阻抗 Ro=Zmax/Re 4.Res:电气系统的等值电阻值。Res=Zmax-Re=(Bl)2/Rms Rms:支撑系统的等效力阻。 4.1改变振动系统的力阻,如在管材,鼓纸和T铁上打孔或将弹波的材质改稀,或将含浸浓度降低,或增加鼓纸的刚性(将鼓纸纤维打短打细以压得更紧),或改软振动系统,盆架的窗口改大,可提高Res。 4.2增加BL值可提高Res(对Res影响最大)Rms为振动系统的力阻。 4.3随喇叭口径的增加而降低(增加了sd值),Rmr为幅射力阻,面积越大其值越大。 5.Qms:机械系统的阻尼系数。Qms=o*Mms/Rms,Rms=(Bl)2/Res. 5.1改变振动系统的力阻,如在管材,鼓纸和T铁上打孔或将弹波的材质改稀,或将含浸浓度降低,或增加的鼓纸的刚性(将鼓纸纤维打短打细以压得更紧),或改软振系统,盆架的窗口改大,可提高Qms。 5.2增加等效振动质量,即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可提高Qms. 5.3改变音圈管材材质(Kapton比aluminum高,til比kapton高) 5.4增加喇叭的Fs值可提高Qms。 6.Qes:电器系统的阻尼系数。Qes=o*Mms/((Bl)2/Re)。 6.1增加等效振动质量即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可提高Qes。 6.2增加DCR值可提高Qes。 6.3降低Bl值可提高Qes,Bl值对Qes的影响最大。 6.4增加喇叭的Fs值可提高Qes。 7.Qts(喇叭总的阻尼系数)。机械系统加上电气系统的总阻尼系数,扬声器的低频特性决定于扬声器的谐振频率Fo和总阻尼系数Qts.,Qts值的大小决定了低频响应的形状,Qts参数是音箱设计的重要参数。1/Qts=1/Qms+1/Qes或Qts=Qes*Qms/(Qes+Qms) 7.1改变振动系统的力阻,可提高Qts,BL上升则Qts下降。 7.2增加等效振动质量,可提高Qts。 7.3增加BL值可降低Qts(对Qts影响最大) 8.L1:理想电感,音圈未通电时的电感。 8.1增大音圈线径或增大音圈芯数或T铁增加铜帽,或将音圈线由铜线改为铝线,可降低L1。 8.2增大音圈层数,或改音圈管材由纸管变为铝管,可提高L1。 9.L2:音圈通电后所测得的电感,L2随L1的增加而增加。 10.Mms:扬声器振动系统等效质量,包括空气负载。Mms=Mmd+Mmr Mms:扬声器振动系统质量,包括音圈和振动膜,防尘盖及弹波和胶水的质量. Mmd:空气负载质量,Mmr=2.67a3或0.5658 Sd3 10.1鼓纸越重,音圈越重,中心胶越多,鼓纸外径越大,防尘盖越大越厚,弹波越密越厚,锦丝线越粗,均可提高Mms。 11.Cms:振动系统的弹性,指系统施以每牛顿力将可产生的位移。 11.1 Fs越大(即边材越厚,越硬,弹波越硬)Cms越小。(最明显). 11.2减小振动系统的力阻,Cms越大。(不明显). 12.Vas:等效容积。Vas=oCo2Cms o为空气密度,取1.18Kg/m3;Co为常温下声速度,取345m/s 12.1与sd的平方成正比,即增加振动面积即可增加Vas。

