江苏省张家港市崇真中学高三数学一轮复习导学案:4 函数及其表示方法函数的定义域

合集下载

导数的概念及其意义——高三一轮复习导学案

导数的概念及其意义——高三一轮复习导学案

导数的概念及其意义2023.10.26课前一题记函数)(x f 的导函数是)(x f ',若)(x f =xx f 1)1(2-',则)1(f '的值为 . 学习目标:1. 理解导函数的概念;2. 理解导数的几何意义;3. 学会应用导数的几何意义;4. 学会利用导数求曲线的切线方程。

温故知新:1.导数的概念对于函数y =f (x ),设自变量x 从x 0变化到 ,相应地,函数值y 就从f (x 0)变化到 .这时,x 的变化量为Δx ,y 的变化量为Δy =f (x 0+Δx )-f (x 0).(1) 如果当Δx →0时, x y ΔΔ无限趋近于一个确定的值,即x y ΔΔ有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的 ,记作 或y ′|x =x 0,即xx f x x f x y x f x x ΔΔΔΔΔΔ)()(lim lim )(00000-+=='→→ (2)当0x x =时,)(0x f '是一个唯一确定的数,当x 变化时,)(x f y '=就是x 的函数,我们称它为y =f (x )的导函数(简称导数),记为)(x f '(或y ′),即x x f x x f y x f x ΔΔΔ)()(lim )(0-+='='→. 2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 ,相应的切线方程为 .一、导数与图象问题例1. 函数f (x )的图象与其在点P 处的切线如图所示,则)1()1(f f '-等于( )A .-2B .0C .2D .4变式. 已知函数y =f (x )的部分图象如图所示,其中A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3))为图上三个不同的点,则下列结论正确的是( )A .)()()(321x f x f x f '>'>'B .)()()(123x f x f x f '>'>'C .)()()(213x f x f x f '>'>'D .)()()(231x f x f x f '>'>'例2. 函数f (x )的图象如图所示,下列数值排序正确的是( )A .0)3()2()1(>'>'>'f f fB .0)3()2()1(<'<'<'f f fC .)3()2()1(0f f f '<'<'<D .)3(0)2()1(f f f '>>'>'变式1. 已知函数y =f (x )的图象是下列四个图象之一,且其导函数)(x f y '=的图象如图所示,则该函数的图象是( )变式2. 已知函数y =f (x )的图象是下列四个图象之一,且其导函数)(x f y '=的图象如图所示,则该函数的大致图象是( )A .B .C .D .二、求切线方程 例3. 函数f (x )=x ln(-2x ),则曲线y =f (x )在x =2e -处的切线方程为变式. 曲线y =xx ln +x 在点(1,1)处的切线方程为例4. 曲线y =ln|x |过坐标原点的两条切线的方程为 , .变式1. 若过点P (1,0)作曲线y =x 3的切线,则这样的切线共有( )A .0条B .1条C .2条D .3条变式2. 过原点与曲线y =(x -1)3相切的切线方程为 .本堂小结:作业布置:1. 完成学案2. 课时作业163. 订正纠错。

高考数学一轮复习总教案2.1函数的概念及表示法(人教版)

高考数学一轮复习总教案2.1函数的概念及表示法(人教版)

第二章函数高考导航知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f (x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f (x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f (x)=(t -1)2+(t -1)+1=t2-t +1,所以f (x)=x2-x +1. (2)由f (x)+2f (-x)=3x2+5x +3,x 换成-x ,得f (-x)+2 f (x)=3x2-5x +3,解得f (x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f (x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f (x x +-11)=2211x x +-,求f (x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f (t)=22)11(1)11(1t t tt +-++--=212t t +, 所以f (x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3).(2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4].【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待.【变式训练2】已知函数f (2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l. 即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( )【解析】由题意得y =10x (2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0. 所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C. 总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。

