2009年哈尔滨市中考数学试卷及答案(WORD版)

合集下载

2021年黑龙江省哈尔滨市中考数学试题及参考答案(word解析版)

2021年黑龙江省哈尔滨市中考数学试题及参考答案(word解析版)

哈尔滨市2021年初中升学考试数学试卷(满分120分,考试时间120分钟)第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣的绝对值是()A.﹣7 B.7 C.﹣D.2.下列运算一定正确的是()A.a2•a=a3B.(a3)2=a5C.(a﹣1)2=a2﹣1 D.a5﹣a2=a3 3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.八个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.5.如图,AB是⊙O的直径,BC是⊙O的切线,点B为切点,若AB=8,tan∠BAC=,则BC的长为()A.8 B.7 C.10 D.66.方程=的解为()A.x=5 B.x=3 C.x=1 D.x=27.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E 是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°8.一个不透明的袋子中装有12个小球,其中8个红球、4个黄球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是()A.B.C.D.9.如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为()A.3 B.4 C.5 D.610.周日,小辉从家步行到图书馆读书,读了一段时间后,小辉立刻按原路回家.在整个过程中,小辉离家的距离s(单位:m)与他所用的时间t(单位:min)之间的关系如图所示,则小辉从家去图书馆的速度和从图书馆回家的速度分别为()A.75m/min,90m/min B.80m/min,90m/minC.75m/min,100m/min D.80m/min,100m/min第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.火星赤道半径约为3396000米,用科学记数法表示为米.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(2,﹣5),则k的值为.14.计算﹣2的结果是.15.把多项式a2b﹣25b分解因式的结果是.16.二次函数y=﹣3x2﹣2的最大值为.17.不等式组的解集是.18.四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则▱ABCD的周长为.19.一个扇形的弧长是8πcm,圆心角是144°,则此扇形的半径是cm.20.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为.三、解答题(其中21-22题各7分,23-2题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin45°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1个单位长度,△ABC的顶点和线段DE的端点均在小正方形的顶点上.(1)在方格纸中将△ABC向上平移1个单位长度,再向右平移2个单位长度后得到△MNP(点A的对应点是点M,点B的对应点是点N,点C的对应点是点P),请画出△MNP;(2)在方格纸中画出以DE为斜边的等腰直角三角形DEF(点F在小正方形的顶点上).连接FP,请直接写出线段FP的长.23.(8分)春宁中学开展以“我最喜欢的冰雪运动项目”为主题的调查活动,围绕“在冰球、冰壶、短道速滑、高山滑雪四种冰雪运动项目中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢短道速滑的学生人数占所调查人数的40%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若春宁中学共有1500名学生,请你估计该中学最喜欢高山滑雪的学生共有多少名.24.(8分)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.25.(10分)君辉中学计划为书法小组购买某种品牌的A、B两种型号的毛笔.若购买3支A种型号的毛笔和1支B种型号的毛笔需用22元;若购买2支A种型号的毛笔和3支B种型号的毛笔需用24元.(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元;(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用不超过420元,那么该中学最多可以购买多少支A种型号的毛笔?26.(10分)已知⊙O是△ABC的外接圆,AB为⊙O的直径,点N为AC的中点,连接ON并延长交⊙O于点E,连接BE,BE交AC于点D.(1)如图1,求证:∠CDE+∠BAC=135°;(2)如图2,过点D作DG⊥BE,DG交AB于点F,交⊙O于点G,连接OG,OD,若DG=BD,求证:OG∥AC;(3)如图3,在(2)的条件下,连接AG,若DN=,求AG的长.27.(10分)在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.(1)求抛物线的解析式;(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P 的坐标.答案与解析第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣的绝对值是()A.﹣7 B.7 C.﹣D.【知识考点】绝对值.【思路分析】直接利用实数的性质得出答案.【解题过程】解:,故选:D.【总结归纳】此题主要考查了实数的性质,正确掌握绝对值的性质是解题关键.2.下列运算一定正确的是()A.a2•a=a3B.(a3)2=a5C.(a﹣1)2=a2﹣1 D.a5﹣a2=a3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据同底数幂的乘法、幂的乘方的运算法则,完全平方公式、合并同类项法则解答即可.【解题过程】解:A、a2•a=a3,原计算正确,故此选项符合题意;。

2009年中考数学过关训练及答案(20)

2009年中考数学过关训练及答案(20)

图1图2xb +2009年中考数学过关训练及答案(20)一、选择题: 1.反比例函数6y x=-的图象位于() (A )第一、三象限(B )第二、四象限(C )第二、三象限(D )第一、二象限 2.下列运算正确的是()(A )33--=(B )1133-⎛⎫=- ⎪⎝⎭(C3=±(D3=-3.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值X 围为 () (A )-1<m <3 (B )m >3 (C )m <-1(D )m >-1 4.一名射击运动员连续打靶8次,命中的环数如图1所示, 这组数据的众数与中位数分别为() (A )9与8 (B )8与9(C )8与8.5(D )与95.下列计算结果正确的是( )(A )4332222y x xy y x -=⋅-(B )2253xy y x -=y x 22- (C )xy y x y x 4728324=÷(D )49)23)(23(2-=---a a a6.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为() (A )9cm (B )12cm (C )15cm (D )12cm 或15cm 7.一次函数y kx b =+(k b ,是常数,0k ≠)的 图象如图2所示,则不等式0kx b +>的解集是() (A )2x >-(B )0x > (C )2x <-(D ) 0x < 8.若0a >且2xa =,3ya =,则x ya -的值为()(A )1-(B )1(C )23(D )329.关于x 的二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( ) (A )1 (B )2 (C )1或2 (D ) 010.已知二次函数的图象如图所示,则这个二次函数的表达式为( ) (A )223y x x =-+(B )223y x x =-- (C )223y x x =+-(D )223y x x =++二、填空题:11.计算:825-=;12.如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,则∠BCD =度;13.分解因式:3x x -=;14.用直尺和圆规作一个角等于已知角的示意图如图所 示,则说明A O B AOB '''∠=∠的依据是;15.如图,随机闭合开关123S S S ,,中的两个, 能够 让灯泡发光的概率为;16.如图,在ABC △中,90A ∠=,4BC =cm ,分别以B C ,为圆心的两个等圆外切,则图中阴影部分的面积为2cm ; 三、解答题:17.我们学习了利用函数图象求方程的近似解,例如: 把方程213x x -=-的解看成函数21y x =-的图象与函数3y x =-的图象交点的横坐标.如图,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程210x x --=的正数解.(要求画出相应函数的图象;求出的解精确到0.1)过关训练(20)参考答案一、1.B ;2.D ;3.A ;4.C ;5.C ;6.C ;7.A ;8.C ;9.B ;10.B ; 二、11.23;12.25;13.(1)(1)x x x +-;14.全等三角形的对应角相等;15.23;16.π; 三、解答题:17.解:因为0x ≠,将210x x --=两边同除以x ,得110x x --=.即11x x=-. 把210x x --=的正根视为由函数1y x=与函数1y x =-的图象在第一象限交点的横坐标.画出图象(略),约为1.6.。

