数据挖掘的起源及发展过程
简述数据发展的历程及其特点

简述数据发展的历程及其特点数据发展的历程及其特点可以追溯到人类社会的起源。
从最早期的文字记录到如今数字化的大数据时代,数据的产生、收集、存储和分析已经发生了巨大的变化。
一、数据的历程1.文字记录阶段:人类最早的数据记录方式是通过刻画或书写来进行信息传递和保存。
最早的文字刻画来自于古埃及和古巴比伦等文明,而发明的活字印刷术使得大规模印刷成为可能。
这种记录方式能够记录大量信息,但由于存储和传播的限制,数据的获取和分析都十分困难。
2.电子计算机阶段:20世纪40年代,电子计算机的发明引领了数据处理的革命。
电子计算机不仅能够存储大量的数据,还能够高效地进行数据处理和分析。
这一时期的数据处理主要是围绕着电子计算机展开的,但数据的获取仍然受限于人工的收集和输入。
3.互联网时代:互联网的普及使得数据的获取和共享变得更加便捷。
从20世纪90年代开始,随着互联网的快速发展,数据的生成和传输量呈爆炸式增长。
人们可以通过电子邮件、网页浏览器等工具进行数据的传输和共享。
这个时代的特点是数据的规模庞大,但处理和分析的手段相对简单。
4.大数据时代:21世纪初,随着云计算和物联网等新兴技术的兴起,数据进入了爆发式增长的时代。
大数据的特点是数据量巨大、速度快、种类多样,需要借助先进的计算和分析手段来获取和利用数据。
大数据的出现也带来了数据隐私和安全等问题,对数据的处理和使用提出了新的挑战。
二、数据发展的特点1.数据量的增长:随着科技的进步和社交媒体的普及,数据量呈指数级增长。
根据国际数据公司(IDC)的预测,到2025年,全球数据总量将达到163ZB(1ZB等于10的21次方字节)。
数据量的增长使得数据处理和分析变得更加复杂和困难。
2.数据速度的加快:互联网、物联网和移动通信等技术的普及使得数据的传输速度大大加快。
人们可以通过各种设备和传感器实时采集和传输数据。
这对数据的处理和分析提出了更高的要求,要求能够实时处理大规模的数据流。
数据挖掘的基本流程

数据挖掘的基本流程数据挖掘是一种通过发现和提取大量数据中的模式、关联和趋势来获取有用信息的技术。
它可以帮助企业和组织做出更明智的决策、预测未来趋势、发现潜在机会和优化业务流程。
下面将介绍数据挖掘的基本流程。
1. 问题定义在数据挖掘的流程中,首先需要明确问题的定义。
这包括确定需要解决的业务问题、目标和假设。
例如,一个电商公司可能想要预测用户购买某个产品的可能性,以便制定针对性的推荐策略。
2. 数据收集在数据挖掘的流程中,数据的质量和多样性对结果的影响非常大。
因此,收集高质量的数据是非常重要的。
数据可以来自各种来源,包括数据库、文件、传感器等。
在收集数据时,需要注意数据的完整性、准确性和可靠性。
3. 数据清洗数据清洗是数据挖掘流程中的关键步骤,它包括处理缺失值、异常值和重复值等数据质量问题。
在清洗数据时,可以使用各种技术和方法,如插补、删除异常值、去重等。
清洗后的数据将为后续的分析和建模提供可靠的基础。
4. 数据探索数据探索是对数据进行可视化和统计分析的过程。
通过数据探索,可以发现数据中的模式、关联和趋势。
常用的数据探索方法包括描述性统计、数据可视化、相关性分析等。
这些分析可以帮助我们更好地理解数据,并为后续的建模和预测提供指导。
5. 特征选择在数据挖掘中,特征选择是从大量的特征中选择出最具有预测能力的特征。
通过特征选择,可以减少模型的复杂性、提高模型的准确性和可解释性。
常用的特征选择方法包括过滤法、包装法和嵌入法等。
6. 模型建立在数据挖掘的流程中,模型建立是一个核心步骤。
在这一步骤中,根据问题的定义和数据的特征,选择合适的建模算法,并使用训练数据对模型进行训练。
常用的建模算法包括决策树、逻辑回归、支持向量机等。
7. 模型评估模型评估是评估模型的性能和准确性的过程。
通过使用测试数据集对模型进行评估,可以得到模型的预测准确率、召回率、精确率等指标。
常用的模型评估方法包括混淆矩阵、ROC曲线、精确度-召回率曲线等。
简述数据发展的历程及其特点

