珠光体耐热钢

珠光体耐热钢
珠光体耐热钢

1.2关于珠光体耐热钢的研究

珠光体耐热钢在化工、石油设备中主要用于炉管、热交换器和其它受热面管子、高压加氢设备中的各种管道和高温紧固件。

1.2.1珠光体耐热钢的特点

珠光体耐热钢除碳钢外,大多是含有铬、钼元素,少数的还含有钒元素,但含量都不大,所以当加热、冷却时都能发生a γ相的转变。经正火后,容易得到珠光体组织,因此,这类钢称为珠光体耐热钢。

作为石油化工热交换器和锅炉用钢,除了要求有较好的耐热性外,还要求有很好的焊接性能和冷加工性能,为此,这类钢应具有良好的塑性。因此,其化学成分中含碳量都很低,其中钢管的含碳量要求更低,一般在0.1~0.15%C之间;钢板为0.20~0.30%C之间,最多不能超过0.30%C。

这类钢作为耐热钢,其耐热性虽然比奥氏体钢低,但它有许多优点:

1) 这类钢合金元素少,价格比较便宜;

2) 冷、热加工性能和焊接性能较好,热膨胀系数低,导热性能强,从而可

避免焊接时引起局部过热和产生较大的应力;

3) 热处理工艺简单,一般为正火加回火,能改善机械性能,也能利用热处

理细化组织。

但这类钢耐热性较差,它的工作温度一般不超过550~580℃。

1.2.2珠光体耐热钢的组织稳定性

在高温、应力长期作用下,由于扩散过程加快,钢的组织将逐渐发生变化。由于组织的不稳定性将引起钢的性能的变化,特别是对钢的热强性、松弛稳定性等性能都会带来不利的影响。珠光体耐热钢在高温长期工作条件下常见的组织不稳定现象有:

1.2.2.1石墨化

钢在高温、应力长期作用下,由于珠光体内渗碳体分解为游离石墨的现象称为石墨化。低碳钢当温度于450℃以上,含0.5%Mo的钢在500℃左右长期工作时,都可能发生石墨化,此时,钢脆化,强度与塑性降低,可导致爆管等事故。对由于长期过热导致爆管的20钢分析发现,其石墨化已达三级。一般钢发生石墨化的时间约需几万小时。防止0.5%Mo钢石墨化的最有效方法是实行进一步的合金化。在钢中加入铬、钒、铌等强碳化物形成元素能有效地阻止石墨化。

1.2.2.2珠光体球化

低合金珠光体型耐热钢在高温和应力长期作用下,珠光体组织中片状渗碳体逐渐自发地趋向形成球状渗碳体,并慢慢聚集长大。该现象称为珠光体球化。文献[5]对碳化物的球化过程和机理进行了探讨。影响球化的主要因素是温度、时间和化学成分。

实践表明,低合金耐热钢中加入铬、钼、钨、钒、铌等合金元素能显著地减弱其球化过程。这些合金元素的单个加入或复合加入后都能起到良好的作用。其原因是,它们能减弱碳在α固溶体中的扩散,同时这些合金元素又能与碳形成稳定的碳化物。

1.2.2.4蠕变过程中析出相类型的转变

C的分解,固溶体内合在高温和应力条件下长期作用下,由于珠光体中Fe

3

金元素向碳化物过渡以及碳在α固溶体内扩散过程加速进行,会引起在蠕变过程中碳化物相析出类型发生变化,从而影响钢的热强性。

文献[7-13]对低合金铬钼钢和铬钼钒钢长期服役后的碳化物相进行了研究,

其转变过程大致是:珠光体组织中Fe

3

C球化和分解,在铁素体基体中开始析出

M 7C

3

、M

23

C

6

、M

2

C等不同类型的碳化物,同时发生固溶体内合金元素的贫化,随工

作时间的增长,碳化物颗粒也聚集长大,最后转变为M

6

C碳化物。

1.2.3珠光体耐热钢的热强性能

珠光体耐热钢是在高温和应力下长期使用的材料,因此要求钢具有长期热强性能,通常这指的是钢在高温和应力长期作用下的拉变形和抗断裂能力。它的基本判据是蠕变极限和持久强度。对紧固件用钢来说,松弛稳定性也是重要判据之一。

1.2.3.1蠕变极限

通常所说的蠕变极限都属于条件蠕变极限,它是由蠕变第二阶段的蠕变速率所确定下来的应力,或在一定时间间隔内达到规定的总形变时的应力。蠕变极限表明材料在高温下的形变抗力,它随温度的提高而降低。许可的蠕变形变的大小,取决于零部件的工作条件及对零部件所要求的使用期限。

1.2.3.2持久强度

持久强度表明材料在高温和应力长期作用下的抗断裂能力,通常用以表示材料在给定温度下经过规定时间发生断裂的应力。持久强度是进行高温材料强度计算的另一个判据。有些部件如锅炉过热器管及再热器管,对蠕变速率的限制不严,但必须保证在使用期间内不致爆破。这些部件的主要设计依据便是持久强度。长期持久强度是通过较短期的持久强度试验求出规定温度和规定应力下到断裂所经历的时间外推求得的。通过对12Cr1MoV、12CrMo、10CrMo910等三种热强钢的持久强度数据分析表明,它们的持久强度均最佳服从对数正态分布,经不同时间运行后的12Cr1MoV钢其持久强度仍在其原始状态持久强度分散带内,揭示了高温性能数据资源共享的可行性。

1.2.3.3松弛稳定性

保持线尺寸不变的受力试样或机件,在给定温度下,在力的作用方向上,靠弹性变形的减少,塑性变形的逐渐增加,使应力随时间逐渐自发降低的现象叫做松弛。可以用下列条件来表示松弛过程:

ε

总= ε

=常数

σ≠常数

目前对松弛的机理还没有完整的认识,一般认为第一阶段松弛主要发生在晶界上,晶界的扩散过程起主要作用;第二阶段松弛主要发生在晶粒内部,由镶嵌块的转动或移动所引起的。

1.2.4.2 1Cr5Mo钢

1Cr5Mo是石化行业中广泛采用的珠光体耐热钢,在550℃以下有一定的热强性,650℃以下有较好的抗氧化性,在热石油介质中有很好的耐蚀性。适用于制造石油蒸馏的管道及容器,广泛用于制造热交换器和再热器等。近年来关于1Cr5Mo比较系统而深入的研究不多。目前的研究主要集中在两方面,一是对在役的1Cr5Mo炉管进行组织性能分析及剩余寿命预测,二是对损坏的1Cr5Mo炉管进行失效分析。加拿大学者May将转化炉炉管的高温蠕变损伤分为五级,各级对应于不同的剩余寿命,见图1-l所示。张礼敬等利用这一方法对Cr5Mo炉管进行了剩余寿命的评估,即在破裂部位组织严重损伤,被定为E级(存在宏观裂纹);旧管部位的组织为B-C级(形成空洞),其接近总寿命的1/3。文献[44]研究了经长期高温压力服役后的1Cr5Mo耐热钢管道,分析了材料在服役条件下的显微组织和力学性能,不仅确保了设备的安全运行,而且也为能否超期服役及其剩余寿

命估算提供可靠依据。文献[45]对1Cr5Mo炉管失效原因进行了分析,指出了Cr-Mo钢炉管正常损伤和非正常损伤的原因,并提出了延长炉管使用寿命的建议。

Welcome !!! 欢迎您的下载,资料仅供参考!

