第5讲:有理数的加减法

合集下载

1.3 有理数的加减法 辅导资料(含答案)

1.3 有理数的加减法 辅导资料(含答案)

1.3 有理数的加减法第3课时本节主要是1.经历探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,能熟练的进行整式加法运算,并能运用运算律简化运算。

鼓励学生借助熟悉的例子解释运算结果,用自己的语言分类、归纳、概括出有理数的加法法则。

有理数的加法交换律和结合律。

2.利用有理数的加法交换律和结合律进行有理数的运算,其中加法交换律是两个数相加,交换加数的位置,和不变,即a+b=b+a;加法结合律是三个数相加,先把前两个数相加再和第三个数相加,或先把后两个数相加再和第一个数相加,和不变,即(a+b)+c=a+(b+c).本节主要讲了有理数减法的运算法则,让学生通过实例,理解有理数减法的法则,能熟练的进行整数的减法运算。

3.对有理数的加法,减法两种运算进行了比较,让学生体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),同时由前两节的整数加减运算很自然的过渡到小数、分数的加减运算。

一. 有理数的加减法运算,能进行小数或分数在内的有理数加减混合运算,能根据具体的问题适当的运用运算律简化运算。

利用混合运算解决实际问题.这是本节的重点【典例引路】中例1,【当堂检测】中第4题,【课时作业】中第10,题,【备选题目】中第2题。

二.灵活运用有理数加减法运算的规律。

有理数的混合运算. 尤其是在计算过程中,一定要注意符号的选择,这是本节的难点.【典例引路】中例1,【当堂检测】中第5题,【课时作业】中第21题.三.易错题目【课时作业】中第7题,【典例引路】中例2,在计算过程中,一定要注意符号的选择,这是学生最容易出现错误的地方。

点击一:有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加为0;3.一个数同0相加,仍得这个数.注意:运用有理数加法法则时,看清两数符号属于哪种情况,再应用哪种法则. 针对性练习:1.填上适当的符号,使下列式子成立:(1)(______5)+(-15)=-10;(2)(-3)+(______3)=0; (3)(______37)+(______313)=-1. 【解析】先判断和的绝对值与两个加数的绝对值的关系,再根据有理数的加法法则选择符号.【答案】+ + + - 点击二:有理数的加法运算律加法交换律:两个数相加,交换加数的位置,和不变;a+b=b+a. 加法结合律:三个数相加,先把前两个相加,或者先把后两个数相加,和不变. a+b+c=(a+b)+c=a+(b+c) 利用加法交换律、结合律,可以使运算简化. 点击三:有理数的减数法则减去一个数,等于加上这个数的相反数. 点击四:有理数的混合运算 统一成加法后,按加法运算来完成.类型之一:应用创新型例1、仓库内原存粮食4000千克,一周内存入和取出情况如下(存入为正,单位:千克):2000,-1500,-300,600,500,-1600,-200问第7天末仓库内还存有粮食多少千克?【解析】本题使用正负数来表示具有相反意义的量——存入和取出。

有理数的加减混合运算

有理数的加减混合运算

毅帆教育学科培训师辅导讲义讲义编号学员编号年级七年级课时数 2学员姓名辅导科目数学学科培训师刘老师学科组长签字教务长签字课题有理数的加减混合运算备课时间:2013.10.16 授课时间:教学目标1、理解有理数加法的意义,掌握有理数的加法法则,并能准确地进行有理数的加法运算。

2、理解有理数减法的意义,掌握有理数减法法则,并运用减法法则简化运算。

重点、难点重点:准确迅速地进行有理数的加减混合运算。

难点:减法直接转化为加法及混合运算的准确性。

考点及考试要求1、掌握有理数加法运算律,并运用运算律简化运算;解决简单的实际问题。

2、掌握将有理数的加减混合运算统一成加法运算的方法,熟练地进行有理数的加减法混合运算。

教学内容有理数的加法把两个有理数合并成一个有理数的运算,叫做有理数的加法。

由于有理数分为正有理数、零、负有理数三类,所以两个有理数相加就有以下几种情况:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

温馨提示:进行有理数的加法运算时,应按以下“一判二定三加减”的步骤:判断类型,根据类型确定用哪一个法则;根据加数的绝对值的大小及加数的符号确定和的符号;对绝对值进行加减运算确定和的绝对值。