数据发展的历程及其特点一、数据起源数据起源于远古时代,人们通过计数、记录等方式进行信息管理。
最初的数据处理方式是手工处理,例如用石子、结绳等原始的方式进行计数和记录。
二、手工处理随着社会的进步和发展,数据处理方式也逐渐进化。
手工处理的方式虽然繁琐,但却是数据处理的基础。
在这个阶段,数据处理主要依靠人力和简单的工具完成,如算盘、计算器等。
数据处理效率低下,容易出现错误,但是为后续的数据处理奠定了基础。
三、电子化处理随着计算机技术的出现和发展,数据处理方式发生了革命性的变化。
电子化处理的方式大大提高了数据处理的速度和精度,同时也降低了人力成本。
在这个阶段,数据处理主要依靠计算机和相关的软件完成,如Excel、数据库等。
电子化处理使得数据处理更加高效、便捷和准确。
四、大数据时代随着互联网、移动设备等技术的快速发展,数据量呈爆炸式增长,我们进入了大数据时代。
大数据时代的特点是数据量大、种类多、速度快、价值高。
在这个阶段,数据处理主要依靠大规模的计算机集群和高效的算法,如Hadoop、Spark等。
大数据技术的应用范围广泛,包括金融、医疗、教育、电商等领域。
通过对大数据的分析和处理,可以挖掘出更多的信息和价值,帮助企业和政府做出更明智的决策。
五、人工智能应用人工智能技术的快速发展为数据处理带来了更多的可能性。
人工智能技术可以自动化地对大量数据进行分类、清洗、分析和利用。
同时,人工智能技术还可以通过机器学习和深度学习等技术对数据进行自动化学习和预测,为决策提供更加准确和可靠的依据。
人工智能技术的应用范围广泛,包括自然语言处理、图像识别、智能推荐等领域。
六、数据安全与隐私随着数据的不断增加和处理技术的不断提高,数据安全和隐私保护成为越来越重要的问题。
企业和政府需要采取一系列的安全措施来保护数据的安全和隐私,包括加密技术、访问控制、安全审计等。
同时,也需要制定相关的法律法规来规范数据的收集和使用,保障个人隐私和企业商业秘密的安全。
数据挖掘的原理及应用pdf

数据挖掘的原理及应用1. 数据挖掘概述数据挖掘是一种从大量数据中提取出有价值信息的过程。
它利用统计学、机器学习和数据库技术等方法,通过分析和挖掘数据中的模式、关联和规律,提供给决策者用于预测、分类和优化等目的的有用信息。
2. 数据挖掘的原理数据挖掘的原理包括数据预处理、特征选择、数据建模和模型评估等步骤。
2.1 数据预处理数据预处理是数据挖掘的第一步,它主要包括数据清洗、数据集成、数据转换和数据规约等过程。
通过对原始数据进行预处理,可以消除数据中的噪音、缺失值和冲突等问题,提高挖掘结果的准确性和可靠性。
•数据清洗:去除数据中的噪音和异常值,确保数据的一致性和完整性。
•数据集成:将来自多个数据源的数据进行整合,消除冗余和重复的数据。
•数据转换:对数据进行统一的表示和编码,以适应挖掘算法的需求。
•数据规约:通过数据压缩和抽样等方法,减少数据集的规模,提高挖掘效率。
2.2 特征选择特征选择是从原始数据中选择最具有代表性和相关性的属性作为挖掘的特征。
它可以降低数据维度、提高模型的训练速度和预测精度。
特征选择的方法包括过滤法、包装法和嵌入法等。
过滤法基于统计指标和相关度等选择特征,包装法则使用机器学习算法评估特征的重要性,而嵌入法将特征选择纳入到训练模型的过程中。
2.3 数据建模数据建模是数据挖掘的核心步骤,它利用统计学、机器学习和人工智能等技术构建模型并进行训练。
常用的数据挖掘算法有决策树、朴素贝叶斯、聚类分析、关联规则等。
这些算法可以根据不同的问题和任务,进行分类、回归、聚类和关联分析等任务。
2.4 模型评估模型评估是对构建的挖掘模型进行性能评估,以确定模型的准确性和可靠性。
常用的模型评估指标包括准确率、召回率、F1值、ROC曲线等。
通过对模型的评估,可以选择最优模型并进行后续应用和优化。
3. 数据挖掘的应用数据挖掘在各个领域有着广泛的应用,以下是一些常见的应用场景:•电子商务:通过挖掘用户的购买行为和偏好,推荐相似产品和个性化营销策略,提高销售额和用户满意度。
数据挖掘的六大过程