圆柱体体积的计算教学设计

《圆柱体体积的计算》教学设计 汪波陕西省西乡县沙河镇中心学校 概述 《圆柱体的体积计算》是小学数学人教版第十二册中第二单元中的一课时内容。 本节课,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题,本节课的学习为学习圆锥体的体积计算奠定基础。 教学目标分析 一、知识技能: 1.理解圆柱体体积公式的推导过程,掌握计算公式. 2.会运用公式计算圆柱的体积,解决生活中的实际问题。 二、过程与方法: 通过学生的小组合作学习,充分利用资源、学具等去探究推导圆柱体体积的计算公式。 三、情感态度价值观: 1、充分利用资源、学具,,通过小组合作学习以及采用与课情、班情相匹 配的激励机制,激励和培养学生的学习兴趣,求知欲望。 2、培养学生动手操作、实验、观察等良好的学习态度和良好的科学素养。学习者特征分析 1、这是乡村六年级学生,是布局调整时,从各村小、初小、教学点汇集到一起后,进行分班,从而产生的班集体。 2、乡村学生的知识面窄,动手能力差,积累也少。 3、学生在五年级时学习过了长方体的体积计算,得出:“底面积×高=长方体体积”的结论,学生知道了只要知道底面积和高就可以求体积。 4、学生的学具准备充分,便于动手操作。 5、学生小组合作、探究、交流、观察、汇报的习惯已经养成。 6、学生的实际情况是师经过长期的作业评价、课堂情况反馈以及学生表现出来的学习习惯等来分析学生的总体特征。 教学策略选择与设计 本节课,以“三维”目标为依据,以学生的原有学习状况为基础,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习

圆柱体积和面积计算公式

圆柱体体积计算公式xx方形的周xx=(xx+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (xx×宽+xx×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3

长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-xxxx h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC==a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长

α-夹角 D-长对角线长 d-短对角线xxS=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高 m-中位线xxS=(a+b)h/2 =mh 圆r-半径 d-直径C=πd=2πr S=πr2=扇形r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数S=-sinα)==- b/2·=r(l-b)/2 + bh/2 ≈2bh/3

扬声器参数定义

扬声器参数(喇叭的参数) 扬声器是扬声器系统(俗称音箱)中的关键部位,扬声器的放声质量主要由扬声器的性能指标决定,进而决定了整套的放音指标。扬声器的性能指标主要有额定功率,额定阻抗、频率特性、谐波失真、灵敏度、指向性等。 扬声器的性能优劣主要通过下列扬声器参数来衡量: 扬声器参数(喇叭的参数)_额定功率(W) 扬声器的额定功率是指扬声器能长时间工作的输出功率,又称为不失真功率,它一般都标在扬声器后端的铭牌上。当扬声器工作于额定功率时,音圈不会产生过热或机械动过载等现象,发出的声音没有显示失真。额定功率是一种平均功率,而实际上扬声器工作在变功率状态,它随输入音频信号强弱而变化,在弱音乐及声音信号中,峰值脉冲信号会超过额定功率很多倍,由于持续时间较短而不会损坏扬声器,但有可能出现失真。因此,为保证在峰值脉冲出现时仍能很好获得的音质,扬声器需留足够的功率余量。一般扬声器能随的最大功率是额定功率的2-4倍。 1、扬声器参数(喇叭的参数)_频率特性(Hz) 频率特性是衡量扬声器放音频带宽度的指标。高保真放音系统要求扬声器系统应能重放20Hz-2000Hz的人耳可听音域。由于用单只扬声器不易实现该音域,故目前高保真音箱系统采用高、中、低三种扬声器来实现全频带重放覆盖。此外,高保真扬声器的频率特性应尽量趋于平坦,否则会引入重放的频率失真。高保真放音系统要求扬声器在放音频率范围内频率特性不平坦度小于10dB。 2、扬声器参数(喇叭的参数)_额定阻抗(W) 扬声器的额定阻抗是指扬声器在额定状态下,施加在扬声器输入端的电压与流过扬声器的电流的比值。现在,扬声器的额定阻抗一般有2、4、8、16、32欧等几种。 扬声器额定阻抗是在输入400Hz信号电压情况下测得的,而扬声器音圈的直流电阻R直≈0.9R额。 3、扬声器参数(喇叭的参数)_谐波失真(TMD%) 扬声器的失真有很多种,常见的有谐波失真(多由扬声器磁场不均匀以及振动系统的畸变而引起,常在低频时产生)、互调失真(因两种不同频率的信号同时加入扬声器,互相调制引起的音质劣化)和瞬态失真(因振动系统的惯性不能紧跟信号的变化而变化,从而引起信号失真)等。谐波失真是指重放时,增加了原信号中没有的谐波成份。扬声器的谐波失真来源于磁体磁场不均匀、振动膜的特性、音圈位移等非线性失真。目前,较好的扬声器的谐波失真指标不大于5%。 4、扬声器参数(喇叭的参数)_灵敏度(dB/W)