2009年佛山市中考数学试题及答案(word版)

2009年佛山市中考数学试题及答案(word版)

佛山市2009 年高中阶段学校招生考试数学试卷说 明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟.注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字笔描黑.3.其余注意事项,见答题卡.第Ⅰ卷(选择题 共30 分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.答案选项填涂在答题卡上).1化简的结果是( ) A.2 B.D .±2.数学上一般把n aa a a a个···…·记为(A .na B .n a + D .an3.30°角的余角是( )A .30°角 B .60°角 C .90°角 D .150°角4.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(右图),则它的主视图是( )A .图①B .图②C .图③D .图④5.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤6.方程121x x=-的解是( )A .0 B .1 C .2 D .37.下列关于数与式的等式中,正确的是( )实物图图④图③图②图①A .22(2)2-=-B .5840101010⨯= C .235x y xy += D .2x yx y x+=+8.假设你班有男生24名,女生26名,班主任要从班里任选一名红十字会的志愿者,则你被选中的概率是( )A .1225 B .1325 C .12 D .1509.将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了( )A .1圈B .1.5圈C .2圈D .2.5圈10.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如右图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值上面的实验中,不科学的有( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中).11.黄金分割比是0.61803398=…,将这个分割比用四舍五入法精确到0.001的近似数是 .12.正方形有 条对称轴.13.已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a ,中位数为b ,则a b (填“>”、“<”或“=”).14.画出一次函数24y x =-+的图象,并回答:当函数值为正时,x 的取值范围是 .15.已知ABC △的三边分别是a b c ,,,两圆的半径12r a r b ==,,圆心距d c =,则这两个圆的位置关系是 .第9题图第14题图三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分).16.化简:2211xyx y x y x y ⎛⎫+÷⎪-+-⎝⎭.17.某文具店销售供学生使用的甲、乙、丙三种品牌的科学计算器,共销售180台,其中甲种品牌科学计算器销售45台.请根据相关信息,补全各品牌科学计算器销售台数的条形图和扇形图.18.如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF的长.丙各品牌科学计算器销售台数所占的百分比甲乙丙DFCBE A第18题图19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象;(3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.20.(1与下列哪些数相乘,结果是有理数?A.B.2CDE .0问题的答案是(只需填字母):;(2相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).第19题图21.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?22.已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).(1)在图②的坐标系中,求点A与点1A的坐标;(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.注:图①是未工作时的示意图,图②是工作前后的示意图.23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从第22题图①第22题图②柜角A 处沿着木柜表面爬到柜角1C 处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当1445AB BC CC ===,,时,求蚂蚁爬过的最短路径的长;(3)求点1B 到最短路径的距离.24.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法. 配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:22(1)3(2)2x x x -+-+、、2213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.25.一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进第23题备用图第23题图行分类(即给一类图形下定义——定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题. 课本里对四边形的研究即遵循着上面的思路.当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.已知:四边形ABCD 中,AB DC =,且ACB DBC ∠=∠.(1)借助网格画出四边形ABCD 所有可能的形状;(2)简要说明在什么情况下四边形ABCD 具有所画的形状.佛山市2009 年高中阶段学校招生考试数学试卷参考答案与评分标准一、选择题.题号12345678910答案BC BB DC ADC A二、填空题.题号1112131415答案0.6184=图略,2x <相交注:14题,作图正确给2分,范围正确给1分.三、解答题.16.解:2222112()()xy x y x y x y x y x y x yx y x y xy y ⎛⎫++--+÷== ⎪-+--+⎝⎭·.注:通分2分、合并1分、化乘1分、约分2分.其它作法参照给分.17.注:每处满分2 分18.解(略).注:证明BCE CDF △≌△,给5分;根据三角形全等得10DF =,给1分.19.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分,满足其中的两至三项给1分,满足一项以下给0分;(2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分).20.(1)A D E 、、;注:每填对一个得1分,每填错一个扣1分,但本小题总分最少0分.(2)设这个数为x,则x a =·(a为有理数),所以x =(a 为有理数).注:无“a 为有理数”扣1分;写x =视同x =.21.(1)20x -≥0;(化为20x ≥扣1分)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分(2)面积增加222(2)4484(cm )x x x +-=+≥.(列式2分,整理1分,不等关系1分)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分答:面积至少增加284cm .22.(1)连结AB ,易得30AOB ∠=°,OB =∙∙∙∙2分点A 与点1A的坐标分别是(20,与20);∙∙∙∙∙∙∙∙∙∙4分(2)根据题意,130A ON ∠=°.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分丙各品牌科学计算器销售台数所占的百分比甲25%乙25%丙45%第22题图②DF CBE A 第18题图旋转角度是130AOA ∠=°.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分圆心A 转过的弧1AA 的长为3020π2π40(cm)3603⨯⨯=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分23.(1)如图,木柜的表面展开图是两个矩形11ABC D '和11ACC A .蚂蚁能够最快到达目的地的可能路径有如图的11A C '和1AC .………………………………………………………… 2分(2)蚂蚁沿着木柜表面经线段11A B 到1C ,爬过的路径的长是1l ==.……………………………………3分蚂蚁沿着木柜表面经线段1BB 到1C,爬过的路径的长是2l ==∙∙∙∙∙∙4分12l l >,最短路径的长是2l =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(3)作11B E AC ⊥于E ,则1111B C B E AC =·1AA =5=为所求.∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分注:作垂线、相似(或等面积)、计算各1分.24.(1)242x x -+的配方(略).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分(2)2222213()24a ab b a b ab a b b ⎛⎫++=+-=++ ⎪⎝⎭.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(3)222324a b c ab b c ++---+=22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分从而1020102a b b c -=-=-=,,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分即1a =,2b =,1c =.所以4a b c ++=∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分25.(1)四边形可能的形状有三类:图①“矩形”、图②“等腰梯形”、图③的“四边形1ABCD ”.注1:画出“矩形”或“等腰梯形”,各给1分;画出另一类图形(后两种可以看作一类),给2分;CAE A 1B 1C 1D 11C 'B等腰梯形不单独画而在后两种图中反映的,不扣分;画图顺序不同但答案正确不扣分.注2:如果在类似图③或图④的图中画出凹四边形,同样给分(两种都画,只给一种的分).(2) (i )若BAC ∠是直角(图②),则四边形为等腰梯形;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 6分(ii )若BAC ∠是锐角(图③),存在两个点D 和1D ,得到等腰梯形ABCD 和符合条件但不是梯形的四边形1ABCD ;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分其中,若BAC ∠是直角(图①),则四边形为矩形.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9分(iii )若BAC ∠是钝角(图④),存在两个点D 和1D ,得到等腰梯形ABCD 和符合条件但不是梯形的四边形1ABCD ;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11分注:可用AC 与BD 或者BAC ∠与CDB ∠是否相等分类;只画矩形和等腰梯形并进行说明可给4分.。