高三一轮复习导学案05 第02章 第02节——函数的定义域、值域及函数的解析式,第03节——函数的单调性与最值

高三一轮复习导学案05 第02章 第02节——函数的定义域、值域及函数的解析式,第03节——函数的单调性与最值

§2.2 函数的定义域、值域及函数的解析式1.函数的定义域(1)函数的定义域是指____________________________________________________. (2)求定义域的步骤①写出使函数式有意义的不等式(组); ②解不等式组;③写出函数定义域.(注意用区间或集合的形式写出) (3)常见基本初等函数的定义域 ①分式函数中分母不等于零.②偶次根式函数、被开方式大于或等于0. ③一次函数、二次函数的定义域为______.④y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为______. ⑤y =tan x 的定义域为__________________. ⑥函数f (x )=x 0的定义域为__________________. 2.函数的值域(1)在函数y =f (x )中,与自变量x 的值相对应的y 的值叫__________,__________________叫函数的值域. (2)基本初等函数的值域①y =kx +b (k ≠0)的值域是______.②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为________________;当a <0时,值域为______________.③y =kx (k ≠0)的值域是________________.④y =a x (a >0且a ≠1)的值域是____________. ⑤y =log a x (a >0且a ≠1)的值域是______. ⑥y =sin x ,y =cos x 的值域是__________. ⑦y =tan x 的值域是______. 3.函数解析式的求法(1)换元法:若已知f (g (x ))的表达式,求f (x )的解析式,通常是令g (x )=t ,从中解出x =φ(t ),再将g (x )、x 代入已知解析式求得f (t )的解析式,即得函数f (x )的解析式,这种方法叫做换元法,需注意新设变量“t ”的范围.(2)待定系数法:若已知函数类型,可设出所求函数的解析式,然后利用已知条件列方程(组),再求系数.(3)消去法:若所给解析式中含有f (x )、f ⎝⎛⎭⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式. [难点正本 疑点清源]1.函数的定义域是研究函数问题的先决条件,它会直接影响函数的性质,所以要树立定义域优先的意识.2.(1)如果函数f (x )的定义域为A ,则f (g (x ))的定义域是使函数g (x )∈A 的x 的取值范围. (2)如果f (g (x ))的定义域为A ,则函数f (x )的定义域是函数g (x )的值域. (3)f [g (x )]与f [h (x )]联系的纽带是g (x )与h (x )的值域相同.1.函数y =x +1+12-x 的定义域为____________________________________________.2.(2011·安徽)函数y =16-x -x 2的定义域是________.3.函数f (x )=log 2(3x +1)的值域为__________.4.已知f ⎝⎛⎭⎫1x =1+x21-x 2,则f (x )=__________.题型一 求函数的定义域例1 (1)函数f (x )=3x 21-x +lg(3x +1)的定义域为__________.(2)函数y =ln (x +1)-x 2-3x +4的定义域为__________.探究提高 (1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集,其准则一般是: ①分式中,分母不为零;②偶次根式,被开方数非负; ③对于y =x 0,要求x ≠0;④对数式中,真数大于0,底数大于0且不等于1; ⑤由实际问题确定的函数,其定义域要受实际问题的约束. (2)抽象函数的定义域要看清内、外层函数之间的关系.(1)(2011·江西)若f (x )f (x )的定义域为( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎦⎤-12,0 C.⎝⎛⎭⎫-12,+∞D.(0,+∞)(2)若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是__________.题型二 抽象函数的定义域例2 若函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域.探究提高 已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b].已知f (x )的定义域是[0,4],求:(1)f (x 2)的定义域;(2)f (x +1)+f (x -1)的定义域. 题型三 求函数的值域 例3 求下列函数的值域. (1)y =x 2+2x (x ∈[0,3]); (2)y =x -3x +1;(3)y =x -1-2x ; (4)y =log 3x +log x 3-1.探究提高 (1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.求下列函数的值域:(1)y =x 2-xx 2-x +1; (2)y =2x -1-13-4x .题型四 求函数的解析式例4 (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式; (4)已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,求f (x )的解析式. 探究提高 函数解析式的求法(1)凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.1.函数问题首先要考虑定义域试题:(12分)已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域. 学生解答展示审题视角 (1)f (x )的定义域;(2)y =[f (x )]2+f (x 2)的定义域与f (x )的定义域不同;(3)如何求y =[f (x )]2+f (x 2)的定义域.规范解答解∵f(x)=2+log3x的定义域为[1,9],要使[f(x)]2+f(x2)有意义,必有1≤x≤9且1≤x2≤9,∴1≤x≤3,[3分] ∴y=[f(x)]2+f(x2)的定义域为[1,3]. [4分] 又y=(2+log3x)2+2+log3x2=(log3x+3)2-3. [6分] ∵x∈[1,3],∴log3x∈[0,1],[8分] ∴y max=(1+3)2-3=13,y min=(0+3)2-3=6. [10分] ∴函数y=[f(x)]2+f(x2)的值域为[6,13]. [12分] 批阅笔记(1)本题考查了函数的定义域、值域的概念及求法,是函数的重点知识.(2)本题易错原因是忽略对定义域的研究,致使函数y=[f(x)]2+f(x2)的讨论范围扩大.(3)解答有关函数的问题要规范,研究函数问题,首先研究其定义域,这是解答的规范,也是思维的规范.方法与技巧1.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先意识.求函数的定义域关键在于列全限制条件和准确求解方程或不等式(组);对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义.2.函数值域的几何意义是对应函数图象上点的纵坐标的变化范围.利用函数几何意义,数形结合可求某些函数的值域.3.函数的值域与最值有密切关系,某些连续函数可借助函数的最值求值域,利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.失误与防范1.求函数的值域,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.特别要重视实际问题的最值的求法.2.对于定义域、值域的应用问题,首先要用“定义域优先”的原则,同时结合不等式的性质.§2.2 函数的定义域、值域及函数的解析式(时间:60分钟) A 组 专项基础训练题组一、选择题 1.函数y =13x -2+lg(2x -1)的定义域是( )A.