压缩映射原理及应用
叙述压缩映射原理

叙述压缩映射原理压缩映射原理是数学中的一个重要概念,它在不同领域都有着广泛的应用,特别是在动力系统、概率论、几何等领域中。
本文将详细介绍压缩映射原理的概念、性质和应用。
一、概念压缩映射是指在度量空间中,存在一个映射f,使得对于任意两个点x和y,它们之间的距离d(f(x),f(y))都小于它们之间的距离d(x,y)。
也就是说,压缩映射可以将原来相距较远的点映射成相距较近的点。
具体来说,若存在一个常数0< k <1,使得对于任意两个点x和y,有d(f(x),f(y))≤k d(x,y),则称f为一个k-压缩映射。
二、性质1. 压缩映射是连续的。
这是因为对于任意两个点x和y,有d(f(x),f(y))≤k d(x,y),因此当x趋近于y时,f(x)也趋近于f(y)。
2. 压缩映射是唯一的。
若存在两个不同的压缩映射f和g,使得它们都满足上述条件,则对于任意两个点x和y,有d(f(x),f(y))≤k d(x,y)和d(g(x),g(y))≤k d(x,y),因此d(f(x),g(x))≤(k/(1-k)) d(f(x),f(y)),这说明f和g之间的距离也可以被压缩,因此f和g必须相等。
3. 压缩映射是有界的。
这是因为对于任意一个点x,它的像f(x)一定在以x为中心、半径为d(x,0)/(1-k)的球内。
三、应用1. 压缩映射定理。
压缩映射定理是数学分析中的一个重要结果,它说明了对于任意一个k-压缩映射f,它都有唯一的不动点x0,即f(x0)=x0。
并且,从任意一个起始点x开始,通过不断迭代f,可以得到收敛于x0的数列。
这个定理在动力系统和概率论等领域中有着广泛的应用。
2. 度量空间的完备性。
一个度量空间是完备的,当且仅当它是一个压缩映射的不动点。
这个定理在数学分析和拓扑学中有着广泛的应用。
3. 分形几何。
分形几何是一种研究自相似性的几何学,而压缩映射是分形几何中的一个重要工具。
通过对一个图形进行一系列压缩映射,可以得到一个自相似的分形。
压缩映射原理

压缩映射原理
压缩映射原理,也被称为Banach压缩映射原理或Contraction Mapping Principle,是实分析中的一个重要定理。
它提供了解
决完备度公理的一种方法,可以证明某个映射存在唯一的不动点,并且这个不动点可以通过迭代方法逼近。
压缩映射原理的内容可概括为:如果在完备度量空间(如实数空间或某个完备的欧几里得空间)中有一映射,它将该空间中的元素映射为自身,且满足一定的收缩性质,即映射的Lipschitz常数小于1,那么这个映射存在唯一的不动点,即存
在一个元素被映射为自身。
具体来说,设X是一个完备度量空间,也就是有一个距离函
数d(x,y)满足完备性公理,而f是X上的一个压缩映射。
即存
在一个常数L(0<L<1),使得对于空间X中的任意x和y,
都有d(f(x),f(y))≤Ld(x,y)。
那么根据压缩映射原理,f在X中存在唯一的不动点,即存在一个x0使得f(x0)=x0。
更进一步地,对于给定的初始猜测值x1,可以通过迭代的方
式逼近x0。
即依次计算x2=f(x1),x3=f(x2),...,则序列{xk}收敛
于x0,且收敛速度很快。
这是因为L<1,每次迭代xk+1和xk 之间的距离都会缩小L倍,使得误差快速收敛。
压缩映射原理在数值计算和实际应用中有着广泛的应用。
例如,在非线性方程求解、微分方程数值解法、优化等问题中,可以利用压缩映射原理结合迭代方法,找到问题的解。
该原理也被应用于非线性动力系统的稳定性分析,通过分析压缩映射的性
质,可以判断系统是否收敛于特定的不动点。
因此,压缩映射原理在数学和工程领域中有着重要的作用。
叙述并证明压缩映射原理

叙述并证明压缩映射原理压缩映射原理,也被称为Banach原则或固定点定理,是函数分析中的一个重要定理。
该原理在数学领域中有广泛的应用,尤其在拓扑学、微积分学和动力系统领域中。
压缩映射原理简要地说,对于一个完备度量空间上的收缩映射,其将这个度量空间中的每一个元素映射到自身的一个更接近的点。
具体地说,设(X, d)是一个完备度量空间,f:X-->X是一个映射,如果存在一个常数k(0<k<1),使得对于任意的x, y∈X,都有d(f(x), f(y))≤kd(x, y),那么f称为一个压缩映射。
压缩映射原理指出,对于这样的压缩映射f,存在唯一的X中的点x_0,使得f(x_0)=x_0。
为了证明压缩映射原理,我们首先需要证明收缩映射的连续性。