热处理原理与工艺第二章教案

第二章珠光体转变 共析碳钢加热奥氏体化后,在共析温度以下冷却时,奥氏体可发生三种基本的转变:珠光体转变、贝氏体转变和马氏体转变。这三种转变得到的组织中,马氏体硬度最高,贝氏体次高,珠光体最低。 图2-1是实测的共析钢奥氏体等温冷却转变曲线的示意图(也称等温C曲线),图中三条线分别表示转变开始线、转变终了线和马氏体转变开始温度。奥氏体在A1以下不同温度等温冷却时,将发生以下转变:A1~550℃珠光体转变,550℃~Ms之间为贝氏体转变。在Ms以下则发生马氏体转变。珠光体区又分为粗珠光体P、细珠光体 S (也称索氏体)、极细珠光体T (也称托氏体);贝氏体区分为上贝氏体B上和下贝氏体B下。如将共析钢工件冷至650℃并等温,当等温时间与珠光体转变开始曲线相交时,奥氏体将开始发生珠光体转变,转变为细珠光体S;此后,随等温时间延长,奥氏体不断减少、S不断增多,当等温至与珠光体转变终了曲线相交时,奥氏体全部转变为S。 图2-1 共析碳钢等温转变曲线示意图 本章主要介绍珠光体组织形态、形成过程、影响因素及力学性能等。 第一节珠光体组织形态和力学性能 一、珠光体组织形态 当含碳量为0.77%的奥氏体冷却到A1温度以下时,发生共析转变,分解为片状的铁素体和渗碳体交替重叠组成的共析组织(见图2-2)。这种组织经浸蚀后,在光学显微镜下观察,其金相形态酷似珍珠母产生的光学效果,故而得名珠光体。珠光体组织中铁素体和渗碳体的体积比约为7:1,故铁素体片总是比渗碳体厚。

图2-2 共析碳钢片状珠光体 500X 珠光体的金相组织中有许多片层排列位向大致相同的小区域(见图2-3),称为珠光体领域或珠光体团。在一个原奥氏体晶粒内,可形成几个位向不同的珠光体团。相邻两渗碳体(或铁素体)片中心之间的距离S0,称珠光体片层间距(见图2-3a所示)。片层间距S0是影响珠光体力学性能的一个重要参数。实验表明,珠光体团的尺寸随原奥氏体晶粒尺寸减小而减小。 图2-3 珠光体片层间距和珠光体团示意图 a)珠光体片层间距S。 b)珠光体团 通常所说的珠光体组织粗细,是指组织中渗碳体和铁素体片层厚薄程度不同,也就是珠光体片层间距大小的不同。如前已述及的组织中的珠光体、索氏体和托氏体组织,实质上都是渗碳体和铁素体交替重叠组成的片状组织,只是片层间距大小不同而已(见表2-1)。 由表中数据可以看出,转变温度愈低,片间距愈小(即珠光体组织愈细),硬度愈高。较高温度下,形成的珠光体组织,片间距较大,在通常光学显微镜下观察,就能清楚分辨片层组织形态。在较低温度形成的索氏体组织,在显微镜放大至600倍以上,才能分辨其片层组织形态。如果转变温度更低,形成托氏体组织,其片层组织更细小,即使在高倍的光学显微镜下也分辨不出其片层形态,只能看到其总体是一团黑,必须用高倍率的电子显微镜才能分辨出极薄的渗碳体和铁素体片。 在工业用钢中,还可见到另一种形态的珠光体组织,在铁素体上均匀分布着球粒状碳化物,称为粒状珠光体,见图2-4。粒状珠光体一般是经球化退火后获得的组织。球化退火工艺不同,获得

常用耐热钢的焊接工艺

常用耐热钢的焊接工艺 耐热钢是指钢再高温条件下既具有热稳定性,又具有热强性的 钢材。热稳定性是指钢材在高温条件下能保持化学稳定性(耐腐蚀、 不氧化)。热强性是指钢材在高温条件下具有足够的强度。其中耐热 性能主要通过铬、钼、钒、钛、铌等合金元素来保证,因此在焊接材 料的选择上应根据母材的合金元素含量来确定。耐热钢在石油石化工业装置施工中应用较为广泛,我们能够经常接触到的多为合金含量较 低的珠光体耐热钢,如15CrMo,1Cr5Mo等。 1铬钼耐热钢的焊接性 铬和钼是珠光体耐热钢的主要合金元素,显著提高金属的高温强度和高温抗氧化性,但它们使金属的焊接性能变差,在焊缝和热影响区具有淬应倾向,焊后在空气中冷却易产生硬而脆的马氏体组织,不仅影响焊接接头的机械性能,而且产生很大的内应力,从而产生冷裂倾向。 因此耐热钢焊接时的主要问题是裂纹,而形成裂纹的三要素是: 组织、应力和焊缝中的含氢量,因此制定合理的焊接工艺尤为重 要。 2珠光体耐热钢焊接工艺 2.1坡口 坡口的加工通常用火焰或者等离子切割工艺,必要时切割也要预热,打磨干净后做PT检验,去除坡口上的裂纹。通常选用V型坡口, 坡口角度为60°,从防止裂纹的角度考虑,坡口角度大些有利,但