[09数学汇编]_2009年全国中考数学试题汇编_二次函数1

[09数学汇编]_2009年全国中考数学试题汇编_二次函数1

09年中考-二次函数 习题版一、选择题 1、(2009年台湾)向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2?bx 。

若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的?(A) 第8秒 (B) 第10秒 (C) 第12秒 (D) 第15秒 。

2、(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y3、 (2009年四川省内江市)抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、(2009年桂林市、百色市)二次函数2(1)2y x =++的最小值是( ).A .2B .1C .-3D .236、(2009年上海市)抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --, 7、(2009年陕西省)根据下表中的二次函数c bx ax y ++=2的自变量x 与函数y 的对应值,可判断二次函数的图像与x 轴 【 】x … -1 0 1 2 …y … -1 -2…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点 8、(2009威海)二次函数2365y x x =--+的图象的顶点坐标是( )A .(18)-, B .(18), C .(12)-, D .(14)-, 9、(2009湖北省荆门市)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )解析:本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开A .B .C . 1111xo yyo x yo xxoy口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是正确的,故选C . 10、(2009年贵州黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( ) A 、y=x 2-x-2 B 、y=121212++-xC 、y=121212+--x x D 、y=22++-x x11、(2009年齐齐哈尔市)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数() A .4个 B .3个 C .2个 D .1个12、(2009年深圳市)二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( ) A .21y y < B .21y y = C .21y y > D .不能确定 12、(2009桂林百色)二次函数2(1)2y x =++的最小值是( ).A .2B .1C .-3D .2313、(2009丽水市)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论: ①a >0.②该函数的图象关于直线1x =对称. ③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( ) A .3 B .2 C .1 D .014、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( ) xyO1 O15、(2009年甘肃庆阳)图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x = C .212y x =-D .212y x =16、(2009年甘肃庆阳)将抛物线22y x =向下平移1个单位,得到的抛物线是( )A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =- 17、(2009年广西南宁)已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个18、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( )A .2B 3C 、4D 、5 19、(2009年孝感)将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为 A .1 B .2 C .3 D .4 20、(2009泰安)抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9) 21、(2009年烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数1图4O xy3图6(1) 图61O xy yxOyxOB .C .y xOA .yxOD .24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( ) 22、(2009年嘉兴市)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ )23、(2009年新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( ) A .h m = B .k n = C .k n > D .00h k >>, 24、(2009年天津市)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++ 25、(2009年南宁市)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 26、(2009年衢州)二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 27、(2009年舟山)二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 28、(2009年广州市)二次函数2)1(2+-=x y 的最小值是( )A.2 (B )1 (C )-1 (D )-229、(2009年济宁市)小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有A .2个B .3个C .4个D .5个30、(2009年广西钦州)将抛物线y =2x 2向上平移3个单位得到的抛物线的解析1211O1xy (第12题)1 O x y y x O y x O B . C . y x O A . y x O D . O y x 1-1A x y O 1-1B x y O1-1C xy O 1-1D式是( ) A .y =2x 2+3B .y =2x 2-3C .y =2(x +3)2D .y =2(x -3)2 31、(2009宁夏)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,则下列四个结论错误..的是( )D A .0c > B .20a b += C .240b ac -> D .0a b c -+>32、(2009年南充)抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x = B .1x =- C .3x =- D .3x =33、(2009年湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A .6 B .7 C .8 D .9 34、(2009年兰州)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 35、(2009年兰州)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .2(1)3y x =--- B .2(1)3y x =-+- C .2(1)3y x =--+ D .2(1)3y x =-++ 36、(2009年兰州)二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是A .a <0 B.abc >0 C.c b a ++>0 D.ac b 42->0 37、(2009年遂宁)把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式A.()22412+--=x y B. ()42412+-=x yC.()42412++-=x yD. 321212+⎪⎭⎫ ⎝⎛-=x y 39、(2009年广州市)二次函数2)1(2+-=x y 的最小值是( )11O xy(8题A.2 (B )1 (C )-1 (D )-2【关键词】二次函数 41、(2009年台湾)向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2?bx 。

哈尔滨中考数学试卷及答案(word版)

哈尔滨中考数学试卷及答案(word版)