对于任意的x_1和x_2∈X,我们有:d(f(x_1), f(x_2))≤kd(x_1, x_2)另一方面,由于度量空间X是完备的,所以对于一个Cauchy序列{x_n}在X中收敛于x,即lim_{n→∞d(x_n,x)}=0。
我们可以通过数学归纳法证明{x_n}是一个Cauchy序列。
首先,由于k<1,我们有:d(x_{n+1},x_n)≤kd(x_n,x_{n-1})≤k^2d(x_{n-1},x_{n-2})≤...≤k^n(x_1,x_0)由于k<1,所以k^n趋近于0,所以d(x_{n+1},x_n)也趋近于0。
因此,{x_n}是一个Cauchy序列,且由完备性可知其收敛于一些x∈X。
现在,我们定义一个函数序列{f_n},其中f_1=f,f_2=f∘f,...,f_{n+1}=f∘f_n,...。
由于f是一个压缩映射,所以有:d(f_{n+1}(x),f_n(x))=d(f(f_n(x)),f_n(x))≤kd(f_n(x),x)≤k^n d(f(x),x)由此可得:d(f_{n+1}(x),f_n(x))≤k^nd(f(x),x)因此,我们得到了函数序列{f_n(x)}的一致收敛性。
压缩映射原理的性质和应用

压缩映射原理的性质和应用摘要本文较有系统的研究了压缩映射原理及其一些应用,由于压缩映射原理是属于不动点理论中的一类原理,所以有许多不同的形式,本文主要利用在常规度量空间中讨论压缩映射原理的方法,在概率度量空间中讨论压缩映射原理。
主要内容如下:第一章,是绪论部分,首先讲了我之所以写这篇文章的原因,然后是本文所研究问题的历史背景和发展情况。
第二章,介绍压缩映射原理的最基本的形式,即Banach压缩映射原理,通过对其定理内容和证明方法的分析,深刻认识了Picard迭代方法在证明中起到的重要作用,总结出了一套通用的方法证明这类定理,还找了一个例子,用总结出的方法进行了证明。
第三章,用第一章总结出的方法研究了压缩映射原理更复杂的形式,随着研究问题的复杂,也使第一章总结出的方法变得更加完善。
第四章,把前几章得到的结论和方法应用到了微分方程和微分方程组的解的存在唯一性上。
虽然只有两个例子,但是获得方法和思想可以用到许多其他的例子上。
第五章,引入概率度量空间的概念,和其中一系列与压缩映射原理有关的概念,结合概率度量空间的一些特殊性质,用前几章的讨论方法,在概率度量空间上讨论压缩映射原理,依次讨论了含随机数的压缩映射原理,在概率度量空间上添加一些条件后的基本压缩映射原理,非线性的压缩映射原理及应用等。
关键词:压缩映射;不动点;概率度量空间;非线性微分方程ABSTRACTIn this paper, a systematic study of the compression mapping principle and some applications, because of the contraction mapping theory is one of the principle in belong to the theory of fixed point, so there are many different forms, this paper mainly discussed used in conventional metric space compression mapping principle, the method of contractive mapping principle in probabilistic metric space. The main contents are as follows:The first chapter is the introduction part, first of all tell the reason why I write this article, and then this paper studies the historical background and development of the problem.The second chapter, this paper introduces the basic form of compression mapping principle, namely the contraction mapping theory, through the analysis of its proof content