是增加了焊接量,同时将坡口及内处两侧打磨干净,去除油污、铁锈及水份等污物(去氢、防止气孔)。 2.2组对 要求不能强制组对,防止产生内应力,由于铬钼耐热钢裂纹倾 向较大,故在焊接时焊缝的拘束度不能过大,以免造成过大的刚度,特别在厚板焊接时,妨碍焊缝自由收缩的拉筋、夹具和卡具等应尽量避免使用。 2.3焊接方法的选用 目前,我们石油石化安装单位管线焊接常用的焊接方法是钨极氩弧焊打底,焊条电弧焊填充盖面,其它焊接方法还有熔化极惰性气体保护焊(MIG焊)、CO2气体保护焊、电渣焊和埋弧自动焊等。 2.4焊接材料的选择 选配焊接材料的原则,焊缝金属的合金成分与强度性能基本上要与母材相应指标一致或者应达到产品技术条件提出的最低性能指标。而且为了降低氢含量应先用低氢型碱性焊条,焊条或者焊剂应按规定工艺烘干,随用随取,要装在焊条保温桶中随用随取,焊条再保温桶内不得超过4个小时,否则应重新烘干,烘干次数不得超过三次,这在具体施工过程中都有详细的规定。铬钼耐热钢手弧焊时,也可选用奥氏体不锈钢焊条,如A307焊条,但焊前仍需要预热,这种方法适用于焊件焊后不能热处理的情况。 耐热钢焊材选用表如下所示:

第七节 珠光体钢与奥氏体钢的焊接

第七节珠光体钢与奥氏体钢的焊接 一、珠光体钢和奥氏体钢的焊接性 珠光体钢和奥氏体钢是两种组织和成分都不相同的钢种。因此,这两类钢焊接在一起,焊缝金属是由两种不同类型的母材以及填充金属材料熔合而成的。这就产生了与焊接同一种金属所不同的一系列新的问题。 1.焊缝的稀释由于珠光体钢合金元素含量相对较低,所以它对整个焊缝金属的合金具有稀释作用,从而使焊缝的奥氏体形成元素含量减少,结果焊缝中可能会出现马氏体组织,导致焊接接头性能恶化,严重时甚至可能出现裂纹。 焊缝的组织决定于焊缝的成分,而焊缝的成分决定于母材的熔入量,即熔合比。因此,一定的熔合比决定了一定的焊缝成分和组织。熔合比发生变化时,焊缝的成分和组织都要随之发生相应的变化,这种变化可以根据舍夫勒不锈钢的组织图来表示,见图3-1-1。 2.过渡层的形成上面讨论的是当母材与填充金属材料均匀混合的情况下,珠光体钢母材对整个焊缝的稀释作用。事实上,在焊接热源作用下,熔化的母材和填充金属材料相互混合的程度在熔池边缘是不相同的。在熔池边缘,液态金属温度较低,流动性较差,在液态停留时间较短。由于珠光体钢与奥氏体钢填充金属材料的成分相差悬殊。在熔池边缘上,熔化的母材与填充金属就不能很好地熔合,结果在珠光体钢这一侧焊缝金属中,珠光体钢母材所占的比例较大,而且越靠近熔合线,母材所占的比例越大。所以,珠光体钢和奥氏体钢焊接时,在紧靠珠光体钢一侧熔合线的焊缝金属中,会形成和焊缝金属内部成分不同的过渡层。离熔合线越近,珠光体的稀释作用越强烈,过渡层中含铬、镍量也越小,因此,其铬当量和镍当量也相应减少。对照舍夫勒组织图(图3-1-1),可以看出,此时过渡层将由奥氏体区+马氏体和奥氏体区组成,过渡层的宽度决定于所用焊条的类型,见表3-7-1。 当马氏体区较宽时,会显著降低焊接接头的韧性,使用过程中容易 出现局部脆性破坏。因此,当工作条件要求接头的低温冲击韧度较好 时,应选用含镍较高的焊条。 表3-7-1过渡层的宽度(单位:μm) 3.熔合区扩散层的形成奥氏体钢和珠光体钢组成的焊接接头中,由于珠光体钢的含碳量较高,但合金元素含量较少(主要指碳化物形成元素),而奥氏体钢则相反,这样在熔合区珠光体钢一侧的碳和碳化物形成元素含量差。当接头在温度高于350~400℃长期工作时,熔合区便出现明显的碳的扩散,即碳从珠光体钢一侧通过熔合区向奥氏体焊缝扩散。结果,在靠近熔合区的珠光体钢母材上形成了一层脱碳软化层,在奥氏体焊缝一侧产生了增碳硬化层。 影响脱碳层发展的因素有: (1)接头加热温度和在高温停留的时间焊后状态,特别是在单层焊缝的接头中,即使采用大功率的焊接参数,扩散层也是很弱的。但把接头重新加热到较高温度(500℃左右),并保温一定时间,扩散层就开始明显发展起来,到了600~800℃时最为强烈,800℃时达到最大值,并且随着加热时间的延长,扩散层加宽。因此,在通常情况下,这种异种钢接头进行焊后热处理是不适宜的。 (2)碳化物形成元素的影响奥氏体钢中碳化物形成元素的种类和数量对珠光体钢中脱碳

常用焊接方法—焊接工艺

常用焊接方法——焊接工艺 我公司是生产自动焊接设备的大型厂家。作为公司员工,就更应该了解常用焊接方法及焊接工艺。结合设备调试,这里将常用的埋弧焊、气体保护焊、钨极氩弧焊作为简要的讲述,以供有关人员参考。 一、埋弧焊 电弧在焊剂层下燃烧进行焊接的方法称为埋弧焊。主要优点:劳动条件好,节省焊接材料和电能,焊缝质量好,生产效率高等。但不适合薄板焊接。(当焊接电流小于100A时,电弧稳定性差,目前板厚小于1mm的薄板还无法采用埋弧焊)只限于水平或倾斜度不大的位置施焊。 埋弧焊是高效焊接常用方法之一。主要用于:焊接各种钢板结构。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢和复合材料以及堆焊耐磨、耐蚀合金等。 焊接工艺参数对焊接质量影响较大的有:焊接电流、电弧电压、焊接速度、焊丝直径与伸出长度、焊丝倾角、装配间隙与坡口大小等。此外焊剂层厚度及粒度对焊接质量也有影响。下面分别讲述它们对焊接质量的影响: 1.焊接电流: 焊接电流是决定熔深的主要因素。在一定范围内,焊接电流增加,焊缝的熔深和余高都增加。而焊缝的宽度增加不大。增大焊接电流能提高生产率,但在一定的焊接速度下,焊接电流过大会使热影响区过大,并产生焊瘤及焊件被烧穿等缺陷。若焊接电流过小,测熔深不足,