⎣⎡⎭⎫23,+∞ B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫23,+∞D.⎝⎛⎭⎫12,232.已知函数f (x )=lg(x +3)的定义域为M ,g (x )=12-x 的定义域为N ,则M ∩N 等于( ) A.{x |x >-3} B.{x |-3<x <2} C.{x |x <2}D.{x |-3<x ≤2}3.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为 ( ) A.x 1+x 2 B.-2x1+x 2 C.2x 1+x 2D.-x 1+x 24.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )A.f (x )=x 2+aB.f (x )=ax 2+1C.f (x )=ax 2+x +1D.f (x )=x 2+ax +1二、填空题5.函数y __________.6.若函数y =f (x )的值域是⎣⎡⎦⎤12,3,则函数F (x )=f (x )+1f (x )的值域是________. 7.(2011·上海)设g (x )是定义在R 上,以1为周期的函数,若函数f (x )=x +g (x )在[0,1]上的值域为[-2,5],则f (x )在[0,3]上的值域为________. 三、解答题8.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1. (1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域.B 组 专项能力提升题组一、选择题1.设f (x )=lg2+x 2-x,则f ⎝⎛⎭⎫x 2+f ⎝⎛⎭⎫2x 的定义域为 ( )A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)2.设f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是 ( )A.(-∞,-1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)3.对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=12log (32)x -*2log x 的值域为( )A.(-∞,0]B.⎣⎡⎦⎤log 223,0 C.⎣⎡⎭⎫log 223,+∞ D.R 二、填空题4.已知函数y =f (x )的定义域是[0,2],那么g (x )=f (x 2)1+lg (x +1)的定义域是_______________.5.已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM 的值为________.6.设x ≥2,则函数y =(x +5)(x +2)x +1的最小值是___________________________________.三、解答题7.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.8.已知函数f (x )=x 2-4ax +2a +6 (a ∈R ). (1)若函数的值域为[0,+∞),求a 的值;(2)若函数的值域为非负数,求函数g (a )=2-a |a +3|的值域.答案要点梳理1.(1)使函数有意义的自变量的取值范围 (3)③R ④R⑤⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z⑥{x |x ∈R 且x ≠0}2.(1)函数值 函数值的集合 (2)①R ②⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a ③{y |y ∈R 且y ≠0} ④(0,+∞) ⑤R ⑥[-1,1] ⑦R 基础自测1.[-1,2)∪(2,+∞)2.{x |-3<x <2}3.(0,+∞)4.x 2+1x 2-1 (x ≠0)题型分类·深度剖析例1 (1)⎝⎛⎭⎫-13,1 (2)(-1,1) 变式训练1 (1)A (2)⎣⎡⎦⎤0,34 例2 解 ∵f (2x )的定义域是[-1,1],∴12≤2x ≤2,即y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2⇒2≤x ≤4. ∴f (log 2x )的定义域是[2,4].变式训练2 解 ∵f (x )的定义域为[0,4], (1)有0≤x 2≤4,∴-2≤x ≤2. 故f (x 2)的定义域为[-2,2].(2)有⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,∴1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3]. 例3 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1. 因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}. (3)方法一 (换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12. (4)(基本不等式法)函数定义域为{x |x ∈R ,x >0,且x ≠1}. 当x >1时,log 3x >0, 于是y =log 3x +1log 3x -1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是 y =log 3x +1log 3x-1=-⎣⎡⎦⎤(-log 3x )+⎝⎛⎭⎫1-log 3x -1≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞). 变式训练3 解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0. ∵y =1时,x ∈∅,∴y ≠1.又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0, 解得-13≤y ≤1.综上得-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法):设13-4x =t , 则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,所以g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法): 函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小,所以2x -1-13-4x 增大, 因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数, 所以当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112,故原函数的值域是⎝⎛⎦⎤-∞,112. 例4 解 (1)令x +1x =t ,则t 2=x 2+1x2+2≥4.∴t ≥2或t ≤-2且x 2+1x2=t 2-2,∴f (t )=t 2-2,即f (x )=x 2-2 (x ≥2或x ≤-2). (2)令2x +1=t ,由于x >0,∴t >1且x =2t -1, ∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=kx +b ,∴3f (x +1)-2f (x -1)=3[k (x +1)+b ]-2[k (x -1)+b ]=kx +5k +b =2x +17.∴⎩⎪⎨⎪⎧ k =25k +b =17,即⎩⎪⎨⎪⎧k =2b =7.∴f (x )=2x +7. (4)∵2f (x )+f ⎝⎛⎭⎫1x =3x , ∴2f ⎝⎛⎭⎫1x +f (x )=3x . ∴f (x )=2x -1x(x ≠0).变式训练4 解 (1)令t =x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c ,又f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1, ∴f (x )=x 2-x +3. 课时规范训练 A 组1.C2.B3.C4.C5.(-∞,3]6.⎣⎡⎦⎤2,103 7.