and methods, understanding the iteration method plays an important role in proof, summarizes a set of generic methods to prove this theorem, still looking for an example, summarizes the way has carried on the proof.The third chapter, in the first chapter summarizes the method of compression mapping principle is studied in the form of more complex, as the research problem of complex, also made the first chapter summarizes the methods become more perfect.The fourth chapter, in the previous chapter conclusion and method is applied to the existence and uniqueness of solution of differential equation and differential equations. Although only two examples, methods and thoughts can be used on many other examples.The fifth chapter, the introduction of the concept of probabilistic metric Spaces, and a series of concepts related to the contraction mapping theory, combined with some special properties of the probabilistic metric Spaces, the use of the previous chapters discuss method, compression mappings in probabilistic metric space principle, in order to discuss the compression mapping principle, containing the random number after adding some conditions in probabilistic metric space basic compression mapping principle, the principle and application of the compression of nonlinear mapping, etc.Key words: compression mapping; The fixed point. Probabilistic metric space; The nonlinear differential equation目录摘要 (I)ABSTRACT.................................................................................................................. I I第一章绪论 (1)1.1写作动机 (1)1.2不动点理论背景知识,历史渊源 (2)1.3压缩映射原理的简介 (3)第二章Banach压缩映射定理的证明思路探究 (6)2.1定理内容和证明 (6)2.2一个例子 (6)2.3本章总结 (8)第三章Banach压缩映射原理的推广 (10)3.1推广的背景: (10)3.2压缩映射原理的一种推广形式及其证明 (10)3.3本章总结 (12)第四章压缩映射原理的应用举例 (13)4.1一类简单积分方程的解的存在与唯一性的证明 (13)4.2积分方程组的解的存在与唯一性证明 (14)4.3本章总结 (16)第五章概率度量空间中的压缩映射原理 (17)5.1基本概念的构造 (17)5.2随机压缩映射原理的构造 (17)5.3概率度量空间的背景知识 (19)5.4概率度量空间中的基本概念 (19)5.5:t 范数的概念及其性质 (21)5.6概率度量空间上的压缩映射原理 (21)5.7概率度量空间上非线性的压缩映射原理 (24)5.8概率度量空间上的压缩映射原理的应用 (26)5.9本章总结 (26)结论 (28)参考文献 (29)第一章绪论1.1写作动机我第一次接触压缩映射原理是在张庆恭和林渠源老师所编写的泛函分析的书上,当时书中应用压缩映射原理瞬间证明出了常微分方程中当时分五步证明的解的存在唯一性定理和数学分析中的隐函数存在定理,这使当时的我感到非常吃惊,在常微分方程和数学分析书中对这两个定理的证明中似乎看不到这两个定理有什么联系,但是一旦应用上了压缩映射原理,就找到了它们的共同点。
Banach压缩映射原理及应用

限保号性得 l ∈ 一 ∈l >0 I ,从而 ∈ = ∈ .
综 上 所述 ,闭 区间 套定 理 得 证 。 ( 作 者 单 位 :曲 阜 师 范 大 学 数 学科 学 学 院 )
( ‘ P ( x )一 ‘ P .( x ) ) )( ‘ P 。( x ) 一‘ p ( x ) ) I
B a n a c h压 缩 映射 原 理 及应 用
罗 炜
摘 要 :B a n a c h压 缩 映射 是 一 类 有 广 泛 实际 背景 的 典 型 而 且 重 要 的 非 线 性 映 射 。本 文 的 内容 ,就 是 系统 的 总结 应 用 B a n a c h压 缩 映射 不 动 点理 论 证 明 隐 函数存 在 唯 一 性 定 理 , 线 性 代 数 方程 组 解 的 存 在 唯 一 性 定理 , 以 体 现 B a n a c h压 缩 映射
≤( 1 一 告)I ‘ P : ( x )一 ‘ P ( x )
由于 0< m <1 记 0 【 = 1 一 酉 m,则 o < < 1 , 则有
,
} A( ( P :( x ) ) 一A ( ( P .( x ) )} ≤ j ( P ( x ) 一 ‘ P ( x )J d ( A ( p ,A ‘ P ) :m a x I A( ‘ P ( x ) ) 一A ( ‘ p ( x ) )I
又因为 k为任 意正整数 ,而 [ a 。 ,b 。 】 §【 a 2 ,b : 】 甘… [ a , b ]甘… ,所 以必存在一 点 ∈为所有 的 【 a ,b ] 的公共 点 ( 其
中 n=1 ,2 ,3 …) 。
{ ‘ P ( x )一 亩 ( x , ‘ P : ( x ) )
压缩映射原理的推广应用

压缩映射原理的推广应用简介压缩映射是一种用于减小存储空间和提高数据查询效率的技术。
它通过将原始数据映射到更小的空间中,从而实现数据的压缩和存储节省。
本文将介绍压缩映射的原理以及其在不同领域的推广应用。
压缩映射原理什么是压缩映射?压缩映射是一种将原始数据通过某种算法映射到更小的空间中的过程。
通过这种方式,可以减小原始数据的存储空间并提高数据的查询效率。
压缩映射的原理压缩映射的原理是通过寻找数据中的冗余部分,并将其压缩保存。
常见的压缩算法包括哈夫曼编码、Lempel-Ziv编码等。
这些算法通过统计数据中出现的频率或者利用数据中的重复模式,来找到数据中的冗余部分并进行压缩。
压缩映射在不同领域的推广应用数据压缩压缩映射广泛应用于数据压缩领域。
在大数据时代,数据增长迅速,对存储空间的需求也越来越高。
利用压缩映射技术,可以有效减小数据的存储空间,并且不影响数据的使用。
图像压缩图像压缩是压缩映射的典型应用之一。
通过对图像的像素进行压缩映射,可以大大减小图像的文件大小,从而提高图像传输的效率。
常见的图像压缩算法包括JPEG、PNG等。
文本压缩压缩映射也可以应用于文本压缩领域。
在大量的文本数据中存在大量的冗余信息,利用压缩映射技术可以去除这些冗余信息,从而减小文本的存储空间。
常见的文本压缩算法包括gzip、zip等。
数据库压缩压缩映射在数据库领域也有着广泛的应用。
通过对数据库中的数据进行压缩映射,可以减小数据库的存储空间,并提高数据的查询效率。
数据库压缩映射常常采用列式存储的方式,将同一列的数据进行压缩存储。
网络传输压缩压缩映射还可以用于网络传输压缩领域。
在网络传输过程中,数据的传输效率直接影响了网络的速度和响应时间。
利用压缩映射技术,可以减小传输数据的大小,从而提高网络传输的效率。
结论压缩映射是一种用于减小存储空间和提高数据查询效率的技术。
它在数据压缩、图像压缩、文本压缩、数据库压缩和网络传输压缩等领域都有广泛的应用。