熔合不好、未焊透和夹渣,并使焊缝成形变坏。 2.电弧电压: 电弧电压是决定熔宽的主要因素。电弧电压增加时,弧长增加,熔深减小,焊缝宽度变宽,余高减小,电弧电压过大,溶剂熔化量增加,电弧不稳,严重时会产生咬边和气孔等。 3.焊接速度: 焊接速度增加,母材熔合比较小。焊接速度过高时,会产生咬边,未焊透,电弧偏吹和气孔等缺陷,焊缝余高大而窄成形不好。 4.焊丝直径与伸出长度: 当焊接电流不变时,减小焊丝直径,电流密度增加,熔深增大,成形系数减小。焊丝伸出长度增加时,熔深速度和余高都增加。 5.焊丝倾角: 焊丝前倾,焊缝成形系数增加,熔深变浅,焊缝宽度增加。焊丝后倾,熔深与余高增,。熔宽明显减小,焊缝成形不变。 6.装配间隙与坡口: 在其他工艺参数不变的条件下,装配间隙与坡口角度增大时,熔合比与余高减小,熔深增大,焊缝厚度基本保持不变。 7、焊机层厚度与粒度: 焊剂层太薄时,容易露弧,电弧保护不好,容易产生气孔或裂纹。焊剂层太厚,焊缝变窄,成形不好。 一般情况下,焊剂粒度对焊缝成形影响不大,但采用小直径焊丝焊薄板时,焊剂粒度对焊缝成形就有影响。若焊剂颗粒太大,电弧不

15CrMoG耐热钢管道焊接施工工法

15CrMoG耐热钢管道焊接施工工法 1 前言 耐热钢中以珠光体铬钼耐热钢应用最广,因为这类钢一般适用于 350-550℃之间,同时,这类钢的合金元素含量相对较少,一般都属于低合金钢的范畴,因为合金钢是在碳钢中加入少量的合金元素,钢的性能就发生了变化,就得到了碳钢所没有的性能,即耐高温、抗氧化、抗蠕化和良好的持久强度,由于合金元素小于3.5%,所以称作低合金,简称合金钢。它的耐热性和强度均超过不锈钢,但是价格比不锈钢便宜得多,适用于在各种高温高压条件下工作的介质管道。例如在攀钢煤化工厂外线工艺管道施工项目中,该工程管道φ273×11共1200米,其设计温度为480℃,设计压力为5.5Mpa,并且管道材质为15CrMoG耐热合金钢,这类高温高压的特殊材质管道以前我公司未施工过,所以还没有完善和成熟的施工工艺 及经验可以借鉴。由于合金钢的化学成分和性能与碳素钢、不锈钢存在较大的区别,所以施工15CrMoG耐热合金钢的焊接工艺及步骤都比碳素钢、不锈钢要求更高,也更严格和复杂。因此掌握此项新技术、新工艺中所有技术参数是具有较大的技术难题。 为了保证焊接质量,公司成立了专题攻关技术小组,开展科技创新,取得了“15CrMoG耐热钢管道焊接技术”这一新成果,并且该技术于2006年通过攀钢冶金技术有限公司(原攀冶建公司)科技质量部组织的科技成果鉴定,获公司科技进步一等奖;在2007年4月全国冶金施工系统QC成果发布会上获得二等奖。该技术填补了我公司在15CrMoG耐热合金钢焊接

技术方面的空白,优化了生产工艺,提高了劳动生产率,保证了焊接质量,为公司创造了良好的社会效益和经济效益。 2 工法特点 2.1由于15CrMoG钢中含有较高含量的Cr、C和其它合金元素,钢材的淬硬倾向较明显,焊接接头淬硬倾向大,可能出现冷裂纹,因此15CrMoG 钢焊接时,焊接材料的选择和严格的工艺措施,对于防止焊缝产生裂纹,保证管道使用性能至关重要。所以15CrMoG耐热合金钢与碳素钢、不锈钢等管道相比不管从施工工艺还是施工时所使用的工机具要求都更高,也更复杂。因此通过本工法的实施,使我公司的管道施工综合能力得到很大的提高,填补了我公司在15CrMoG耐热合金钢安装技术方面的空白,优化了生产工艺,提高了劳动生产率,保证了焊接质量,为公司创造良好的社会效益。更为今后公司施工同类管道奠定了坚实的基础,提高了 1 市场竞争能力。 2.2本工法贯彻实施后,使我公司得以熟练掌握15CrMoG材质高温高压蒸汽管道的打磨、预热、焊接、层间温度、焊后缓冷、焊缝及管道的热处理等所有工序及每个工序的具体要求及相关参数。为今后公司施工同类合金管道将起到较大的指导作用。 3 适用范围 适用于管道介质在10MPa、550℃以下的15CrMoG材质或同类型材质的高温、高压蒸汽管道或其它介质管道的焊接。 4工艺原理 为了保证耐热钢具有较好的高温强度和高温抗氧化性能,要加入一定

12Cr1MoV珠光体耐热钢管焊接工艺(printed)

12Cr1MoV珠光体耐热钢管焊接工艺 叶剑文谢美琼 (广州市锅炉压力容器监察检验所广东510050)(广州市番禺区职业技术培训中心) 12Cr1MoV是我国使用广泛的珠光体耐热钢之一,主要用于制造管壁温度小于580℃的锅炉过热管、联箱和主汽管道。在12t/h双汽包横置式沸腾炉制造过程中,锅炉的蒸汽出口温度为450℃,最高工作压力为3.8MPa,按设计图纸要求采用12Cr1MoV珠光体耐热钢管(φ159mm×10mm)作为过热器联箱管,以满足产品的使用要求。 1 焊接性分析 12Cr1MoV珠光体耐热钢为低合金耐热钢,此类钢的Cr含量较高,在500-550℃时具有较高的热强性和持久强度。12Cr1MoV钢的化学成分及力学性能见表1。 表1 12Cr1MoV珠光体耐热钢化学成分和力学性能 注:表中数据为焊接试件母材复验结果 由表1可见,12Cr1MoV钢的碳及合金元素含量较多,淬硬敏感性较大,易在焊缝及热影响区出现淬硬组织。在接头刚性及应力较大时,易产生冷裂纹。由于过热联箱是在较高温度下工作的受压元件,焊接时应采取必要的工艺措施,使焊接接头有足够的热强性能,保证过热联箱安全运行。 2焊接工艺 2.1焊接方法 在蒸汽管道的管子对接时,对打底焊缝的质量要求较高,不仅要求焊缝熔透、背面齐平,还要求焊缝背面无渣或少渣,否则会影响设备的安全运行。因此,采用手工钨极氩弧焊(TIG)打底,手工电弧焊(SMAW)填充和盖面的焊接工艺方法。 2.2坡口尺寸 选用单面V形坡口,坡口尺寸见图1。用机械方法加工,应严格控制根部间隙和坡口钝边尺寸,以确保打底焊缝彻底熔透。 图1 坡口形式和尺寸