哈尔滨市2021年初中升学考试数学试卷 一、选择题(每题3分,共计30分)1、-9的相反数是( )A.-9B.C.9D. 2、以下运算正确的选项是( )A. B.C. D.3、以下图形中,既是轴对称图形又是中心对称图形的是( )A B C D4、七个大小相同的正方体搭成的几何体如下图,其左视图是( )5、如图,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,假设∠P =50º,那么∠ACB 的度数为( )A.60ºB. 75ºC.70ºD.65º6、抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为〔 〕A B.C. D.7、某商品经过连续两次降价,售价由原来的每件25元降到每件16元,那么平均每次降价的百分率为〔 〕A.20%B. 40%C. 18%D. 36%8、方程x x 3132=-的解为( ) A. B. C. D.9、点(-1,4)在反比例函数xk y =的图象上,那么以下各点在此函数图象上的是( ) A.〔4,-1〕 B.〔〕 C. 〔-4,-1〕 D.〔〕10、如图,□ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N , 那么以下式子一定正确的选项是( )A.DE NE BM AM =B.ADAN AB AM = C.BD BE ME BC = D.ME BC BE BD =二、填空题(每题3分,共计30分) 11、将6 260 000用科学记数法表示为 .12、函数323-=x x y 中,自变量x 的取值范围是 . 13、把多项式22396ab b a a +-分解因式的结果为 .14、不等式组⎪⎩⎪⎨⎧≥+≤-123023x x 的解集是 .15、二次函数()86x 2+--=y 的最大值是 . 16、如图,将△ABC 绕点C 逆时针旋转得到△A 'B 'C ,其中点A '与点A 是对应点,点B '与点B 是对应点,点B '落在边AC 上,连接A 'B ,假设∠ACB =45°,AC =3,BC =2,那么A'B 的长为 .17、一个扇形的弧长为π11cm ,半径为18 cm ,那么此扇形的圆心角为 度.18、在△ABC 中,∠A =50°,∠B =30°,点D 在AB 边上,连接CD ,假设△ACD 为直角三角形,那么∠BCD 的度数为 度.19、同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,那么这两枚骰子向上的一面出现点数相同的概率为 .20、如图,在四边形形ABCD 中,AB =AD ,BC =DC ,∠A =60°,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,假设AB =8,CE =6,那么BC 的长为 .三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分) 21、先化简,再求代数式24-4x 4-x x 2-x -2-x 2x 22-÷⎪⎪⎭⎫ ⎝⎛++x x 的值,其中︒+︒=30cos 254tan 4x .22、如图,图1和图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形的顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8.23、建国七十周年到来之际,海庆中学决定举办以“祖国在我心中〞为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取局部学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业〞五类书籍中,选取自己最想读的一种(必选且只选一种).学校将收集到的调查结果适当整理后绘制成如下图的不完整的统计图. 请根据图中所给的信息答复以下问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名?24、:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.25、寒梅中学为了丰富学生的课余生活,方案购置围棋和中国象棋供棋类兴趣小组活动使用.假设购置3副围棋和5副中国象棋需用98元;假设购置8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元?(2)寒梅中学决定购置围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购置多少副围棋?26、:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB⊥OE于点D,CH⊥MN 于点K,连接HN、HE,HE与MN交于点P.(1)如图1,假设AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,假设OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在〔2〕的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN交于点R,连接RG,假设HK:ME=2:3,BC=,求RG的长.27、如图,在平面直角坐标系中,点O为坐标原点,直线与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S〔S≠0〕,求S与t之间的函数关系式〔不要求写出自变量t的取值范围〕;(3)在〔2〕的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,假设tan∠QMR=,求直线PM的解析式.。

2009年湖北省宜昌市中考数学试题及答案(WORD版 有答案)

2009年湖北省宜昌市中考数学试题及答案(WORD版 有答案)