压缩映射定理
压缩映射定理压缩映射定理是数学中的一个重要定理,它在分析学、微积分、拓扑学、物理学等多个领域都有广泛应用。
下面,我们来分步骤阐述一下这个定理的相关内容。
1. 定义首先,我们需要对压缩映射进行定义。
压缩映射是指一个映射,它将一个度量空间中的点压缩到一个与原点越来越近的点。
具体来说,如果存在一个实数 k (0 < k < 1),使得任意两点 x 和 y 在映射后的距离小于它们在原空间中的距离的 k 倍,则称这个映射为压缩映射。
2. 定理接下来,我们来介绍压缩映射定理的内容。
该定理是对于完备度量空间的一个定理,称为“Banach不动点定理”或者“压缩映射原理”。
其表述如下:设 (X,d) 是一个完备度量空间,f : X → X是一个压缩映射。
则存在一个唯一不动点x* ∈ X,即 f(x*) = x*。
不动点是指在映射中被映射到自己的点。
上述定理的内容表明,在存在压缩映射的情况下,我们一定可以找到一个不动点。
3. 应用压缩映射定理在实际应用中有着广泛的应用。
下面简单介绍一下其中的两种应用情况:(1)求解实数方程的不动点。
例如,假设我们要求解方程 f(x) = x^2 + x -1 = 0 的根,那么我们可以将该方程看作一个映射,即f : R → R,f(x) = x^2 + x -1。
然后,我们证明该映射是一个压缩映射,这样就能保证存在一个不动点。
最后,我们通过压缩映射定理,求得了该方程解的唯一不动点。
(2)求解微分方程的解。
例如,假设我们要求解微分方程 y' = -y,y(0) = 1。
我们可以将该方程看作一个映射,即 f : C([0,1])→ C([0,1]),f(y) = y' + y,其中 C([0,1]) 表示连续函数的空间。
然后,我们证明该映射是一个压缩映射,这样就能保证存在一个不动点。
最后,我们通过压缩映射定理,求得该微分方程的解。
以上就是压缩映射定理的相关内容。
叙述压缩映射原理
叙述压缩映射原理压缩映射原理是现代数学中非常重要的一种理论。
它指的是一种将一段数据压缩成另一段数据的映射方式,这种映射方式在信息传输和处理中有着广泛的应用。
在信号处理中,我们常常需要将信号传输到远处,在传输过程中,信号容易遭受噪声干扰,如果信号传输的距离过长,信号质量会急剧下降。
为了解决这个问题,我们可以使用压缩映射的原理,将信号压缩成一个较短的码字,然后再传输到目标地点,最后再解压码字,还原成原始信号。
通过压缩映射,信号传输的距离可以大大延长,同时减少了信号被干扰的可能性。
压缩映射原理在数据压缩中也有着非常广泛的应用。
在计算机系统中,我们需要存储大量的数据,但是存储空间有限。
如果我们使用压缩映射原理对数据进行压缩,可以大大减少存储空间的需求,从而节约成本,提高存储效率。
除此之外,压缩映射原理还可以用于图像压缩、音频编码、视频编码等领域。
在图像压缩中,我们可以将一幅图像压缩成一个码字,减少图像文件的大小,提高图像传输速度。
在音频编码和视频编码中,通过压缩映射,可以将音频和视频文件压缩成较小的文件大小,减少存储空间的需求,同时提高传输和播放效率。
在应用压缩映射原理时,我们需要注意一些原则。
首先,压缩映射应该尽量减少信息丢失,尽可能地保留原始信息的重要内容。
其次,在使用压缩映射时需要考虑映射的误差和精度,不能过度压缩,造成重要信息的丢失。
最后,我们需要根据具体情况选择合适的压缩方式,不同的压缩方式有着不同的优缺点。
综上所述,压缩映射原理是一项非常重要的理论,它在信息传输、数据处理、图像、音频和视频压缩等领域都有着广泛的应用。
在应用压缩映射时,我们需要注意信息丢失、误差和精度以及合适的压缩方式等问题。
只有深入掌握压缩映射原理,才能更好地应用它解决实际问题。
压缩映射原理
压缩映射原理在计算机科学和工程领域中,压缩映射原理是一种重要的数据压缩技术,它通过将高维数据映射到低维空间来实现数据压缩和降维。
这种技术在数据处理、图像处理、模式识别等领域有着广泛的应用,能够有效地减少数据存储和传输的开销,提高数据处理和分析的效率。
本文将从压缩映射原理的基本概念、原理和应用进行介绍,希望能够为读者提供一些有益的信息。
压缩映射原理的基本概念。
压缩映射原理是指将高维数据映射到低维空间的过程,通过这种映射,可以将原始数据的维度降低,从而达到数据压缩和降维的目的。
在实际应用中,我们通常会遇到高维数据,这些数据可能包含大量的冗余信息,而且在高维空间中进行数据处理和分析也会面临很大的挑战。