(完整版)珠光体耐热钢

1.2关于珠光体耐热钢的研究 珠光体耐热钢在化工、石油设备中主要用于炉管、热交换器和其它受热面管子、高压加氢设备中的各种管道和高温紧固件。 1.2.1珠光体耐热钢的特点 珠光体耐热钢除碳钢外,大多是含有铬、钼元素,少数的还含有钒元素,但含量都不大,所以当加热、冷却时都能发生a γ相的转变。经正火后,容易得到珠光体组织,因此,这类钢称为珠光体耐热钢。 作为石油化工热交换器和锅炉用钢,除了要求有较好的耐热性外,还要求有很好的焊接性能和冷加工性能,为此,这类钢应具有良好的塑性。因此,其化学成分中含碳量都很低,其中钢管的含碳量要求更低,一般在0.1~0.15%C之间;钢板为0.20~0.30%C之间,最多不能超过0.30%C。 这类钢作为耐热钢,其耐热性虽然比奥氏体钢低,但它有许多优点: 1) 这类钢合金元素少,价格比较便宜; 2) 冷、热加工性能和焊接性能较好,热膨胀系数低,导热性能强,从而可 避免焊接时引起局部过热和产生较大的应力; 3) 热处理工艺简单,一般为正火加回火,能改善机械性能,也能利用热处 理细化组织。 但这类钢耐热性较差,它的工作温度一般不超过550~580℃。 1.2.2珠光体耐热钢的组织稳定性 在高温、应力长期作用下,由于扩散过程加快,钢的组织将逐渐发生变化。由于组织的不稳定性将引起钢的性能的变化,特别是对钢的热强性、松弛稳定性等性能都会带来不利的影响。珠光体耐热钢在高温长期工作条件下常见的组织不稳定现象有: 1.2.2.1石墨化 钢在高温、应力长期作用下,由于珠光体内渗碳体分解为游离石墨的现象称为石墨化。低碳钢当温度于450℃以上,含0.5%Mo的钢在500℃左右长期工作时,都可能发生石墨化,此时,钢脆化,强度与塑性降低,可导致爆管等事故。对由于长期过热导致爆管的20钢分析发现,其石墨化已达三级。一般钢发生石墨化的时间约需几万小时。防止0.5%Mo钢石墨化的最有效方法是实行进一步的合金化。在钢中加入铬、钒、铌等强碳化物形成元素能有效地阻止石墨化。 1.2.2.2珠光体球化 低合金珠光体型耐热钢在高温和应力长期作用下,珠光体组织中片状渗碳体逐渐自发地趋向形成球状渗碳体,并慢慢聚集长大。该现象称为珠光体球化。文献[5]对碳化物的球化过程和机理进行了探讨。影响球化的主要因素是温度、时间和化学成分。 实践表明,低合金耐热钢中加入铬、钼、钨、钒、铌等合金元素能显著地减弱其球化过程。这些合金元素的单个加入或复合加入后都能起到良好的作用。其原因是,它们能减弱碳在α固溶体中的扩散,同时这些合金元素又能与碳形成稳定的碳化物。 1.2.2.4蠕变过程中析出相类型的转变 在高温和应力条件下长期作用下,由于珠光体中Fe3C的分解,固溶体内合金元素向碳化物过渡以及碳在α固溶体内扩散过程加速进行,会引起在蠕变过程中碳化物相析出类型发生变化,从而影响钢的热强性。 文献[7-13]对低合金铬钼钢和铬钼钒钢长期服役后的碳化物相进行了研究,

史上最全钢材基本知识汇总

史上最全钢材基本知识汇总

史上最全钢材基本知识汇总 一、钢材机械性能 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。设Ps为屈服点s 处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。设Pb为材料被拉断前达到的最大拉力,Fo 为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB)。 洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的

耐热钢A335-P22材质在施工现场的焊接

耐热钢A335-P22材质在施工现场的焊接摘要 A335-P22(化学成分为-1Mo)是ASME规范的表示方法,在国内表示为12Cr2Mo,属于高温铁素体合金耐热钢。特点是工艺性能良好,对热处理的加热温度不太敏感,焊接性能也较好,具有良好的塑性,具有抗高温、难腐蚀。最大的缺点在焊接工艺中具有淬硬性和再热裂纹倾向。目前,广泛应用于电力、石化行业的超高压蒸汽管道生产工艺中。以天津石化100万吨/年乙烯装置超高压管道为例,对A335-P22材质的合金耐热钢焊接工艺进行分析,以指导现场焊接施工。 关键词耐热钢管道焊接性能焊接工艺 1工程概况 天津石化100万吨/年乙烯工程100万吨/年乙烯装置,为全国首套大乙烯工程,具有工程量大、施工工期短、施工难度大、技术,质量要求严格等特点。其超高压蒸汽管道采用A335-P22无缝钢管,设计温度538℃,操作温度520℃,设计压力1 ,操作压力11MPa。超高压蒸汽管道主管线贯穿街区主管廊,分散于热区、压缩区、急冷区、冷区,裂解炉区,共计管道延长米公里,共计焊口3300多道。管道规格:Φ*~Φ610*。焊接工作主要为A335-P22同材质焊接。耐热钢焊接作业时间、热处理周期长。高压管道坡口加工、焊接和安装是整个乙烯装置的重点和难点。 2焊接准备工作 材料检验 A335-P22无缝钢管在注明标示外,外观与普通的碳钢无缝钢管是一样的,所以在材料的验收、入库、保管、发放,必须严格执行国家的、行业的相关标准、规范及公司的相关规定,认真核对材料的质量证明文件。材料验收、核对材料证明文件需参照表1和表2数值。必须做到材料实物与材料证明相符合,并做上合格标记。根据SH3501的要