TK-AUDIO扬声器全参数

目录 吸顶天花扬声器 (3) 吸顶天花喇叭TKC-701N (3) 吸顶天花喇叭TKC-703A (4) 吸顶天花喇叭TKC-705/5 (4) 吸顶天花喇叭TKC-705F/5 防潮 (5) 吸顶天花喇叭TKC-705/6 (6) 吸顶天花喇叭TKC-706 (6) 吸顶天花喇叭TKC-718 (7) 吸顶天花喇叭TKC-719H (7) 防火吸顶天花喇叭TKC-719A (8) 吸顶天花喇叭TKC-715 (9) 吸顶天花喇叭TKC-720 同轴 (9) 吸顶天花喇叭TKC-729/6 (10) 吸顶天花喇叭TKC-P06C (11) 吸顶天花喇叭TKC-P06A (11) 吸顶天花喇叭TKC-P10A (12) 吸顶天花喇叭TKC-P06B (13) 吸顶天花喇叭TKC-P20A (14) 室内、室外音柱扬声器 (16) 室内音柱TKZ -602,TKZ -603, TKZ -604 (16) 室内音柱TKZ-611\TKZ-612\TKZ-613\TKZ-614 (17) 室内音柱CS-10\CS-20\CS-30\CS-40 (18) 室外音柱TKZ-810\TKZ-820\TKZ- 830\TKZ-840\TKZ-850\TKZ-860\TKZ-960 (19) 室外音柱TKZ-510H\TKZ-520H\TKZ- 530H\TKZ-540H (20) 室外音柱CS-10W\CS-20W\CS-30W\CS-40W (21) 壁挂扬声器 (22) 壁挂音箱TKW-108H (22)

壁挂音箱TKW-105B/W/4 (23) 壁挂音箱TKW-105B/W/5 (23) 壁挂音箱TKW-105B/W/6 (24) 壁挂音箱TKW-03(防潮防雾迷你) (25) 壁挂音箱TKW-103 (26) 壁挂音箱TKW-109 (27) 壁挂音箱TKW-206B/W/4 (27) 壁挂音箱TKW-206B/W/5 (28) 壁挂音箱TKW-206B/W/6 (29) 壁挂音箱TKW-206B/W/8 (30) 壁挂音箱TKW-P06C (30) 壁挂音箱TKW-P06B (31) 壁挂音箱TKW-P06A (32) 壁挂音箱TKW-P20A (33) 壁挂音箱TKW-P40A (34) 壁挂音箱TKW-P40B (36) 草地园林仿石音箱 (37) 草地仿石音箱TKS-501(同轴) (37) 草地仿石音箱TKS-610(同轴) (37) 草地仿石音箱TKS-620(同轴) (38) 草地仿石音箱TKS-801(卧式) (39) 草地仿石音箱TKS-802(花盘式) (39) 草地蘑菇音箱TKG-650 (40) 草地蘑菇音箱TKG-620(卡通蘑菇型) (41) 草地树桩音箱TKG-660 (41) 草地挖坑掩埋音箱TKG-208A/B (42) 草地立柱音箱TKG-21A/28A (43) 草地仿石别墅音箱TKS-303/305 (44) 全天候定向号角 (44)

揭秘扬声器主要参数之间的关系

揭秘扬声器主要参数之间的关系 2016/2/3 10:22:36来源:艾维音响网 [ 提要 ] 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因 而必须综合考虑和设计。 艾维音响网讯扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 1、主要参数综合设计和分析 扬声器常用机电参数以及计算公式、测量方法简述如下: 直流电阻 Re 由音圈决定,可直接用直流电桥测量。 共振频率 Fo 由扬声器的等效振动质量Mms和等效顺性 Cms决定,见公式 (5) , Fo 可直接用 Fo 测试仪测量或通过测量阻抗曲线获得。 共振频率处的最大阻抗Zo 由音圈、磁路、振动系统( 鼓纸、弹波 ) 共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 机械力阻 Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里 SQR( ) 表示对括号 ( )中的数值开平方根,下同。 辐射力阻 Rmr 由口径、频率决定,低频时可忽略。 Rmr = 0.022*(f/Sd)2 (12) 等效辐射面积Sd 只与口径 ( 等效半径 a) 有关。 Sd =π * a2 (13) 机电耦合因子BL 由磁路 Bg 值和音圈线有效长度L 决定,也可通过测量电气品质因数Qes后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 等效振动质量Mms 由音圈质量 Mm1、鼓纸等效质量Mm2、辐射质量 Mmr共同决定,Mms可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 辐射质量 Mmr 只与口径 ( 等效半径 a) 有关。