数据挖掘的六大过程数据挖掘是一种以有限的资源和时间,从复杂的巨大的数据集中发现有价值的信息和知识的过程,其目的是帮助决策者做出更明智的决定。
数据挖掘主要包括六个过程:数据收集、数据清洗、特征选择、模型建立、结果评估和部署。
1、数据收集 (Data Collection):数据收集是数据挖掘的第一步,也是最重要的一步。
在这一步中,我们需要从各种不同的源收集到所需的数据。
收集的数据可能包括结构化数据、文本数据和图像数据等。
2、数据清洗 (Data Cleansing):数据清洗是将原始数据转换为一致格式,方便进行分析的过程。
它包括将数据格式化、替换和删除缺失值、检测和清理异常值等步骤。
3、特征选择 (Feature Selection):特征选择是指从原始数据中选择有意义的特征,以便于进一步完成数据挖掘任务。
在特征选择中,我们可以使用一些统计学和机器学习的方法来评估特征的重要性,并从原始数据中选择出有价值的特征。
4、模型建立 (Model Building):模型建立是指根据已选择的特征,利用机器学习技术来构建统计模型的过程。
根据实际情况,我们可以选择不同类型的机器学习模型,比如决策树、聚类、神经网络等。
5、结果评估 (Result Evaluation):结果评估是指根据预测结果,对模型的性能进行评估的过程。
这个过程中,我们可以使用一些度量指标,比如准确率、召回率等,来度量模型的性能。
6、部署 (Deployment):部署是指将模型部署到实际应用环境中的过程。
这个步骤需要考虑整个模型的生命周期,以及模型的保护、维护等问题。
以上就是数据挖掘的六大过程,数据挖掘是一个复杂的过程,在每一步都需要仔细考虑,以确保挖掘到的数据有效而有价值。
数据挖掘及基于Excel DM插件的具体实例分析报告

一、数据挖掘(DM)的基本介绍数据挖掘(Data Mining)是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。
数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。
(百度百科)。
数据挖掘起源于从数据库中发现知识(Knowledge Discovery in Database,简称KDD)。
KDD一词于1989年8月首次出现在美国底特律市举行的第11届国际联合人工智能学术会议上。
KDD被定义为“从数据中发现隐含的、先前不知道的、潜在有用的信息的非平凡过程”,即从数据库中提取隐含的、感兴趣的、有用的知识和模式。
在1996年出版的总结该领域进展的权威论文集《知识发现与数据挖掘研究进展》中,Fayyad等人重新给出了KDD和数据挖掘的定义,将二者加以区分:KDD是从数据中辨别有效的、新颖的、潜在有用的、最终可理解的模式的过程;数据挖掘是KDD过特定的算法在可接受的计算效率限制生成特定模式的一个步骤。
换句话说,KDD是一个包括数据选择、数据预处理、数据变换、数据挖掘、模式评价等步骤,最终得到知识的全过程,而数据挖掘只是其中的一个关键步骤。
简而言之,许多人把数据挖掘视为KDD的同义词,而另一些人则把数据挖掘视为数据库中发现知识过程中的一个基本步骤,认为数据挖掘是知识发现过程中的一步,而且是最重要的一步。
因此,数据挖掘的广义观点为:数据挖掘是指从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含的、未知的、潜在的、有用的知识的过程。
为了统一认识,Fayyad et al.(1996)对KDD和数据挖掘进行了重新定义。
KDD的新定义为:“从数据中辨别有效用的,新颖的,潜在有用的,最终可理解模式的过程”。
Fayyad et al.(1996)认为:“数据挖掘是通过KDD过程中特定的算法处理,在可接受的计算效率下生成特定模式的一个步骤”。
数据挖掘概念与技术