因此,通过压缩映射原理,我们可以将高维数据映射到低维空间,去除冗余信息,减少数据的存储和传输开销,同时也可以简化数据处理和分析的复杂度。
压缩映射原理的原理。
压缩映射原理的核心在于寻找一个合适的映射函数,将高维数据映射到低维空间,并且尽可能地保持数据的特征和结构。
常见的压缩映射方法包括主成分分析(PCA)、线性判别分析(LDA)、t分布邻域嵌入(t-SNE)等。
这些方法都是基于不同的数学原理和算法,能够有效地实现数据的压缩和降维。
以PCA为例,它通过寻找数据的主成分,将高维数据映射到低维空间。
在这个过程中,PCA会计算数据的协方差矩阵,然后找到这个矩阵的特征向量,将数据投影到这些特征向量上,从而实现数据的压缩和降维。
而t-SNE则是一种非线性的降维方法,它能够更好地保持数据的局部结构,适用于可视化高维数据。
压缩映射原理的应用。
压缩映射原理在数据处理、图像处理、模式识别等领域有着广泛的应用。
在数据处理方面,通过压缩映射原理,我们可以减少数据的存储和传输开销,提高数据处理和分析的效率。
在图像处理方面,压缩映射原理可以实现图像的压缩和降维,减小图像文件的大小,提高图像处理和传输的速度。
在模式识别方面,压缩映射原理可以帮助我们发现数据的潜在结构和规律,提高模式识别的准确性和效率。
巴拿赫压缩映射原理
巴拿赫压缩映射原理一种数学方法的应用与拓展一、引言在数学领域,巴拿赫压缩映射原理(或称巴拿赫不动点定理)是一个具有重要意义的结果。
本文旨在介绍压缩映射的概念,证明巴拿赫压缩映射原理,并探讨其在不同领域中的应用,特别是动态规划问题和经济学领域。
通过实例分析,我们将了解到压缩映射原理在证明问题解的存在性、均衡的存在性以及可到达性等方面具有广泛的应用。
二、压缩映射与巴拿赫不动点定理1.压缩映射定义:映射映射是集合到集合的关系,微观上,它是两个元素之间的元素的关系。
定义:压缩映射压缩映射是指在度量空间中,映射后的两点间距离小于原两点间距离。
具体来说,对于度量空间(M,d),如果存在一个映射T:M→M,使得对于所有的x,y∈M,有d(Tx,Ty)≤d(x,y),则称T为压缩映射。
2.不动点定理定义:不动点不动点是指在映射作用下,某个点x不受改变,即Tx=x。
不动点定理:在完备的距离空间中,压缩映射具有唯一不动点。
证明:不动点证明过程主要依据距离性质、压缩映射性质和完备性。
首先,通过三角不等式和压缩映射性质,我们可以得到d(x,Tx)<d(x,x)。
然后,利用完备性,我们可以证明Tx会收敛到某个点x,即存在极限lim(Tnx)=x。
最后,通过反证法证明x唯一,假设存在另一个不动点y,则会导出d(x,y)=0,与距离性质矛盾。
三、压缩映射原理的应用1.动态规划问题压缩映射原理可以用来证明动态规划问题解的存在性。
在动态规划中,状态转移方程可以表示为T(x)=f(x),其中f(x)是关于x的函数。
如果f(x)满足压缩映射条件,那么根据巴拿赫压缩映射原理,我们可以得知动态规划问题存在唯一解。
2.经济学领域在经济学中,压缩映射原理可以用来证明均衡的存在性以及可到达性。
例如,在微观经济学中,投入产出分配方程组可以表示为T(x)=x,其中x为投入产出向量。
通过证明T为压缩映射,我们可以得知投入产出分配方程组存在唯一解,从而证明市场均衡的存在性以及可到达性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 x=。 yo y ()
1 x Y ) ( , Z I Ll l 2 . f , 1 一f X Y ) ( Y —Y 1 这 里 L 0是 常 数 , 方 程 ( . ) [ o 8 X + 8 上 有 惟 一 解 ( < > 则 2 1 在 x 一 ,o ] 8
O ≤1 所 以 p x Y 一O 即 x ≤a , ( , ) , =y 证毕 . . 证 方程 ( . ) 2 1 的解等 价于 如下 积分 方程 在 实际应 用 过程 中 , 有时 T 本身 未必是 压 缩映射 , T 的若 干次 复 合 但 T n是压缩 映射 , 这时 T仍 然有 惟 一不动 点 , 就是如 下所 述 的对压 缩映 射 这 ; y x 一 Y + I( y t d ( ) 0 t () t f, ) (. ) 22 原 理 的改进定 理 . x 0 2 2 压缩 映射 原理 的改 进 . 的解 . 取连 续 函数 空 间 c x 一8 x + 8 , 义 其上 的映 射 T: [ o [ o ,o ] 定 C X 一 定 理 2 设 x是完 备度 量 空 间 , x X 是 一个 映 射 . 果存 在 某 个 T: — 如 ,o [ 0 ,O ] 自然数 n , T“是 压缩 映射 , 么 T存 在惟 一的 不动点 ( o使 0 那 这里 T ~是 T的 6 x +胡一 C X 一a X +占 为 n o次复合 , T x 即 :T( x , 0 =T( ) … , n x T )T x T x , T o T( O 1 ) . Tn一 x )