浅谈冷镦钢盘条中珠光体类型组织的区分和判定

钢中的珠光体类型组织(简称珠光体)一般包括片状珠光体、索氏体、屈氏体等三种,它们通常呈现层片状的结构。在生产实践中如何明确辨别这三种组织确实还存在混乱和误区。我们做了一些更为详细的工作,与大家共同探讨。 1、关于珠光体的基本概念 1.1珠光体的片层间距 冷镦钢盘条中共析成分的奥氏体,冷却到临界点A1以下时,将分解为铁素体与渗碳体的混合物,称为珠光体,缓冷所得的珠光体呈片状,称为片状珠光体。片状珠光体中片层方向大致相同的区域称为珠光体团,在一个奥氏体晶粒内,可以形成几个珠光体团。珠光体团中相邻两片渗碳体(或铁素体)中心之间的(垂直)距离称为珠光体的片间距。片间距的大小主要决定于珠光体的形成温度,随着冷却速度的增加,奥氏体转变为珠光体的温度逐渐降低,亦即转变时的过冷度不断增大,则转变所得的珠光体片间距也不断减小。 一般所谓的片状珠光体的片间距约为150~450nm;索氏体的片间距约为80~150nm;在更低的温度下形成的片间距为30~80nm的珠光体在生产上被称为屈氏体。 珠光体类型的组织的具体形成温度区间是:珠光体是临界点A1~650℃;索氏体是650~600℃;屈氏体是600~550℃。 实际上,关于珠光体类型组织的片间距的数值也存在不同的划分,比如,有的文献中的数据是珠光体:大于0.4;索氏体:0.2~0.4;屈氏体:小于0.2;还有的是,粗珠光体:0.6~0.7;珠光体:0.35~0.5;索氏体:0.25~0.3。也有人认为是:片层间距在0.1、0.25、0.6左右的珠光体类型组织分别为屈氏体、索氏体、片状珠光体。 对于珠光体层片间距区分范围的混乱,其实可以根据组织、性能之间的关系来明确。由于150nm对应着珠光体组织性能上的一个转折点,所以,有理由认为,一般所谓的片状珠光体的片间距约为150~450nm;索氏体的片间距约为80~150nm;屈氏体的片间距为30~80nm的划分是更为合理的。 1.2光学显微镜中的珠光体 一般所谓的片状珠光体,是指在光学显微镜(通常是500倍观察条件)下能够明显分辨出片层的珠光体;如果珠光体的片间距小到光镜难以分辨时,这种细片状珠光体被称为索氏体。实际上,用电子显微镜观察时,不论是索氏体还是在更低的温度下形成的屈氏体,都是层片状组织,只是片间距不同而已。不同的文献对于光学显微镜的放大倍数在分辨索氏体能力上的描述基本一致,在满足相应的数值孔径的基础上,认为400~500倍条件下,可以分辨片状珠光体,800~1000倍时可以分辨索氏体。根据GB/T13298-1991标准,通常辨别珠光体、屈氏体是在500倍放大倍数下进行观察,近似的判定是:如果放大倍数500倍下,铁素体和渗碳体难以分辨就是索氏体型珠光体。 但是,对于在光学显微镜中根据是否能分辨出片层状的结构来区分片状珠光体与索氏体我们认为存在需要探讨的必要。

珠光体耐热钢焊接再热裂纹的防治

珠光体耐热钢焊接再热裂纹的防治 王珏 摘要为了解决珠光体耐热钢焊后热处理过程中易产生再热裂纹的问题,分析了再热裂纹的特征和产生机理,针对影响再热裂纹的因素,提出预防措施。 主题词不锈钢焊接热处理裂纹分析防治措施 To Prevent the Reformation of Thermal Cracks on Pearlitic High-temperature Steel Wang Jue To solve the problem of thermal cracks reformation on pearlitic high-temperature during post weld heat treatment, the properties and formation mechanisms are analyzed in this paper. Preventive measures are proposed in light of the factors causing such reformation. Key words: Stainless steel, Welding, Heat treatment, Crack, Analysis, Preventive treatment, Measure 1概况 随着国内石油化工、电力工业的迅速发展,以Cr-Mo为基础的低、中合金珠光体耐热钢成为高温条件下使用的重要材料之一。珠光体耐热钢在小于600℃温度下不仅有很好的抗氧化热强度,还有较好的抗氢腐蚀和抗硫腐蚀性能。同时由于珠光体耐热钢中合金元素较少,其工艺性能和物理性能优良,为其它的耐热钢材料所不及。因此,珠光体耐热钢得到了广泛应用。 珠光体耐热钢的焊接工艺通常有两种,一种为选用与母材相匹配的耐热钢焊条,另一种采用奥氏体钢焊条。采用奥氏体焊条由于焊缝金属与母材的膨胀系数不同,长期高温工作还可能发生碳的扩散迁移现象,容易导致在熔合区发生破坏,因此,该焊接工艺较多应用于局部补焊或焊后不易进行热处理的部位,焊接珠光体耐热钢较普遍采用耐热钢焊条。 生产实践证明,采用珠光体耐热钢焊条,主要存在冷裂纹、近缝区硬化、热影响区软化等问题。此外,焊接残余应力是造成应力脆性破坏、结构变形失稳以及应力腐蚀裂纹的主要原因之一。因此珠光体耐热钢焊后进行热处理是不可缺少的重要工序,多数珠光体耐热钢在焊后并未出现裂纹,而是在焊后热处理过程中产生了裂纹,这就是珠光体耐热钢焊接的又一问题,即焊接再热裂纹。 从60年代开始,国外相继报道了因再热裂纹而发生的多起事故,促使各国对再热裂纹开展了大量的试验研究。70年代初,国内也报道了因再热裂纹而导致产品失效的事故。随着珠光体耐热钢应用于压力容器和高温高压管道,关于再热裂纹的报道也时有所闻。 再热裂纹(Reheat cracking)又称为消除应力处理裂纹(Stress-Relief cracking),这种裂纹不仅发生在消除应力的热处理中,也发生于焊后再次高温加热过程中。 2再热裂纹的特征 (1)产生的部位均在焊接热影响区的过热粗晶区,焊缝、热影响区的细晶区及母材均不产生再热裂纹。裂纹沿熔合线方向在奥氏体粗晶晶界发展,不少裂纹是断续的,再热裂纹具有沿晶间开裂的特征。 (2)再热裂纹的产生与再热过程的加热或冷却速度无关。 (3)焊后不会发生,只是在焊后进行消除应力处理及焊后高温使用中发生,它有一个敏感的温度区,一般在500~700℃,600℃左右最为敏感。 (4)再热裂纹总是出现在拘束应力或应力集中的部位,焊接应力越大越易产生,如焊缝向母材过渡不圆滑、焊缝余高过高、咬肉、焊瘤、未焊透、边缘未熔合等部位都容易产生再热裂纹。