例1、填表:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.例2 计算: (1)(﹣3)+(﹣9) (2) (﹣21)+(﹢31)例3 计算: (1)(-9)+(-8); (2)(﹢4)+(﹣3);(3)(﹣5.25)+5; (4)(﹣20032002)+0。

有理数的加法运算律①有理数的加法交换律是:两个数相加,交换加数的位置,和不变.即加法交换律 .②有理数的加法结合律是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即加法结合律 .③交换律和结合律可以推出:三个以上有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,无论各数相加的先后次序如何,其和不变。

有理数(三维目标)

有理数(三维目标)

有理数教案教学目标1.知识与技能①通过生活实例,了解有理数等知识是生活的需要.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过全章的学习,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过生活实例的引入,通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.②通过本章知识的学习,给学生渗透辩证唯物主义思想.教学重点难点重点:有理数的运算,这一章的主要学习目标都可以归结到有理数的运算上,诸如有理数的有关概念、运算法则、运算律、近似数与有效数字等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,对有理数中的有关概念以及有理数法则的理解,绝对值意义和运算中符号的确定.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题以及解决问题,从而使学生自得知识,自觅规律.在这过程中,训练学生分析问题、解决问题的能力. 1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意利用数轴的直观性讲述相反数、绝对值,发挥字母表示数的优越性,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴更直观形象易理解,并且要着重在符号法则的基础上,进行基本运算训练,提高学生计算准确率.第一章有理数教案教学目标1.知识与技能①通过生活实例,了解有理数等知识是生活的需要.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过全章的学习,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过生活实例的引入,通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.②通过本章知识的学习,给学生渗透辩证唯物主义思想.教学重点难点重点:有理数的运算,这一章的主要学习目标都可以归结到有理数的运算上,诸如有理数的有关概念、运算法则、运算律、近似数与有效数字等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,对有理数中的有关概念以及有理数法则的理解,绝对值意义和运算中符号的确定.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题以及解决问题,从而使学生自得知识,自觅规律.在这过程中,训练学生分析问题、解决问题的能力.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意利用数轴的直观性讲述相反数、绝对值,发挥字母表示数的优越性,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴更直观形象易理解,并且要着重在符号法则的基础上,进行基本运算训练,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.②通过正负数的学习,渗透对立、统一的辩证思想.教学重点难点重点:会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.难点:负数的引入.学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合正数和负数(2)学案学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系1.1 正数和负数教学目标1.知识与技能①了解正数与负数是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.②通过正负数的学习,渗透对立、统一的辩证思想.教学重点难点重点:会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.难点:负数的引入.教与学互动设计(一)创设情境,导入新课(二)合作交流,解读探究(三)应用迁移,巩固提高(四)总结反思,拓展升华(五)课堂跟踪反馈夯实基础提升能力开放探究1.1 正数和负数一、课题引入为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯·诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.二、课题研究在实际生活中,存在着诸如上升5m ,下降5m ;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m 与下降5m ,收入5000元与支出5000元的实际意义是不同的.为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把 “+5”称为一个正数,读作“正5”. 在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”. 于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式. 利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5 mm 就可以表示成“0.5mm ”,或“+0.5mm ”;如果“另一个机器零件的实际尺寸图1 图2比设计尺寸小0.5 mm”,那么就可以表示成“-0.5 mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.三、巩固练习例1 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.例2 周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.例3 甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.试计算甲、乙、丙三个队各自的总净胜球数.思路分析:由表中数据可知:甲队主场以3∶2赢乙队,甲队有1个净胜球;甲队客场又以3∶2赢乙队,又增加了1个净胜球.甲队与乙队的两场比赛中甲队净胜球的总数为2.甲队与丙队的两场球,甲主场以2∶2与丙队握手言和,甲队净胜球数为0;甲客场以1∶3负给了丙队,这场球甲队的净胜球数为-2.甲队与丙队的两场比赛中甲队净胜球数为-2.总之,甲队与乙队两场比赛的净胜球数为2,与丙队的两场比赛净胜球数为-2;这样甲队总净胜球数为零.相信同学们根据上面的分析,自己也能说出“乙队总净胜球数为1,丙队总净胜球数为-1”.老师可以让学生来试试说说看.特别提醒:股票的涨跌、球赛的胜负都是当今日常生活中经常遇到的实际问题,作为当代中学生应该主动去接触或了解一些与之相关的实际问题,以丰富学生的生活阅历.同时也充分说明数学本身就是生活的一部分,要尽可能地调动学生的积极性,把我们所学的数学用到实际生活中去.例4 春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.思路分析:从上面的叙述可见河水的水位是先上涨了,随后又下降了,水位最终又回到了原来的位置.也就是说“最终水位的改变量是零”,或者说“水位的总变化量是零”.与最初的水位相比先上涨的15cm,可以记作“+15cm”,而随后又下降了15cm,可以记作“-15cm”,这样水位又回到了原来最初的位置,“水位的总变化量是零”,即这个变化量为“(+15cm )+(-15cm )= 0cm”.特别提醒:在表示具有相反意义的量时,如果某个量经两次或多次变化后又回到了最初状态,就可以用“0”来表示总变化量;或者说这个量的最终变化量是“零”.对于初一的学生来说,零的内涵极其丰富,因此需要特别关注,在以后讨论有理数的相反数、绝对值、有理数的运算时,需要提醒学生重视零的一些性质,并关注零在这些概念或运算中所“扮演的角色”.四、思考问题培养良好的阅读习惯和提高阅读能力,是数学教学过程中需要引起重视的一个重要方面.教学中,我们发现学生绝对不会做的题目很少,但由于没有把问题看懂而造成的不会做的题目却相对较多.一旦老师帮助学生把问题弄明白是怎么一回事之后,学生往往都会说“这题其实不难”,“我也会做,只是没有认真读题罢了”.怎样才能在尽可能短的时间内让学生有效获取题目呈现给我们的信息,做高效的阅读者?这是需要教师认真考虑的问题。