识别顾客需求
对不同的顾客识别最好的产品 使用预测发现什么因素影响新顾客
2
*
法人分析和风险管理
*
竞争:
03
管理竞争者和市场指导 对顾客分类和基于类的定价 在高度竞争的市场调整价格策略
资源规划 :
02
资源与开销的汇总与比较
01
现金流分析和预测 临时提出的资产评估 交叉组合(cross-sectional) 和时间序列分析 (金融比率(financial-ratio), 趋势分析, 等.)
天文
IBM Surf-Aid 将数据挖掘算法用于有关交易的页面的Web访问日志, 以发现顾客喜爱的页面, 分析Web 销售的效果, 改进Web 站点的组织, 等.
Internet Web Surf-Aid
贰
壹
叁
*
数据挖掘过程
*
数据挖掘:KDD的核心.
数据清理
03
数据集成
数据库
数据仓库
知识
任务相关数据
检测电话欺骗
分析家估计, 38%的零售业萎缩是由于不忠诚的雇员造成的.
零售
*
其它应用
*
IBM Advanced Scout分析NBA的统计数据 ( 阻挡投篮, 助攻, 和犯规 ) 获得了对纽约小牛队(New York Knicks)和迈艾米热队( Miami Heat )的竞争优势
运动
借助于数据挖掘的帮助,JPL 和 Palomar Observatory 发现了22 颗类星体(quasars)
*
数据挖掘
01
数据库技术02源自统计学03其它学科
04
信息科学
05
机器学习
06
可视化
数据挖掘(Data Mining)

数据挖掘(Data Mining)DM:数据挖掘(Data Mining)KDD:知识发现(Knowledge Discovery in Databases)一、背景1、目前的数据库系统虽然可以高效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则2、数据十分丰富,而信息相当贫乏。
3、数据坟墓二、数据挖掘的定义1、数据挖掘是从大量数据中提取或“挖掘”知识2、数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程n所谓基于数据库的知识发现3、所谓基于数据库的知识发现(KDD)是指从大量数据中提取有效的、新颖的、潜在有用的、最终可被理解的模式的非平凡过程。
OLAP【联机分析处理】面向主题的,主要面向公司领导者;OLTP【联机事务处理】面向应用的,主要面向公司职员。
OLAP是验证型的,建立在数据仓库的基础上;数据挖掘是挖掘型的,建立在各种数据源的基础上三、数据挖掘工具:DBMiner、Admocs、Predictive-CRM、SAS/EM(Enterprise Miner)、Weka目前,世界上比较有影响的典型数据挖掘系统包括:•SAS公司的Enterprise Miner•IBM公司的Intelligent Miner•SGI公司的SetMiner•SPSS公司的Clementine•Sybase公司的Warehouse Studio•RuleQuest Research公司的See5•还有CoverStory、EXPLORA、Knowledge Discovery Workbench、DBMiner、Quest等。
四、KDD过程在上述步骤中,数据挖掘占据非常重要的地位,它主要是利用某些特定的知识发现算法,在一定的运算效率范围内,从数据中发现出有关知识,决定了整个KDD过程的效果与效率。