耐热钢焊接焊条选用及说明

耐热钢焊接焊条选用及说明 在高温下工作的钢叫做耐热钢,耐热钢应具备高温化学稳定性和高温强度,耐热钢按显微组织可分为珠光体耐热钢、铁素体耐热钢、马氏体耐热钢和奥氏体耐热钢四类;珠光体耐热钢通常热强钢,另有专篇,不再叙述,这里只讲铁素体耐热钢、马氏体耐热钢和奥氏体耐热钢。 一般来说,钢中含Cr达到5%,在600℃下具备了抗氧化能力,当Cr达到12%时,抗氧化能力可达800℃,当Cr达到20%时,抗氧化能力可达950℃,当Cr达到25%时,在1050℃高温下耐热钢表面不起氧化皮,高温化学稳定性非常强;铬金属是耐热钢中最主要的合金元素,所以耐热钢含铬量大都在12%以上。 相对而言,铁素体耐热钢和马氏体耐热钢高温强度低且塑韧性不好,耐热性能不如奥氏体耐热钢,奥氏体耐热钢与奥氏体不锈钢相比,含碳量高一些,有些钢种既是不锈钢又是耐热钢。 本文依据GB/T 4238-2015《耐热钢钢板与钢带》和GB/T 983-2012《不锈钢焊条》标准,选出14种代表性耐热钢材料及其适用的12种焊条,基本涵盖适用温度范围,其余耐热钢焊接时焊条选择也可以参照使用。 一、焊条选用原则 1、耐热性对等 焊缝与母材都在同一个温度下服役,若焊缝耐热性差就会影响整体功能,若焊缝耐热性过剩则会造成浪费,只有两者对等才是最适宜的。 2、化学成分相近 为确保焊缝金属与母材具备相同的耐热性,焊条熔敷金属化学成份与母材应尽量相近;同时两者化学成份相近使得它们膨胀系数相近,避免了因膨胀系数不同在焊接接头处产生内应力。 3、保证抗裂性 对抗裂性差的耐热钢可以用化学成分差异化来选择焊条,防止冷裂纹,确保施工可焊性。如马氏体耐热钢、沉淀硬化耐热钢。

钢材的基本组织结构

钢铁材料有7种基本组织结构:奥氏体、铁素体和渗碳体、珠光体、贝氏体、马氏体和莱氏体,其中奥氏体、铁素体和渗碳体是基本相,珠光体、贝氏体、马氏体和莱氏体是多相混合物。 奥氏体:观察Mn13或奥氏体钢1Cr18Ni9Ti的钢丝金相组织可发现,奥氏体的晶界比较直,晶内有孪晶或滑移线。淬火钢中的残余奥氏体分布在马氏体的空隙处,颜色浅黄、发亮。 奥氏体钢丝具有优异的冷加工性能,在高低温条件下均可保持良好的强韧性。一般来说奥氏体钢的冷加工硬化速率远大于珠光体和索氏体钢,经大减面拉拔可以制备具有特殊性能的弹簧,高锰奥氏体钢具有优异的耐磨性能和减振性能,奥氏体不锈钢具有良好的耐蚀性能和耐热性能。固溶状态的奥氏体钢无磁,经深冷加工有微弱的磁性。 铁素体:铁素体晶界圆滑,晶内很少见孪晶或滑移线,颜色浅绿、发亮,深腐蚀后发暗。钢中铁素体以片状、块状、针状和网状存在。纯铁素体组织具有良好的塑性和韧性,但强度和硬度都很低;冷加工硬化缓慢,可以承受较大减面率拉拔,但成品钢丝抗拉强度很难超过1200MPa。常用铁素体钢丝有铁素体不锈钢丝(0Cr17)和铁-铬-铝电热合金丝(0Cr25Al5)等。 渗碳体:钢中渗碳体以各种形态存在,外形和成分有很大差异。一次渗碳体多在树枝晶间处析出,呈块状,角部不尖锐;共晶渗碳体呈骨骼状,破碎后呈多角形块状;二次渗碳体多在晶界处或晶内,可能是带状、网状或针状;共析渗碳体呈片状,退火、回火后呈球状或粒状。在金相图谱中渗碳体白亮,退火状态呈珠光色。一次渗碳体和破碎的共晶渗碳体只有在莱氏体钢丝,如9Cr18、Cr12、Cr12MoV和W18Cr4V中才能见到,只要热加工工艺得当,冷拉用盘条中的一次渗碳体块度应较小、无尖角,共晶碳化物应破碎成小块、角部要圆滑,否则根本无法拉拔,渗碳体带轻度棱角的盘条,可以通过正火后球化退火+轻度(Q020%)拉拔+高温再结晶退火的方法加以挽救。带状和网状渗碳体也是拉丝用盘条中不应出现的组织,这两种组织提高钢的脆性,不利于钢丝加工成形,显著降低成品钢丝的切削性能和淬火均匀性,对网状2.5级的盘条可用正火的方法改善网状,一般来说钢丝经冷拉-退火两次以上循环,网状可降低0.5-1级。 珠光体:珠光体是由片状铁素体和渗碳体组成的混合物,其中渗碳体的质量分数为12%,铁素体的质量分数为88%,两者密度相近,在金相图谱中铁素体呈宽条状,渗碳体呈窄条状。 片状珠光体是由成分均匀的奥氏体冷却转变来的,等温转变温度,或连续冷却速度直接影响到珠光体的片间距。同一牌号的钢丝,在一定等温区间,珠光体的片间距是相对恒定的。实验证明,奥氏体晶粒度虽然对珠光体晶团的大小有决定性影响,但基本不影响珠光体片间距。 片状珠光体经适当的热处理,渗碳体变为球状或粒状,转化为粒状珠光体。从奥氏体状态冷却时,是转变为片状珠光体,还是粒状珠光体,主要取决于奥氏体成分的均匀性。完全奥氏体化的成分均匀的奥氏体,冷却后形成片状珠光体;成分不均匀的奥氏体,冷却后形成粒状珠光体。在奥氏体临界点(A1)附近反复冷却-加热,然后缓冷,或钢丝冷拉后再退火,都是实现粒状珠光体转变的有效方法。 珠光体钢丝的力学性能(抗拉强度Rm、伸长率A、断面收缩率Z、硬度),可拉拔性(变形抗力、冷加工硬化速率、极限减面率Q),工艺性能(弯曲Nb、扭转N t、缠绕、顶锻、冲压)与显微组织结构密切相关。一般来说,粒状珠光体钢丝的抗拉强度Rm和硬度要低于片状珠光体钢丝,伸长率A和断面收缩率Z前者要高于后者;粒状珠光体钢丝的拉拔性能优于片状珠光体钢丝,表现为拉拔力低、冷加工硬化慢、能承受的极限减面率大;工艺性能前者优于后者。在粒状珠光体范围内,随着球化度提高(球化组织从1级升到3级),钢丝抗拉强度和硬度下降,塑性和韧性上升,可拉拔性和工艺性能也越来越好,特别冷顶锻和深冲性能显著改善。在片状珠光体范围内,珠光体晶团和片间距对钢丝性能起决定性的影响,珠