有理数减法教案15篇

有理数减法教案15篇

有理数减法教案15篇有理数减法教案1一、教学目标㈠知识与技能1.理解掌握有理数的减法法则2.会进行有理数的减法运算㈡过程与方法1.通过把减法运算转化为加法运算,向学生渗透转化思想2.通过有理数减法法则的推导,发展学生的逻辑思维能力3.通过有理数的减法运算,培养学生的运算能力㈢情感态度与价值感通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想二、学法引导1.教学方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

2.学生学法:探索新知归纳结论练习巩固三、重、难点与关键1.重点:有理数减法法则和运算2.难点:有理数减法法则的推导3.关键:正确完成减法到加法的转化四、师生互动活动设计教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

五、教学过程㈠创设情境,引入新课1、计算(口答)⑴;⑵-3+(-7)⑶-10+3;⑷10+(-3)2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?引导学生观察:生:3℃比-3℃高6℃师:能不能列出算式计算呢?生:3-(-3)师:如何计算呢?总结:这就是我们今天要学的内容.(引入新课,板书课题) ㈡探索新知,讲授新课1、师:大家知道减法是与加法相反的运算,计算3-(-3),就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?生:6+(-3)=3师:很好!由此可知3-(-3)=6师:计算:3+(+3)得多少呢?生:3+(+3)=6师:让学生观察两式结果,由此得到3-(-3)=3+(+3)师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以师:是如何转化的呢?生:减去一个负数(-3),等于加上它的相反数(+3)2、换几个数再试一试,计算下列各式:⑴0-(-3)=0+(+3)=⑵-5-(-3)=-5+(+3)=⑶9-8=9+(-8)=引导学生完成答题,并提问:通过上述的讨论,你能得出什么结论?归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。

有理数的加减法

有理数的加减法

重点难点
一、导入 分数的加法法则是什么?
相反数:只有__________的两个数叫互为相反数。 绝对值法则:一个正数的绝对值是它______;一个负数的绝对值是它的_______。 例 表示有理数 a, b, c 的点在数轴上的位置如下图所示,求
a b c 的值。 a b c
二、知识梳理+经典例题 1.有理数的加法法则 (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用 较大的绝对值减去较小的绝对值。互为相反数的两个数相加得 0. 归纳:有理数加法运算具体如下表:
(3)守门员全部练习结束后,他共跑了多少米?
5.省略加号的和式及读法 在和式里可以把加号及加数的括号省略不写,以简化书写形式。如 (-20)+(-3)+(+2)+(-5)可以写成-20-3+2-5,这个式子有两种读法: (1)按加法的结果 (2)按运算