2009年湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交. 以下数据、公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是2424()b ac b aa--, ;180=n l R π弧长 (R 为半径,l 为弧长); sin30°=12, cos30°2, sin45°=cos45°2.一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 本大题共10小题,每题3分,计30分) 1. 如下书写的四个汉字,其中为轴对称图形的是( ).A .B . C. D.2. 如果+20%表示增加20%,那么-6%表示( ).A .增加14%B .增加6%C .减少6%D .减少26%3.如图所示的圆柱体,其主视图、左视图和俯视图中至少有一个是( ).A .三角形B .四边形C .五边形D .六边形(第3题)4.2009年国家将为医疗卫生、教育文化等社会事业发展投资1 500亿元.将1 500用科学记数法表示为( ).A .1.5×10-3 B . 0.15×103 C .15×103 D .1.5×1035.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ).A .1B .12C .13D .06.按如图方式把圆锥的侧面展开,会得到的图形是( ).A .B .C .D .7.如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <08.如图,由“基本图案”正方形ABCO 绕O 点顺时针旋转90°后的图形是 ( ).基本图案(第8题) A .C .D . 9.设方程x 2-4x -1=0的两个根为x 1与x 2,则x 1x 2的值是( ). A . -4 B . -1 C . 1 D . 010.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V (万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是( ). A .干旱开始后,蓄水量每天减少20万米3B .干旱开始后,蓄水量每天增加20万米3C .干旱开始时,蓄水量为200万米3D .干旱第50天时,蓄水量为1 200万米3二、填空题(请将解答结果填写在答题卡上指定的位置.本大题共5小题,每题3分计15分)11.当x 23x -没有意义.12.“爱心小组”的九位同学为灾区捐款,捐款金额分别为10,10,11,15,17,17,18,20,20 (单位:元) 13.如果只用圆、正五边形、矩形中的一种图形镶嵌整个平面,(第6题)A BB14(第14题) (第15题)15.如图,艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8米,所对的圆心角为100(π≈3)三、解答题(本大题共9小题,计75分)16(21. (6分)17.2009年有80名教师参加“城乡教师援助工程”活动,随机调查后发现,平均每位教师可以让150名学生受益.请你估算有多少学生将从这项活动中受益. (6分)18.已知点A (1,-k +2)在双曲线k xy =上.求常数k 的值. (7分)19.已知:如图,在Rt △ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E . (1) 求证:AE =BE ;(2) 若∠AEC =45°,AC =1,求CE 的长.(7分)(第19题)20.已知:如图,⊙O 的直径AD =2, BCCD DE ==,∠BAE =90°. (1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?(8分)(第20题)E D C B A21.已知:如图, AF 平分∠BAC ,BC ⊥AF , 垂足为E ,点D 与点A 关于点E 对称,PB分别与线段CF , AF 相交于P ,M . (1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.(8分)(第21题)22.【实际背景】预警方案确定:设0000W 月的5克肉价格月的5克玉米价格 当猪当.如果当月W <6,则下个月...要采取措施防止“猪贱伤农”. 【数据收集】【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m ;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a ,则到7月时只用5.5元就可以买到500克猪肉和500克玉米.请你预测8月时是否要采取措施防止“猪贱伤农”.(10分)F M PE D CBA23.已知:如图1,把矩形纸片ABCD 折叠,使得顶点A 与边DC 上的动点P 重合(P 不与点D ,C 重合), MN 为折痕,点M ,N 分别在边BC , AD 上,连接AP ,MP ,AM , AP 与MN 相交于点F .⊙O 过点M ,C ,P .(1)请你在图1中作出⊙O (不写作法,保留作图痕迹);(2)AF AN与AP AD是否相等?请你说明理由;(3)随着点P 的运动,若⊙O 与AM 相切于点M 时,⊙O 又与AD 相切于点H . 设AB 为4,请你通过计算,画出..这时的图形.(图2,3供参考) (11分)ABCFP MNDF MNDOP CBABCPONMF图1 图2 图3(第23题)24.已知:直角梯形OABC的四个顶点是O(0,0),A(32,1),B(s,t),C(72,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.(1)求s与t的值,并在直角坐标系中画出..直角梯形OABC;(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.(第24题)2009年湖北省宜昌市初中学业考试 数学试题评分说明及参考答案一、选择题:(每小题3分,计30分)二、填空题:(每小题3分,共15分)说明:第15题如果填写为3.1或3.14均得3分;第12题若填写17元,得3分.三、解答题:(本大题有9小题,计75分) 16.解:2(-121(3分)=2. (6分) 17.解: 由题意, 15080⨯ (4分)=12 000(名). (6分)答:有12 000名学生将从这项活动中受益.说明:12 000后不带单位不扣分. 18.解:由题意,21kk -+=. (4分) 解得 1.k = (7分)19.解:(1) 在Rt △ACE 和Rt △BDE 中,∵∠AEC与∠BED是对顶角,∴∠AEC=∠BED.(1分)∵∠C=∠D=90°,AC=BD.∴Rt△ACE≌Rt△BDE,(3分)∴AE=BE.(4分)(2) ∵∠AEC=45°,∠C=90°,∴∠CAE=45°.(5分)∴CE=AC=1.(7分)20.解:(1)∵AD为⊙O的直径,∴∠ACD=∠BAE=90°.(1分)∵BC CD DE==,∴∠BAC=∠CAD=∠DAE .(2分)∴∠BAC=∠CAD=∠DAE =30°.∵在Rt△ACD中,AD=2,CD=2sin30°=1,AC=2cos30°=.(3分)∴S△ACD=12AC×CD=2.(4分)(2) 连BD,∵∠ABD=90°,∠BAD= =60°,∴∠BDA=∠BCA= 30°,∴BA=BC.作BF⊥AC,垂足为F,(5分)∴AF=12AC=2,∴BF=AF tan30°=12,(6分)∴S△ABC=12AC×BF4,∴S ABCD4.(7分)∵S⊙O=π ,∴P点落在四边形ABCD区域的概率=4π=4π.(8分)说明:若π取3得结果4.(2)解法2:作CM⊥AD,垂足为M.(5分)∵∠BCA=∠CAD(证明过程见解法),∴BC∥AD.∴四边形ABCD为等腰梯形.(6分)∵CM=AC sin30°=2,∴S ABCD=12(BC+AD)CM=4.(7分)∵S⊙O=π,∴P点落在四边形ABCD区域的概率=4π4π.(8分)21.解:(1)证明:∵AF平分∠BAC,∴∠CAD=∠DAB=12∠BAC.∵D与A关于E对称,∴E为AD中点.(1分)∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.(2分)在Rt△ACE和Rt△ABE中,注:证全等也可得到AC=CD∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB.∴∠ACE=∠ABE,∴AC=AB.注:证全等也可得到AC=AB∴AB=CD.(3分)(2)∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD.∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA.(4分)∴∠MP F=∠CDM.(5分)∵AC=AB,AE⊥BC,∴CE=BE.注:证全等也可得到CE=BE ∴AM为BC的中垂线,∴CM=BM.(6分)注:证全等也可得到CM=BM ∵EM⊥BC,∴EM平分∠CMB,(等腰三角形三线合一)∴∠C ME=∠BME.注:证全等也可得到∠CME=∠BME∵∠BME=∠PMF,∴∠PMF=∠C M E,(7分)∴∠MCD=∠F(三角形内角和).(8分)注:证三角形相似也可得到∠MCD=∠F 22.解:(1)由题意,7.56 6.257.5 6.25m--=,解得:m=7.2.(1分)(2)从2月~5月玉米的价格变化知,后一个月总是比前一个月价格每500克增长0.1元.(2分)(或:设y=kx+b,将(2,0.7),(3,0.8)代入,得到y=0.1x+0.5,把(4,0.9),(5,1)代入都符合,可评2分,再得到(6,1.1)时不再给分)∴6月玉米的价格是:1.1元/500克;(3分)∵5月增长率:6 6.2516.2525-=-,∴6月猪肉的价格:6(1-125)=5.76元/500克.FMPE DCBA∴W =5.761.1=5.24<6, 要采取措施. (4分)说明:若答:∵5月的W =6,而6月时W 的分子(猪肉价格下降)减小,且分母(六月的玉米价格增长)增大,∴6月的W <6,未叙述减小和增大理由时可扣1分. (3)7月猪肉价格是:26(1)a +元/500克;7月玉米价格是:21(12)a +元/500克; 由题意,26(1)a ++21(12)a +=5.5, (6分) 解得,13102a a =-=-或 .(7分) 32a =-不合题意,舍去. (8分) ∴2216(1)1011(1)5W --=, (9分), (7.59)6W ≈>,∴不(或:不一定)需要采取措施.(10分)23.解:(1)如图; (1分) (2)AF AN 与APAD不相等. 假设AFAPAN AD =,则由相似三角形的性质,得MN ∥DC . (2分)∵∠D =90°,∴DC ⊥AD ,∴MN ⊥AD .∵据题意得,A 与P 关于MN 对称,∴MN ⊥AP . ∵据题意,P 与D 不重合,∴这与“过一点(A )只能作一条直线与已知直线(MN )垂直”矛盾. ∴假设不成立. ∴AF AP AN AD=不成立. (3分) (2) 解法2:AF AN 与APAD不相等. 理由如下:∵P , A 关于MN 对称,∴MN 垂直平分AP . ∴cos ∠F AN =AFAN. (2分) ∵∠D =90°, ∴cos ∠P AD =ADAP .∵∠F AN =∠P AD ,∴AF AN =ADAP.N∵P不与D重合,P在边DC上;∴AD≠AP.∴ADAP≠APAD;从而AFAN≠APAD.(3分)(3)∵AM是⊙O的切线,∴∠AMP=90°,∴∠CMP+∠AMB=90°.∵∠BAM+∠AMB=90°,∴∠CMP=∠BAM.∵MN垂直平分,∴MA=MP,∵∠B=∠C=90°,∴△ABM≌△MCD.(4分) ∴MC=AB=4,设PD=x,则CP=4-x,∴BM=PC=4-x.(5分)连结HO并延长交BC于J.( 6分)∵AD是⊙O的切线,∴∠JHD=90°.∴矩形HDCJ.(7分)∴OJ∥CP,∴△MOJ∽△MPC,(8分)∴OJ:CP=MO:MP=1:2,∴OJ=12(4-x),OH=12MP=4-OJ=12(4+x).(9分)∵MC2= MP2-CP2,∴(4+x)2-(4-x)2=16.(10分)解得:x=1.即PD=1,PC=3,∴BC=BM+MC=PC+AB=3+4=7.由此画图(图形大致能示意即可).(11分)(3)解法2:连接HO,并延长HO交BC于J点,连接AO.(4分)由切线性质知,JH⊥AD,∵BC∥AD,∴HJ⊥BC,∴OJ⊥MC,∴MJ=JC.(5分)∵AM,AH与⊙O相切于点M,H,∴∠AMO=∠AHO=90°,∵OM=OH,AO=AO,∴Rt△AMO≌Rt△AHO.(6分)∴设AM=x,则AM=AH=x,由切线性质得,AM⊥PM,∴∠AMP=90°,∴∠BMA+∠CMP=90°.∵∠BMA+∠BAM=90°,∴∠BAM=∠CMP,∵∠B=∠MCP=90°,∵MN为AP的中垂线,∴AM=MP.∴△ABM≌△MCP.(7分) ∴四边形ABJH为矩形,得BJ=AH=x,(8分)NRt △ABM 中,BM∴MJ=x -JC ,(9分)∴AB =MC .∴4=2(x -,∴5x = (10分)∴AD =BC=x x +,∴PC. 由此画图(图形大致能示意即可).(11分)24.解:(1)如图,在坐标系中标出O ,A ,C 三点,连接OA ,OC∵∠AO C≠90°, ∴∠ABC =90°,故BC ⊥OC , BC ⊥AB ,∴B (72,1).(1分,)即s =72,t =1.直角梯形如图所画.(2分)(大致说清理由即可)(2)由题意,y =x 2+mx -m 与 y =1(线段AB )相交,得,12y =x mx m,y =.+-⎧⎨⎩ (3分)∴1=x 2+mx -m ,由 (x -1)(x +1+m )=0,得121,1x x m ==--. ∵1x =1<32,不合题意,舍去. (4分)∴抛物线y =x 2+mx -m 与AB 边只能相交于(2x ,1), ∴32≤-m -1≤72,∴9252m --≤≤ . ①(5分)又∵顶点P (2424,m m m +--)是直角梯形OABC 的内部和其边上的一个动点,∴7022m ≤-≤,即70m -≤≤ . ② (6分)∵2224(2)4(1)44211m m m m ++-+-=-=-+≤,(或者抛物线y =x 2+mx -m 顶点的纵坐标最大值是1)∴点P 一定在线段AB 的下方. (7分) 又∵点P 在x 轴的上方, ∴2440m m +-≥,(4)0,m m +≤∴0,0,4040m m m m ≤≥+≥+≤⎧⎧⎨⎨⎩⎩或者 . (*8分) 4(9)0. m ∴-≤≤分③(9分)又∵点P 在直线y =23x 的下方,∴242()432m m m +-≤⨯-,(10分)即(38)0.m m +≥ 0,0,380380.m m m m ≤≥+≤+≥⎧⎧⎨⎨⎩⎩或者 (*8分处评分后,此处不重复评分) 80.3m m ∴≤-≥(11分),或 ④由①②③④ ,得4-≤83m ≤-.(12分)说明:解答过程,全部不等式漏写等号的扣1分,个别漏写的酌情处理.。