材料焊接性课后答案

分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。 分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求?答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火 Q345与Q390焊接性有何差异?Q345焊接工艺是否适用于Q390焊接,为什么?答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。 比较Q345、T-1钢、2.25Cr-Mo和30MnSiA的冷裂、热裂和消除应裂纹的倾向. 答:1、冷裂纹的倾向:Q345为热扎钢其碳含量与碳当量较底,淬硬倾向不大,因此冷裂纹敏感倾向较底。T-1钢为低碳调质钢,加入了多种提高淬透性的合金元素,保证强度、韧性好的低碳自回火M和部分下B的混合组织减缓冷裂倾向,2.25Cr-1Mo为珠光体耐热钢,其中Cr、Mo能显著提高淬硬性,控制Cr、Mo的含量能减缓冷裂倾向,2.25-1Mo冷裂倾向相对敏感。30CrMnSiA为中碳调质钢,其母材含量相对高,淬硬性大,由于M中C含量高,有很大的过饱和度,点阵畸变更严重,因而冷裂倾向更大。2、热裂倾向Q345含碳相对低,而Mn含量高,钢的Wmn/Ws能达到要求,具有较好的抗热裂性能,热裂倾向较小。T-1钢含C低但含Mn较高且S、P的控制严格因此热裂倾小。30CrMnSiA含碳量及合金元素含量高,焊缝凝固结晶时,固-液相温度区间大,结晶偏析严重,焊接时易产生洁净裂纹,热裂倾向较大。3、消除应力裂纹倾向:钢中Cr、Mo元素及含量对SR产生影响大,Q345钢中不含Cr、Mo,因此SR倾向小。T-1钢令Cr、Mo但含量都小于1%,对于SR 有一定的敏感性;SR倾向峡谷年队较大,2.25Cr-Mo其中Cr、Mo含量相对都较高,SR倾向较大。

珠光体 (1)

珠光体组织 珠光体是由奥氏体发生共析转变同时析出的,铁素体与渗碳体片层相间的组织,[1] 是铁碳合金中最基本的五种组织之一。[2] 代号为P。得名自其珍珠般(pearl-like)的光泽。 (珠光体组织呈指纹状,其中白色的基底为铁素体,黑色的片层为渗碳体) 中文名:珠光体 外文名:pearlite 一、形态 1、珠光体pearlite 其形态为铁素体薄层和渗碳体薄层交替叠压的层状复相物,也称片状珠光体。用符号P表示,含碳量ωc=0.77%。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳体也可呈粒状,这样的珠光体称为粒状珠光体。 经2-4%硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以观察到不同特征的珠光体组织.当放大倍数较高时可以清晰地看到珠光体中平行排列分布的宽条铁素体和窄条渗碳体;当放大倍数较低时,珠光体中的渗碳体只能看到一条黑线;而当放大倍数继续降低或珠光体变细时,珠光体的层片状结构就不能分辨了,此时珠光体呈黑色的一团。

图为光学显微镜200倍下薄壁铸件基体.经3%硝酸酒精溶液浸蚀.可见磷共晶体,片状石墨,珠光体及少量铁素体。 2、分类 奥氏体化温度、转变前奥氏体晶粒大小,只影响珠光体团的大小,对片层间距无影响。片状珠光体根据片间距的大小不同,可以分成珠光体、索氏体、托氏体三类。 一般所谓的片状珠光体是指在A1~650℃温度范围内形成的,在光学显微镜下能明显分辨出铁素体和渗碳体层片状组织形态的珠光体,其片间距大约为150~450nm。在光学显微镜下能够明显分辨出片层的珠光体,其片间距约为150~450nm。 在650~600℃温度范围内形成的珠光体,其片间距较小,约为80~150n m,只有在高倍的光学显微镜下(放大800~1500倍时)才能分辨出铁素体和渗碳体的片层形态,这种片状珠光体称为索氏体。片间距为80~150nm时,称为索氏体,其片层在光学显微镜下难以分辨。 在600~550℃温度范围内形成的珠光体,其片间距极细,约为30~80nm,在光学显微镜下根本无法分辨其层片状特征,只有在电子显微镜下才能区分,这种极细的珠光体称为屈氏体。[4] 在更低的温度下形成片间距为30~80nm的珠光体称为托氏体,只有在电子显微镜下才能观察到片层结构。 当渗碳体以颗粒状存在于铁素体基体上时称为粒状珠光体。粒状珠光体可以通过不均匀的奥氏体缓慢冷却时分解而得,也可以通过其

材料科学 复习题

材料相变原理 复习题 第一章: 1说明成分、相、结构和组织四个概念的含义,并讨论45#钢室温平衡状态下的成分、相、结构和组织。 2 试述金属固态相变的主要特征。 3 哪些基本变化可以被称为固态相变? 4 简述固态相变过程中界面应变能产生的原因。 5 简述固态相变形成新相的形状与界面能和界面应变能的关系, 6 扩散型相变和无扩散型相变各有哪些主要特点? 第二章: 1 试述钢中奥氏体和铁素体的晶体结构、碳原子可能存在的部位以及碳原子在奥氏体和铁素体中的最大理论含量和实际含量。 2 以共析钢为例说明奥氏体的形成过程,并说明为什么在铁素体消失的瞬间还有部分渗碳体未溶解。 3 试述影响奥氏体晶粒长大的因素。 4 解释下列概念: 惯习面,非均匀形核,奥氏体的起始晶粒度、实际晶粒度和本质晶粒度,钢在加热时的过热现象,钢的组织遗传和断口遗传。 第三章:

1 试述影响珠光体转变动力学的因素。 2 试述钢中相间沉淀长生条件和机理。 3 概念解释:伪共析组织,魏氏组织,“派敦”处理。 第四章: 1 试述马氏体的晶体结构及其产生原因。 2 简述马氏体异常正方度的产生原因。 3 试述马氏体转变的主要特点。 4 试述钢中板条状马氏体和片状马氏体的形貌特征和亚结构并说明它们的性能差异。 5 Ms点的定义和物理意义。 6 试述影响Ms点的主要因素。 7 试述引起马氏体高强度的原因。 8 概念解释:奥氏体的热稳定化,奥氏体的机械稳定化,马氏体的逆转变,伪弹性,相变冷作硬化,形状记忆效应。 第五章: 1 试述贝氏体转变的基本特征。 2试述钢中上贝氏体和下贝氏体的形貌特征和亚结构并说明它们的性能差异。 3 试述影响贝氏体性能的基本因素。 4 试比较贝氏体转变与珠光体转变和马氏体转变的异同。

相关文档
最新文档