1 2 3 2 1 把 写成省略加号的和式,并把它读出来。 2 3 4 5 4
加数 符号 同号 异 号 绝对值不相等 互为相反数 与 0 相加 例 (1) (-7)+(-3); 相同的符号
和 绝对值 相加 相减(大或小)
绝对值较大的加数的符号 0 仍得这个数 (2) (+4)+(-6)
1 1 (3) ( 2 )+ 2 ; 3 3
(4) (-3.2)+(+5);
2.有理数加法的运算律: (1)加法交换律:两个数相加,交换加数的位置,和不变。 (a b b a) (2)加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

人教版数学七年级上册1.3有理数的加减法教案

1.3有理数的加减法1.3.1有理数的加法(2课时)第1课时有理数的加法教学目标1.了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能积极地参与探究有理数加法法则的活动,并学会与他人交流合作.3.能较为熟练地进行有理数的加法运算,并能解决简单的实际间问题.教学重难点重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.教学过程活动1:创设情境,导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?活动2:自主学习探究加法法则师:布置自学任务.自学教材16~18页的内容,归纳并识记有理数的加法法则.这一段大约用时15分钟,教师巡视指导,要关注学生能否正确理解加法法则的内容.有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不同的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.活动3:运用法则试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.学生逐题口答后,师生共同得出.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第18页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.活动4:小结与作业小结:谈一谈你对加法法则的认识,在加法计算中都应该注意哪些问题?作业:必做题,习题1.3第1,11题;选做题,习题1.3第12题.ji数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时相关运算律教学目标1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.教学重难点重点:加法交换律和结合律,及其合理、灵活的运用.难点:合理运用运算律教学过程一、创设情境,导入新课师投影出示练习,计算:①30+(-20);(-20)+30;②[8+(-5)]+(-4);8+[(-5)+(-4)].生独立完成后同学交流.二、推进新课(1)探索加法交换律,结合律师提出问题:观察比较第一组两题,比较它们有什么异同点.观察比较第二组两题,比较它们有什么异同点.学生讨论归纳,师生共同归纳得出加法交换律,结合律的内容,并用字母表示.(2)运用加法交换律,结合律解决问题师出示教材例2.先让学生按照从左到右的运算顺序进行计算.学生独立完成.师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.练习:教材20页练习.学生独立完成,然后进行交流.教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.(3)运用有理数的加法解决问题师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂小结小结:1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?四、布置作业习题1.3第2,8,9题.教学反思本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的交换律在有理数范围内是否适用?”然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.1.3.2有理数的减法(2课时)第1课时有理数的减法法则教学目标1.掌握有理的减法法则.2.能运用有理数的减法法则进行运算.教学重点难点重点:有理数的减法法则.难点:对有理数的减法法则的探究.教学过程一、创设情境,导入新课师:出示温度计,提出问题:1.你能从温度计上看出3℃比较-3℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式3-(-3)=6.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了3-(-3)=6,而我们还知道3+(+3)=6.即3-(-3)=3+(+3).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则.教师板书法则.2.尝试运用法则师出示教材例4.师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材23页练习.三.课堂小结小结:谈谈本节课的收获.思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?四、布置作业作业:习题1.3第3,4,6题.教学反思本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索。

有理数加减及混合运算教案

有理数的加法(1)20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。

可是上述问题不能得到确定答案,因为问题中并未指出行走方向。

二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50, 即这位同学位于原来位置的东方50米处。

这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处, 写成算式就是: (―20)+(―30)=―50。

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。

即这位同学位于原来位置的( )方( )米处。

后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不仿仍可看作运动的方向和路程):你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(―3)=( ); (+3)+(―10)=( ); (―5)+(+7)=( ); (―6)+ 2 = ( )。

再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。

我们不难得出它们的结果。

2.概括:综合以上情形,我们得到有理数的加法法则: 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

有理数的加减混合运算教案

有理数的加减混合运算教案有理数的加减混合运算教案作为一位优秀的人民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。