扬声器各参数

扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的参数主要包括:Z,Fo,η0, SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义. 1.1 Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗. 扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,即图1中点B所对应的阻抗值.它是计算扬声器电功率的基准. 直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值. 我们通常所说的4欧或者8欧是指额定阻抗. 1.2 Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率. 单位:赫兹(Hz). 扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化的曲线. 1.3 η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率. 1.4 SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相距1m 的点上产生的声压.单位:分贝(dB). 1.5 Qts :扬声器的总品质因数值. 1.6 Qms:扬声器的机械品质因数值. 1.7 Qes:扬声器的电品质因数值. 1.8 Vas(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的声顺相等时的容积.单位:升(L). 1.9 Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分,音圈,弹波以及参与振动的空气质量等.单位:克(gram). 1.10 Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N). 1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2). 1.12 BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位:(T*M).

圆柱体的体积公式

小学数学图形计算公式 1、体积公式: 1)、圆柱体的体积公式: 体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h 。 2)、长方体的体积公式: 体积=长×宽×高。(底面积乘以高 S底·h)如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc。 3)、正方体的体积公式: 体积=棱长×棱长×棱长。(底面积乘以高 S底·h) 如果用a表示正方体的棱长,则正方体的体积公式为V=a·a·a=a^3。 4)、锥体的体积=底面面积×高÷3 。圆锥=S底×hx3分之一。 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积 =长×宽×高 V =abh 13、正方体的表面积=棱长×棱长×6 S =6a

14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 小学应用题计算公式 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 10、和差问题的公式:(和+差)÷2=大数、(和-差)÷2=小数 11、和倍问题:和÷(倍数-1)=小数、小数×倍数=大数、(或者和-小数=大数) 12、差倍问题:差÷(倍数-1)=小数、小数×倍数=大数、(或小数+差=大数) 13、植树问题: 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1)

圆柱体的体积计算

圆柱体的体积计算 1,一个半径为4㎝,高为6㎝的圆柱它的体积是多少? 2,一个直径为6㎝,高为8㎝的圆柱它的体积是多少? 3,一个底周长为12.56㎝,高为5㎝的圆柱体积是多少? 4,一个侧面积为125.6 C㎡高为10㎝的圆柱它的体积是多少? 5,一个侧面积为188.4 C㎡,高为10㎝的圆柱它的体积是多少? 6,一个侧面积为251.2 C㎡半径为2㎝的圆柱它的体积是多少? 7,一个侧面积为376.8 C㎡,直径为12㎝的圆柱它的体积是多少? 8,一个侧面积为502.4 C㎡,底面周长为25.12㎝的圆柱它的体积是多少?9,一个棱长为4dm的正方体加工成最大的圆柱,它体积是多少? 10,一个棱长为6㎝的正方体木料车成一个最大的圆柱,它的体积是多少?11,一个棱长314㎝的正方体铁块锻造成一个圆柱,它的体积是多少? 12,一个长为31.4㎝,宽为20㎝,高为10㎝长方体的铁块熔铸成一个圆柱,它的体积是多少? 13,一个长30㎝,宽为20㎝,高为10㎝的长方体木料加工成最大的圆柱它的体积是多少? 14,一个长20㎝,宽为10㎝,高为10㎝的长方体木料加工成最大的圆柱它的体积是多少? 15,一个装满水的长方体容器里面长31.4㎝,宽20㎝,高10㎝,将里面的水倒入一个底面半径为30㎝的圆柱体容器里,水高是多少? 16,一个长20㎝,高15㎝,宽10㎝的容器里装一些水,将一块铁放进容器里水上升了2㎝,铁块的体积是多少? 17,将一个石头放进一个装有水的底面半为20㎝的圆柱体容器里,水面上升了5㎝,这个石头的体积是多少?