2009年中考数学试题分类汇编17 等腰三角形与勾股定理含答案

2009年中考数学试题分类汇编17 等腰三角形与勾股定理含答案17.等腰三角形与勾股定理一、选择题 1.(2009年山西省)如图,在Rt ΔABC 中,∠ACB =90°BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( B )A .32B .76C .256D .2 【答案】B2.(2009年达州)图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E的面积是CA .13B .26C .47D .94【答案】CADB ED CEF A B 3.(2009年湖北十堰市)如图,已知Rt ΔABC中,∠ACB =90°,AC = 4,BC =3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( C ).A .π5168B .π24C .π584 D .π12π+12/5*3*π=84/5π4.(2009年湖州)如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则ΔDEF 的面积与ΔABC 的面积之比等于( 13 )A .1∶3B .2∶3C 3∶2D 3∶3【答案】A5.(2009年广西钦州)如图,AC=AD,BC=BD,则有(A)A.AB垂直平分CD B.CD垂直平分AB C.AB与CD互相垂直平分D.CD平分∠ACB A BCD【答案】A6.(2009年衡阳市)如图2所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在(A)A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB 的交点【答案】A7.(湖北省恩施市)如图3,长方体的长为15,宽为10,高为20,点B离点C的距离为5,上只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( B )A.B.25 C.D .358.(浙江省丽江市)如图,已知△ABC 中,∠ABC=90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( A )A .172B .52C .24D .79.(2009白银市)如图,⊙O 的弦AB =6,M是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为(A )A .5B .4C .3D .2【答案】A l 1 l 2 l 3 AC B10.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是CA.1B.14C.15D.110【答案】C11.(2009白银市)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=(C)A.2 B.3 C.22D .23【答案】C13.(2009年烟台市)如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( B ) A .32 B .23 C .12 D .34【答案】B13.(2009年嘉兴市)如图,等腰△ABC 中,底边a BC =,∠A =36°,∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E ,设215-=k ,则DE =( ) A .a k 2 B .a k 3 C .2k a D .3k a AD C P B 60【答案】A14.(2009泰安)如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC =6,则DF 的长是B(A )2 (B )3 (C )25 (D )4 【答案】B15.(2009恩施市)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( B )A .21B .25C .55D .35【答案】BADC E B16.(2009恩施市)16.如图6,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( D )A .23cmB .32cmC .42cmD .43cm【答案】D17.(2009丽水市)如图,已知△ABC 中,∠ABC=90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( A )A .172B .52C .24D .7l 1 l 2 l 3 AC B 5 211C B【答案】A18..(2009年宁波市)等腰直角三角形的一个底角的度数是( B )A .30°B .45°C .60°D .90°【答案】B19.(2009年滨州)如图3,已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8, 则边BC 的长为( 21和9 )A .21B .15C .6D .以上答案都不对【答案】A20.(2009武汉)9.如图,已知O 是四边形ABCD内一点,OA =OB =OC ,∠ABC =∠ADC =70°,则∠ADO+∠DCO 的大小是( )A .70°B .110°C .140°D .150° AC DB【答案】D提示:∠BAO+∠BCO =∠ABO+∠CBO=∠ABC =70°,所以∠BOA+∠BOC =360°-140°=220°,所以∠AOC =140°。