我们该怎么去写教案呢?以下是小编为大家整理的有理数的加减混合运算教案,希望对大家有所帮助。

有理数的加减混合运算教案篇1一、素质教育目标(一)知识教学点1.了解:代数和的概念。

2.理解:有理数加减法可以互相转化。

3.应用:会进行加减混合运算。

(二)能力训练点培养学生的口头表达能力及计算的准确能力。

(三)德育渗透点通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。

(四)美育渗透点学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美。

二、学法引导1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。

2.学生写法:练习→寻找简单的一般性的方法→练习巩固。

三、重点、难点、疑点及解决办法1.重点:把加减混合运算算式理解为加法算式。

2.难点:把省略括号和的形式直接按有理数加法进行计算。

四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片。

六、师生互动活动设计教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。

七、教学步骤(一)创设情境,复习引入师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:-9+(+6);(-11)-7师:(1)读出这两个算式。

(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号?学生活动:口答教师提出的问题。

师继续提问:(1)这两个题目运算结果是多少?(2)(-11)-7这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正)。

师小结:减法往往通过转化成加法后来运算。

【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作。

梅有理数的加减法(3课时)


教学建议: 1、精讲多练,以练习为主,多请学生板演,并 由学生纠错,让学生在碰撞中进步。

2、建议在课前进行小测,根据学生的成绩有针 对性地对教学及课后辅导进行调控。 3、有理数加法运算律的字母表示形式建议引导 学生进行口述,另有学生板书,让学生体会 由感性材料到理性认识的升华进程。
第一课时:有理数的加法运算
想一想,做一做:
1、某天当地的气温为3°C,傍晚时下降了6 °C,那么傍晚的气温是多少?怎样计算的?
3 – 6 = -3(℃) 3 +(-6)= -3
2、据淮北市气象台预报:2004年2月7日我县 的最高气温是4 °C,最低气温是–3 °C, 请问 这天温差是多少?你是怎样算的?
4 –(-3) = 7(℃) 4+3= 7
运算步骤
先判断类型(同号、异号等)
再确定和的符号;
后进行绝对值的加减运算
学有所思
有理数加法的和由两部分组成

和的符号 和的绝对值
(相加或相减)
1)(+5 )+(-7)=-2 3)(-9)+(+5)=-4
(2)(-8)+(-3) =-11
5)(-11)+(-9) =-20 (6)8+(-1)=7
巩 固 新 知
学生板演课本习题
例1:计算
(1) (-3)-(-5)
( 2) 0- 7
(3) 7.2-(-4.8)
1 1 ( 4) ( 3 ) 5 2 4
解:原式=(-3)+5 =2
解:原式= 0+(-
7)
=-7
1 1 提醒: 3 3 2 2
(3) 7.2-(-4.8)
解:原式=7.2+4.8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第5讲:有理数的加减法
【知识要点】
1、有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大数的符号,并用较大数的绝对值减去较小数的绝对值。
(3)任何数与0相加,仍得这个数。
2、加法交换律和结合律
(1)加法交换律:abba
(2)加法结合律:()abcabc
3、有理数加法步骤:
(1)两数相加::a确定和的符号
:b
求绝对值的和或差(差是绝对值大的数减去绝对值较小的数)
(2)多个有理数相加::a先把符号相同的相加
:b
再用两数求和的步骤
4、巧算或简化运算的方法:(1)把符号相同的数结合在一起
(2)把同分母的结合在一起
(3)把凑整的结合一起,尤其把互为相反的数结合在一起!
5、有理数加法与算术加法的区别:
有理数加法不仅要进行绝对值的运算还要判断和的符号。其次,有理数的加法中,加数
的符号可正可负,加法的结果也可正可负。因此,有理数加法中,和不小于每一个加数
的结论不再成立。
6、有理数减法法则:减去一个数等于加上这个数的相反数。在这个过程中有两个改变:一、
运算符号改变,二、改变减数的性质符号。
7、有理数加减混合运算的步骤:
(1)根据有理数减法的法则把减法转化为加法,再写成省略加号的简化形式。
(2)利用加法交换律、结合律进行简便运算,原则是:①正数和负数分别结合;②同分
母分数比较易通分的分数结合;③小数与小数结合;④互为相反数的数结合;……等等。
(在利用交换律交换加数位置时,连同前面的符号一起移动。)
8、代数和:根据有理数减法的法则,有理数的减法可以转化为加法,因此有理数的加减混
合运算都可以转化为加法运算。几个正数或负数的和叫做代数和。
代数和的写法:在代数和里可以把加号及前面的括号省去不写,以简化书写形式。
2