18,一个底面半径为10㎝,高为8㎝的容器里装满豆浆,若这些豆浆分给4人喝够吗? 19,一个装满牛奶的容器的底面直径为6㎝,高为9㎝的牛奶倒在底面半径3㎝,高2㎝的水杯里分给小明和3个小朋友,每人一杯够吗? 20,小芳家来了三个小朋友,妈妈冲了1000ml果汁,倒入底面直径6㎝,高10㎝圆柱形杯子分给小芳和三个小朋友每人一杯够吗? 21,两个底面相等的圆柱,一个高是24㎝,体积是1200 cm3,另一个高是36㎝,它的体积是多少? 22,一个圆柱高30dm,若截成两个圆柱表积增加40 c㎡,这个圆柱的体积是多少? 23,一个圆柱高20㎝,若高增加4㎝,表面积增加37.68 C㎡,这个圆柱的体积是多少? 24,一个圆柱的高为40㎝,若将高减少8㎝,表面积减少100.48 C㎡,这个圆柱的体积是多少? 25,若将一个高8㎝的圆柱沿直径切成两个半圆柱,表面积增加80 C㎡,则这个圆柱的体积是多少? 26,若将一个圆柱沿直径截成两个半圆柱,截面是边长10㎝的正方形,则这个圆柱的体积是多少? 27,一个底面半径为3dm,高20dm圆柱形水桶,这个水桶可装多少水? 28,一个底面直径为2m,高为1.5m圆柱形粮囤,若每立方米稻谷重550千克,这个粮囤可装多少千克稻谷? 29,一个水库的放水管的内直径是1.2m,若水流速是每分钟50m,一小时要放多少方水? 30,一个钢管的内直径为4㎝,外直径为10㎝,长30㎝,这个钢管的体积是多少? 31,一个水泥管的内直径是40㎝,外直径为8㎝,长20㎝,它的体积是多少? 32,一个边长为31.4㎝方钢,长20m要做一个底面半径为20㎝,高10的圆柱,需要多长的方钢? 33,一个钢管的内直径为6㎝,外直径为8㎝,长15m的钢管,若每立方分米铁重7.8千克,这个钢管重多少千克?

音响参数分析及图片大全

音响 扬声器材质与尺寸 低档塑料音箱因其箱体单薄、无法克服谐振,无音质可言(也有部分设计好的塑料音箱要远远好于劣质的木质音箱);木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。 通常多媒体音箱都是双单元二分频设计,一个较小的扬声器负责中高音的输出,而另一个较大的扬声器负责中低音的输出。 挑选音箱应考虑这两个喇叭的材质:多媒体有源音箱的高音单元现以软球顶为主(此外还有用于模拟音源的钛膜球顶等),它与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。多媒体音箱现以质量较好的丝膜和成本较低的PV膜等软球顶的居多。 低音单元它决定了音箱的声音的特点,选择起来相对重要一些,最常见的有以下几种:纸盆,又有敷胶纸盆、纸基羊毛盆、紧压制盆等几种。 纸盆音色自然、廉价、较好的刚性、材质较轻灵敏度高,缺点是防潮性差、制造时一致性难以控制,但顶级HiFi系统中用纸盆制造的比比皆是,因为声音输出非常平均,还原性好。 防弹布,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,缺点是成本高、制作工艺复杂、灵敏度不高轻音乐效果不甚佳。 羊毛编织盆,质地较软,它对柔和音乐与轻音乐的表现十分优异,但是低音效果不佳,缺乏力度与震撼力。 PP(聚丙烯)盆,它广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外还有像纤维类振膜和复合材料振膜等由于价格高昂极少应用于普及型音箱中。 扬声器尺寸自然是越大越好,大口径的低音扬声器能在低频部分有更好的表现,这是在选购之中可以挑选的。用高性能的扬声器制造的音箱意味着有更低的瞬态失真和更好的音质。普通多媒体音箱低音扬声器的喇叭多为3~5英寸之间。用高性能的扬声器制造的音箱也意味着有更低的瞬态失真和更好的音质。 音箱: 有源和无源 有源音箱(ActiveSpeaker)又称为“主动式音箱”。通常是指带有功率放大器的音箱,如多媒体电脑音箱、有源超低音箱,以及一些新型的家庭影院有源音箱等。有源音箱由于内置了功放电路,使用者不必考虑与放大器匹配的问题,同时也便于用较低电平的音频信号直接驱动。