2009中考数学试题分类17 代数综合教师版(含答案)

十三 代数综合1.(兰州) 如图14,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数myx=的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线AB 与x 轴的交点C 的坐标 (3)求方程0=-+xmb kx 的解(请直接写出答案); (4)求不等式0<-+xmb kx 的解集(请直接写出答案). 解:(1)(24)B -,在函数my x=的图象上 8m ∴=-.∴反比例函数的解析式为:8y x =-. ·························································· 1分 点(4)A n -,在函数8y x =-的图象上2n ∴=(42)A ∴-, ······························································································ 2分 y kx b =+经过(42)A -,,(24)B -,,4224k b k b -+=⎧∴⎨+=-⎩解之得12k b =-⎧⎨=-⎩ ∴一次函数的解析式为:2y x =-- ····························································· 3分 (2)C 是直线AB 与x 轴的交点∴当0y =时,2x =-∴点(20)C -,(3)2,421=-=x x ··················································································· 6分 (4)204><<-x x 或 ··········································································· 7分2.(2009年娄底)已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式. 解:(1)令y =0,得:x 2-(2m -1)x +m 2+3m+4=0△=(2m -1)2-4(m 2+3m +4)=-16m -15…………………………1分 当△>0时,方程有两个不相等的实数根,即-16m -15>0 ∴m <-1516此时,y 的图象与x 轴有两个交点………………………………2分 当△=0时,方程有两个相等的实数根,即-16m -15=0 ∴m =-1516此时,y 的图象与x 轴只有一个交点………………………………3分 当△<0时,方程没有实数根,即-16m -15<0 ∴m >-1516此时,y 的图象与x 轴没有交点∴当m <-1516时,y 的图象与x 轴有两个交点;当m =-1516时,y 的图象与x轴只有一个交点;当m >-1516时,y 的图象与x 轴没有交点.……………………4分(2)由根与系数的关系得x 1+x 2=2m -1,x 1x 2=m 2+3m +4 (5)分21x +22x =(x 1+x 2)2-2x 1x 2=(2m -1)2-2(m 2+3m +4)=2m 2-10m -7……6分 ∵21x +22x =5,∴2m 2-10m -7=5,∴m 2-5m -6=0解得:m 1=6,m 2=-1∵m <-1516,∴m =-1∴y =x 2+3x +2……令x =0,得y =2,∴二次函数y 的图象与y 轴的交点C 坐标为(0,2)又y =x 2+3x +2=(x +32)2-14,∴顶点M 的坐标为(-32,-14)设过C (0,2)与M (-32,-14)的直线解析式为y =kx +bk =32则2=b14=32k +b ,b =2-∴所求的解析式为y =32x +2…………………………………………8分解得3.(本题满分7分)已知:关于x 的一元二次方程222(23)41480x m x m m --+-+=(1)若0,m >求证:方程有两个不相等的实数根;(2)若12<m <40的整数,且方程有两个整数根,求m 的值. 解(1)证明:[]22=2(23)-4414884m m m m ---++()=0,m > 840.m ∴+>∴方程有两个不相等的实数根。

2009年哈尔滨工大附中入学测试题含全部答案

2009年工大附中入学测试卷(数学部分)一、填空题:(每题4分,共计40分)1、=-⨯⨯+627124894894123267 ( )。

2、把一个大正方形切成8个相等的小正方体,这些小正方体的表面积之和比原来正方体的表面积增加了( )倍。

3、一个分数若加上它的一个分数单位,和是1;若减去它的一个分数单位,差是76。

这个分数是( )。

4、在15°、105°、135°和25°四个角中,不能用两个三角板画出的角是( )度的角。

5、甲数比乙数多4.5,甲数的小数点向左移动一位就正好与乙数相等。

甲数是( ),乙数是( )。

6、一个四位数是奇数,它的首位数字小于其余各位数字,而第二位数字大于其他各位数字,第三位数字等于首末两位数字的和的两倍,这个四位数是( )。

7、参加某次数学考试的女生和男生人数的比是1:3,这次数学考试的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是( )。

8、一个电饭煲如果按原价打“九折”出售可获利70元;如果按原价打“九五折”出售可获利100元,那么这个电饭煲的进货价格是( )元。

9、两辆汽车同时从A 、B 两地相对开出,3小时后在距中点18千米处相遇。

已知慢车的速度是快车的75,A 、B 两地相距( )千米。

10、要把含盐10%的盐水80克改制成含盐20%的盐水,怎么办?方法:(1) ( ),(2) ( )。

二、应用题:(每题8分,共计40分)1、一种混凝土的水泥、沙子、石子的质量比是2:3:5,现在三种配料各有12吨,如果用完沙子,水泥剩多少吨?石子缺多少吨?2、下图是一块长方形铁皮,利用图中的阴影部分刚好能做好成一个油桶(接头处忽略不计)。