一
,
I 1压 映 原 爰 明 缩 射 理 证
l 使 得
[1 有 义,且 唯 的 动 。 (万 18然 若 = 0] 定 并 有 一 不 点x;  ̄ 十 ). 而 取x ,上 / /
4压 映 原 的 用 缩 射 理 应
罾 ) 篓 … 国塞 pa 三 T( 距 誊(p 麓 厢' ,, 离 xx Ty y)  ̄ ' x n 一
Tn = Tn 一 ( ) 2 o 一 … = Y 。 OY O Ty = " 一 Y
;
p Ty Ty )= (  ̄, 2
m ax
—
∈[ o 6. o x x + 那么 y 也 是 T o " 的不 动点 , 据 T 。 动点惟 一性 有 x 再 口不 =Y 证毕 . . 3 应 用压 缩映 射原 理的 注意 事项 ( ) 定理 的证 明过程 中发现 , 代序 列的初 始 值可任 意选 取 , 终 都 1从 迭 最 州 能 收敛 到惟一 不动 点 . 一y ()J t 6 p y ,2 , 2 t ≤ L ( 1 Y ) d () 定理 提供 了近 似计 算不 动点 的误 差估 计公式 2该
对州
I
I
24旬 I9 C4 0 月刊 S— N6 1 () S5 1 2 下 N0 1/ 年 7 1I 11 — 0 4 0
压缩映射原理及应用
孙 启 杰
【 文献标识码】 A 【 文章编号]0 9 s 7 ( 1 )4 0 8 —0 10 - o 12 20 - 1 2 2 0
n
』b 2 ≤ y’‘‘ ’ ‘‘一 ’ l b ’
: t f )d m Ly) f (-t ) a 』1 t ) ( 1 )' x 【t (
p x , ≤ 一 p Tx , o . ( x) ( o X )
令 a 8 则 a 1 故 T是 压缩 映射 , =L , < , 从而 T有 惟 一不 动 点 , 即积 分方
方程 、 分方 程 、 积 数值 计算 方 面的应 用 。
l
【 关键 词】 映射 ; 缩映 射 ; 压 不动 点 ; 收敛 性 ; 完备 ; 度量 空 间
l
【 中图分类-] 17 9  ̄ 0 7.1
I 常 篓 分压 f 最 馨 圣 篁 缩 映射原 理亦 称 Ba理 堡 , 工 计 中 省 的这 容 从 例 看’大’知一:数 (— 丢. 在 用方之 的法 墨 的ch不动点 定理 。 程 算 …略’.很 易。’… 中 出 家 道函 T ) z 丽 na论 堡 篓 苎 和 下 … 一 . … … …
证
TT是 压缩 映射 , 以存 在惟 一不 动点 x I 。 所 即 T =X 由于 ~x ,
Tl ( l Tx。) Tn + =T( 0 o = O x T“ x。) Tx = ’
( )x Ty ()一 Y + I(,()d. o ty t) t f
则 积分 方程 (. ) 2 2 的解等 价 于 的不 动点. 对任 意 两个连 续 函数 Y () lx , 这说 明 T 仍 是 T 0 x n 的不 动 点 . TI的 不 动 点 惟 一 , 以 T = 而 T o 所 x Y () [o ,o ] 由于 2x ∈C x一8 X+8 , x 即x , 是 T 的不 动点 . T另有 不动 点 Y 即有 T =Y 则 若 , y ,
… …
.
x 一
压
一
删
1 (n _fx )
…xn由 2' 圈源自缩 映一 卜 黻
得
’
=
为酬
是 收敛
(n p1 nP2 .十a) (l X) a+- 十a+ + +- . n p X ̄ O =
p X  ̄o ( 1X )
P 显然
。
在 微分 方程 方 面应用
x nx.们 证x 是 的 动 .实 由 —。 来 T 不 点事 上 使x 我 便
得 p Tx x ≤ 0 即 p T , ) , T =x ( , ) ・ ( x x =O 故 x . 最 后来证 惟一 性. 另有 一不 动点 Y 即有 Ty 设 , =Y 因 ,
P x , ) p Tx , ( Y  ̄ ( Ty’) P x , ) ( y ,