各种体积计算公式

圆台体积 V=(S1+S2+根号下S1*S2)÷3*H 圆柱体积 V=π*R2*h 球缺体积 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 V=πh2(3r-h)/3 a2=h(2r-h)

圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h 长方体的体积公式:体积=长×宽×高 如果用a、b、c分别表示长方体的长、宽、高则 长方体体积公式为:V长=abc 正方体的体积公式:体积=棱长×棱长×棱长. 如果用a表示正方体的棱长,则 正方体的体积公式为V正=a·a·a=a3 锥体的体积=底面面积×高÷3 V 圆锥=S底×h÷3 台体体积公式:V=[ S上+√(S上S下)+S下]h÷3 圆台体积公式:V= V=(S1+S2+根号下S1*S2)÷3*H 球缺体积公式=πh2(3R-h)÷3 球体积公式:V=4πR3/3 棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h 注:V:体积;S1:上表面积;S2:下表面积;h:高。 ------ 几何体的表面积计算公式 圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体:

表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D-对角线长α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα 菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα 梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh 圆r-半径d-直径C=πd=2πr S=πr2=πd2/4 扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长S=r2/2·(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2·[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3 圆环R-外圆半径S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径椭圆D-长轴S=πDd/4 d-短轴

圆柱体的计算公式如下

圆柱体的计算公式如下: 圆柱体侧面积公式:侧面积=底面周长×高S侧=C底×h 圆柱体的表面积公式:表面积=2πr2+底面周长×高S表=S底+C底×h 圆柱体的体积公式:体积=底面积×高V圆柱=S底×h 长方体的体积公式: 长方体的体积=长X宽X高 如果用a、b、h分别表示长方体的长、宽、高则公式为:V长=abh 正方体的表面积公式: 表面积=棱长×棱长×6 S正=a^2×6 正方体的体积公式: 正方体的体积=棱长×棱长×棱长. 如果用a表示正方体的棱长,则正方体的体积公式为v正=a·a·a=a ^3 圆锥体的体积=1/3×底面面积×高 V圆锥=1/3×S底×h边坡坡度1:0.5 应是垂距(1)比水平距(0.5)。深是多少?什么结构的?地下室?还是普通的基础挖土?算不了 可以告诉你个公式

S1是基础底面积S1=(基础底边长+工作面)*(基础底边宽+工作面) S2是基础顶面积S2=(基础底边长+工作面+高*0.5*2)*(基础底边宽+工作面+高*0.5*2) V=(S1+S2+S1 *S2的开平方)*H/3 H是深也就是高相当于直角三角形较短的一条直角边是3,较长的一条直角边是4,那么角度(较大的那个角)是arctan(4/3),用计算器算出为53.13010235度!坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。 (1) 百分比法 表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度=(高程差/水平距离)x100% 使用百分比表示时, 即:i=h/l×100% 例如:坡度3% 是指水平距离每100米,垂直方向上升(下降) 3米;1%是指水平距离每100米,垂直方向上升(下降)1米。以次类推! (2) 度数法 用度数来表示坡度,利用反三角函数计算而得,其公式如下: tanα(坡度)=高程差/水平距离 所以α(坡度)=tan-1 (高程差/水平距离) 不同角度的正切及正弦坡度 角度正切正弦

圆柱体的体积设计

课题:圆柱的体积(北师大六年级下册数学第一单元) 教学目标:探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。 教学重点:掌握圆柱的体积公式,并能运用其解决简单实际问题。 教学难点:理解圆柱体积公式的推导过程。 教具准备:希沃课件 教学过程: 【复习导入】打开希沃课件出示圆的面积的转化求法。 (1)怎样求圆的面积?圆的面积公式是什么? (2)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。 【引入新课】 我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢? 教师板书:圆柱的体积(1)。 【新课讲授】 1.教学圆柱体积公式的推导。 (1)希沃课件演示。把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。 (2)学生利用学具操作。 (3)启发学生思考、讨论: ①圆柱切开后可以拼成一个什么立体图形? ②通过刚才的实验你发现了什么? 教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? (4)学生根据圆的面积公式推导过程,进行猜想: (5)启发学生说出:通过以上的观察,发现了什么? ①平均分的份数越多,拼起来的形状越接近长方体。 ②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。 (6)推导圆柱的体积公式。 ①学生分组讨论:圆柱的体积怎样计算? ②学生汇报讨论结果,并说明理由。 教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。【相关练习】见课件

扬声器常用参数的物理意义

扬声器常用参数的物理意义 扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的参数主要包括:Z,Fo,η0, 一、SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义. 1、Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗. 扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,即图1中点B所对应的阻抗值.它是计算扬声器电功率的基准. 直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值. 我们通常所说的4欧或者8欧是指额定阻抗. 2、Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率.