求这个油桶的体积。

3、下图中,半圆的直径AB 长6厘米,半圆绕A 点逆时针旋转60°,使直径AB 到达AC 的位置。

求图中阴影部分的面积。

4、由A 、B 、C 、D 四种金属混合组成的某种合金共60千克。

初中数学中考真题精编-2009年答案及评分标准

2009年来宾市初中毕业升学统一考试试题数学参考答案及评分标准一、填空题:本大题共10小题,每小题3分,共30分.1.-237; 2.10; 3.(x +2)(x -2); 4.25; 5.⎩⎨⎧==11y x ; 6.x y 2-=;7.1.30×105; 8.65; 9.2; 10.答案不唯一,只要符合题意均给分.二、选择题:本大题共8小题,每小题3分,共24分.题号 11 12 13 14 15 16 17 18 答案DBCDACCB三、解答题:本大题共8小题,满分66分. 19.解:原式=222919⨯+-+ …………4分(每对一个值给1分)=1+1=2……………………5分20.解:设该镇这两年中财政净收入的平均年增长率为x , ……………………1分依题意可得:5000(1+x )2=2×5000 ………………………………4分解得 21=+x ,或021<-=+x (舍去) ……………………5分∴%4.41414.012=≈-=x……………………………………6分答:该镇这两年中财政净收入的平均年增长率约为41.4﹪.…………7分21.解:(1)502;(2)23.71;(3)图略,值为150(图、值各1分);(4)80—99.(每小题各2分)22.证明:∵四边形ABCD 是平行四边形∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2分 又∵△ADE 和△CBF 都是等边三角形 ∴DE =BF ,AE =CF∠DAE =∠BCF =60° ………………4分∵∠DCF =∠BCD -∠BCF ∠BAE =∠DAB -∠DAE ∴∠DCF =∠BAE……………………6分∴△DCF ≌△BAE (SAS ) ………………7分∴DF =BE∴四边形BEDF 是平行四边形. …………8分23.解:(1)见参考图 ……………………………3分(不用尺规作图,一律不给分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨市2009 年初中升学考试数学试卷
一、选择题(每小题 3分,共计 30分)
1.-2的相反数是( ).

(A)2 (B)一2 (C)21 (D)一21
2.下列运算正确的是( ).
(A)3a2-a2=3 (B)(a2)3=a5 (C)a3.A6=a9 (D)(2a)2=2a2
3.下列图形中,既是轴对称图形,又是中心对称图形的是().

4.36的算术平方根是( ).
(A)6 (B)±6 (C)6 (D)±6

5.点P(1,3)在反比例函数y=xk (k≠0)的图象上,则k的值是( ).
(A)31 (B)3 (C)一31 (D)一3
6.右图是某一几何体的三视图,则这个几何体是( ).
(A)长方体 (B)圆锥
(C)圆枉 (D)正三棱柱
7.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于
4的概率为( ).

(A)61 (B)31 (C)21 (D)32
8.圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).
(A)36л (B)48л (C)72л (D)144л
9.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A
恰好落在DC边上的点A´处,若∠A´BC=20°,则∠A´BD的度数为( ).
(A)15° (B)20° (C) 25° (D)30°
10.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的
路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示。放学后
如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回
来时,走这段路所用的时间为( ).
(A)12分 (B)10分 (C) 16分 (D)14分
二、填空题(每小题3分,共计24分)
11.长城总长约为 6700 010米,用科学记数法表示为 (保留两个有效数字).

12.函数y=2x2x的自变量x的取值范围是
13.把多项式x3-4x分解因式的结果为 。
14.如图,在□ABCD中,BD为对角线,E、F分别是AD、BD的中点,连
接EF.若EF=3,则CD的长为 .
15.如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的
长为 .
(第16小题和第*16小题为考生根据所学内容任选其一作答题)
16.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一
场比赛),则总的比赛场数为 场
*16.如果2是一元二次方程x2+bx+2=0的一个根,那么常数b的值为 .
17.观察下列图形:

它们是按一定规律排列的,依照此规律,第16个图形共有 个★.
18.若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形
的一边于点F,且BF=AE,则BM的长为 .
三、解答题(其中19-22题各5分,23-25题各6分,26题8分,27-28题各10分,共计66分)
19.(本题 5分)

先化简.再求代数式的值.1aa)1a2a1a2(2 其中a=tan60°-2sin30°.

20.(本题5分)
如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一
个△ABC和一点O,△ABC的顶点和点O均与小正方形的顶点重合.
(1)在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,
请画出△A1B1C1
(2)在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,
请画出△A2B2C2。

21.(本题5分)
张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三
边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形
ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)
(2)当x为何值时,S有最大值?并求出最大值.

(参考公式:二次函数y=ax2+bx+c(a≠0),当x=-a2b时,y最大(小)值=a4bac42)
22.(本题5分)
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.
点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.
求证:CD=CE.

23.〔本题6分)
如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得
灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C
在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与
灯塔C的距离.(结果保留根号)

24.(本题6分)
某中学为了解该校学生阅读课外书籍的情况,学校决定围绕“在艺术类、科技类、动漫类、小说类、
其他类课外书籍中,你最喜欢的课外书籍种类是什么?(只写一类)”的问题,在全校范围内随机抽取部分
同学进行问卷调查,并将调查问卷适当整理后绘制成如图所示的条形统计图.
请结合统计图回答下列问题:
(1)在本次抽样调查中,最喜欢哪类课外书籍的人数最多,有多少人?
(2)求出该校一共抽取了多少名同学进行问卷调查?
(3)若该校有800人,请你估计这800人中最喜欢动漫类课外书籍的约有多少人?
25.(本题6分)
图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为
1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正
方形顶点重合.

26.(本题8分)
跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零
件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的
总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则
将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,
通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
27.(本题 10分)
已知:△ABC的高AD所在直线与高BE所在直线相交于点F.
(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,
求证:FG+DC=AD;
(2)如图 2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足
的数量关系是 ;

(3)在(2)的条件下,若AG=25,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这
个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于
P、Q两点,若NG=23,求线段PQ的长.
28.(本题10分)
如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速
运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变
量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所
夹锐角的正切值.
提供者:罗天仁

相关文档
最新文档