【典型例题】
例1:计算
(1)535513 (2)16155.25.3161 (3)-7-(+9) (4)-10-(+6)

例2:下列语句中,正确的是( )
A.两数相加结果为负数,这两个数中至少有一个为正数.
B.两数相减,被减数一定大于减数
C.两个有理数之和可能等于其中一个加数
D.两个有理数之和为正数时,则这两个数都是正数.
例3:若b<0,则a,a-b,a+b中最大的是( )
A.a B.b C. a+b D.还要看a的符号才能判定
例4:用有理数的减法来解答下列问题
(1). 珠穆朗玛峰的高度是8848米,吐鲁番盆地海拔高度-155米.问珠穆朗玛峰比吐鲁番盆地底
高多少?

(2).物体位于地面上空2米处,下降3米后又下降5米,最后物体在地面之下多少米?
例5:计算
(1))1213(522)871(]5351272[872))+((-)(
3

(2))24.0()6.0()5.0()4.7()173( (3)533031232325.031141185348
例6:计算(1))2117()4128( (2))25.0()3211()813()413(125.0
例7:用简便方法计算:
(1)517243215475 (2)203115111211581272

(3)81.35-282.9+8.65-7.1 (4)(-4.3)-(+5.8)+(-3.2)-(-3.5)

【经典练习】
1、(1) 两个数都是负数,它们的和一定是负数吗?为什么?
(2) 两个数的和是负数,这两个数一定都是负数吗?为什么?
2、(1)在一场足球比赛中,红队以4:1胜黄队,这说明红队进_____球,失____球,净胜_____球;
而黄队则进_____球,失______球,净胜_______球.
(2)某赛季,申花足球队第一场比赛赢了2个球(5比3);第二场比赛输了3个球(1比4),
两场比赛该队净胜几个球?
3、某地,去年9月1日的平均气温是28℃,第二天平均气温比第一天上升了2℃,第三天平均
气温比第二天上升了-5℃(下暴雨!),问第三天平均气温是多少.
4、各举两个反例说明以下的说法是错误的:
(1)两个有理数相加,和一定大于每一个加数.
4

(2)两个数的和是0,这两个数都是0.
5、(1)小学所遇到的加法运算,两个加数的和会小于任何一个加数吗?
(2)a+b会小于a吗?为什么?

6、若用Δ表示+10,用▲表示-10,用◇表示+1,用◆表示-1.
则ΔΔ◇◇◇表示_________;▲▲▲▲▲◆◆◆◆表示_______.
ΔΔ◇◇◇+▲▲▲▲▲◆◆◆◆=(ΔΔ+▲▲)+( ◇◇◇+◆◆◆)+_____________=___
______________.结果表示的数是_______.
7、有一批食品罐头,标准质量为每听454克.现抽取10听样品进行检测,结果如下表(单位:克):
听号 1 2 3 4 5 6 7 8 9 10
质量 444 459 454 459 454 454 449 454 459 464
若把超过标准质量的克数y用正数表示,不足的用负数表示,依照上表的数据列出这10听罐头
与标准质量的差值表(单位:克):
听号 1 2 3 4 5 6 7 8 9 10
y
分别用上面两个表格的数据求出10听罐头的总质量,比较这两种方法.
5

有理数的加减作业
姓名________ 成绩_________
1、小京同学在计算16+(-24)+22+(-17)+(-56)+56时, 利用加法交换律、结合律先把正负数
分别相加,得16+22+56+[(-24)+(-17)+(-56)].你认为这样算能使运算简便吗?你认为还有
其它方法吗?

2、用简便方法计算:
(1)1033.78+(-26)+(-39)+(-38); (2)12.7+(-24.6)+(-29.1)+6.8;

(3)1.3+0.5+(-0.5)+0.3+(-0.7)+3.2+(-0.3)+0.7;

(4)(-109)+(-267)+(+108)+268; (5) ]76225.5)713(415[3132

相关文档
最新文档