单位:赫兹(Hz). 扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化的曲线. 3、η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率. 4、SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相距1m的点上产生的声压. 单位:分贝(dB). 5、Qts :扬声器的总品质因数值. 6、Qms:扬声器的机械品质因数值. 7 、Qes:扬声器的电品质因数值. 8、Vas(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的声顺相等时的容积.单位:升(L). 9、Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分,音圈,弹波以及参与振动的空气质量等.单位:克(gram).

圆柱体积计算公式练习题

圆柱体积进阶练习(A)组 1.【题文】一个圆柱形铁皮油桶的底面半径为3分米,如果里面的油深2分米,这个油箱里装油()升。 A.18.84 B.37.68 C.56.52 【答案】C 【解析】 根据圆柱形油桶的底面半径为3分米,可以求出油桶的底面积,再运用圆柱的体积公式V=sh求出所装油的容积。 解:3.14×32×2=56.52(升) 2.【题文】一根圆柱形木料长4米,沿横截面切成三段后表面积增加了2.4平分米,这根木料原来的体积是()立分米。 A.16 B.24 C.2.4 D.36 【答案】B 【解析】 圆柱形木料截成3段后,表面积比原来增加了4个圆柱的底面积,由此先求出木料的底面积,再利用圆柱的体积公式V=sh,求出木料原来的体积。 解:4米=40分米 2.4÷[2×(3-1)]×40 =0.6×40 =24(立分米) 3.【题文】圆柱的高扩大2倍,底面半径也扩大2倍,圆柱的体积就扩大( )倍。

A.2倍 B.4倍 C.8倍 【答案】C 【解析】 利用圆柱的体积公式分别求得扩大前、后的体积,再进行比较即可选出正确答案。 解:扩大前的体积:V=πr2h, 扩大后的体积:V=π(r×2)2×(h×2)=8πr2h, 所以圆柱的体积就扩大了8倍。 4.【题文】如图,一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加2 5.12平厘米,原来圆柱的体积是_____立厘米。 A.401.92 B.100.48 C.40.96 D.200.96 【答案】B 【解析】 可以通过高增加2厘米,表面积将增加25.12平厘米,先求出圆柱的半径,然后再运用圆柱的体积公式V=Sh=πr2h,求出原来圆柱的体积。 解:圆柱的底面圆的半径:25.12÷2÷3.14÷2=2(厘米) 原来圆柱的体积:3.14×22×8=100.48(立厘米)

DIY音箱箱体容积计算

DIY音箱箱体容积计算(转贴) 音箱的箱体是要根据喇叭特性参数来计算容积大小的;而不是先有箱体,再找个大小差不多的喇叭加上去那么简单。看到有人以现成的箱体改装,替那些本想省钱的买家可惜了(本末倒置,声音能好吗?) 以下为转贴 DIY音箱箱体的简单计算方法 (一)箱体的比例 当爱好者制作扬声器箱体时,有各种不同的结构选择包括从立方体,圆管形,或矩形到许多其它的形状。每种形状都有特殊的特性、 优点和缺陷。但是,常用的音箱不管是闭箱还是倒相箱大都是长方形的箱体,所以,本文就是对长方形箱体尺寸关系进行的讨论。 假定扬声器特性表中建议箱体容积Vb为0.09056立方米。爱好者就能用这个值为实际扬声器单元确定理想的箱体尺寸了。如容积已定,先要把所要求的内部容积的立方米单位转换为立方厘米,然后再求得结果的立方根,就可以得出所要求的高度、宽度、厚度了。正方形箱体(即高度、宽度、厚度相同的箱体)对用于超低音箱是很满意的,因为这种箱体能通过增强内部驻波而提升箱体的总输出。许多市售的超低音箱都是按这种样子设计的。但是,本文的用意并非是用于超低音箱的,而是能覆盖全音频范围的两分频或三分频的音箱。 通过实践,许多音箱制造商已经采用了靠经验得到的“黄金”比率或“黄金”分割率,这个比例或比率与根据理想比率0.618而确定的箱体尺寸比有关。举例来说,应用的是整数尺寸,如6单位的深度,10单位的宽度,16单位的高度,深度对宽度的比率=6:10=0.60,而宽度对高度的比率=10:16=0.625,这些最终尺寸的纵横比与理想的0.618值相当接近的,因为该比率可使选出的近似尺寸不会出现增强内部共振的公共简正频率,所以这个比率已被确认为能产生最佳的声音。 (二)计算内部尺寸 假定所要求的内部纯容积为0.0864立方米,计算过程如下: 1、把0.09056立方米转换为90560立方厘米。 2、假定取纵横比为6:10:16,将这三个数相乘,得到积为960。 3、把总立方厘米90560除以960,得到的商为94.3。 4、现在,求出94.3的立方根,大约为4.55。 5、最后,用4.55乘以纵横比的三个值,分别为,6×4.55=27.3(厚度),10×4.55=45.5(宽度),而16×4.55=72.8(高度)。 6、经过这些计算,将箱体的宽度、高度和厚度值相乘,和原来要求的箱体容积90620cm3相比较。由于要化为整数,乘积可以稍有不同,当有1%误差时可以认为是无关紧要的。 以上就是决定箱体最佳尺寸的全过程。作为例子,读者也能选择其他的7:11:17纵横比,或34:55:89而且按前面举例的同样方法进行。当最佳值有5%左右误差时,对放音质量仅有很小的影响。

扬声器的的主要参数

扬声器的的主要参数 字体: 小中大| 打印发布: 2010-9-26 01:19 作者: 网络转载来源: 互联网查看: 735次 1.扬声器主要参数综合设计和分析 扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。 扬声器常用机电参数以及计算公式、测量方法简述如下: 直流电阻Re 由音圈决定,可直接用直流电桥测量。 共振频率Fo 由扬声器的等效振动质量Mms和等效顺性Cms决定,见公式(5),Fo可直接用Fo测试仪测量或通过测量阻抗曲线获得。 共振频率处的最大阻抗Zo 由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。 Zo = Re+[(BL)2/(Rms+Rmr)] (10) 机械力阻Rms 由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算: Rms =(1/Qms)*SQR(Mms/Cms) (11) 这里SQR( )表示对括号( )中的数值开平方根,下同。 辐射力阻Rmr 由口径、频率决定,低频时可忽略。 Rmr = *(f/Sd)2 (12) 等效辐射面积Sd 只与口径(等效半径a)有关。 Sd =π* a2 (13)

机电耦合因子BL 由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes后用下列公式计算: (BL)2 =(Re/Qes)*SQR(Mms/Cms) (14) 等效振动质量Mms 由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定,Mms可由附加质量法测量获得。 Mms=Mm1+Mm2+2Mmr 辐射质量Mmr 只与口径(等效半径a)有关。 Mmr =*ρo* a3 (16) 其中ρo=m3为空气密度,a为扬声器等效半径。 等效顺性Cms 是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N). 由鼓纸顺性Cm1、弹波顺性Cm2共同决定,此顺性即是我们所称的变位,只是单位需换算为国际单位制:m/N, 而变位可以用变位仪直接测量。Cms可由附加容积法测量获得。 Cms=(Cm1*Cm2)/(Cm1+Cm2) (17) 等效容积Vas 只与等效顺性、等效辐射面积有关。 Vas =ρo*c2*Sd2*Cms (18) 此处c为空气中的声速,c=344m/s 机械品质因数Qms 由振动系统的等效振动质量Mms、等效顺性Cms、机械力阻Rms共同决定,Qms可由阻抗曲线的测量获得。 Qms =(1/Rms)*SQR(Mms/Cms)=(Fo/Δf)*(Zo/Re) (19) f 为阻抗曲线上阻抗等于SQR(Zo*Re)所对应的两个频率的差值。

相关文档
最新文档