[-2,7] 8.解 (1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,∴c =0,即f (x )=ax 2+bx . 又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12.∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2) =12(x 2-2)2+12(x 2-2) =12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18.∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组1.B2.C3.A4.(-1,-910)∪(-910,2] 5.22 6.2837.解 ∵f (x )=12(x -1)2+a -12.∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a 、b 的值分别为32、3.8.解 (1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0, ∴2a 2-a -3=0,∴a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负, ∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0. ∴-1≤a ≤32.∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32.∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减, ∴g ⎝⎛⎭⎫32≤g (a )≤g (-1). 即-194≤g (a )≤4.∴g (a )的值域为⎣⎡⎦⎤-194,4.§2.3 函数的单调性与最值1.函数的单调性 (1)单调函数的定义若函数f (x )在区间D 上是________或________,则称函数f (x )在这一区间具有(严格的)单调性,________叫做y =f (x )的单调区间. 2.函数的最值[1.函数的单调性是局部性质函数的单调性,从定义上看,是指函数在定义域的某个子区间上的单调性,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.3.单调区间的表示单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.1. f (x )=x 2-2x (x ∈[-2,4])的单调增区间为__________;f (x )max =________.2.函数f (x )=2x x +1在[1,2]的最大值和最小值分别是________________.3.已知函数y =f (x )在R 上是减函数,A (0,-2)、B (-3,2)在其图象上,则不等式-2<f (x )<2的解集为________________________________________________________________.4.下列函数f (x )中满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A.f (x )=1xB.f (x )=(x -1)2C.f (x )=e 2D.f (x )=ln(x +1)5.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是 ( ) A.(-1,1)B.(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)题型一 函数单调性的判断及应用例1 已知函数f (x )=x 2+1-ax ,其中a >0. (1)若2f (1)=f (-1),求a 的值;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上为单调减函数; (3)若函数f (x )在区间[1,+∞)上是增函数,求a 的取值范围.探究提高 (1)证明函数的单调性用定义法的步骤是:取值—作差—变形—确定符号—下结论.(2)利用导数证明的一般步骤为:求导,判断导函数在区间上的符号,下结论.导数法 是比较常用的一种方法.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 题型二 求函数的单调区间例2 求函数212log (32)x x -+的单调区间.探究提高 求函数的单调区间与确定单调性的方法一致.(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间. (5)本题的易错点是忽视函数的定义域.求函数y =x 2+x -6的单调区间.题型三 抽象函数的单调性及最值例3 已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.探究提高 对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝⎛⎭⎫x y =f (x )-f (y ),当x >1时,有f (x )>0. (1)求f (1)的值;(2)判断f(x)的单调性并加以证明.(3)若f(4)=2,求f(x)在[1,16]上的值域.2.函数的单调性与不等式试题:(12分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.审题视角(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”,是本小题的切入点.要构造出f(M)<f(N)的形式.规范解答(1)证明设x1<x2,∴x2-x1>0,当x>0时,f(x)>1,∴f(x2-x1)>1. [2分] f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[4分] ∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数. [6分] (2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分] f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,f(2)=2×2-1=3,∴f(a2+a-5)<2=f(1),[10分] ∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2). [12分]解函数不等式的问题一般步骤是:第一步:确定函数f(x)在给定区间上的单调性;第二步:将函数不等式转化为f(M)<f(N)的形式;第三步:运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:解不等式或不等式组确定解集;第五步:反思回顾.查看关键点,易错点及解题规范.批阅笔记本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1.构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点是:忽视M、N的取值范围,即忽视f(x)所在的单调区间的约束.方法与技巧1.根据函数的单调性的定义,证明(判定)函数f(x)在其区间上的单调性,其步骤是(1)设x1、x2是该区间上的任意两个值,且x1<x2(或x1>x2);(2)作差f(x1)-f(x2),然后变形;(3)判定f(x1)-f(x2)的符号;(4)根据定义得出结论.2.求函数的单调区间首先应注意函数的定义域,函数的单调区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.常用方法:根据定义,利用图象和单调函数的性质,利用导数的性质.3.复合函数的单调性对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称为:同增异减.失误与防范1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间要分开写,即使在两个区间上的单调性相同,也不能用并集表示.2.两函数f(x)、g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比.f(x)§2.3 函数的单调性与最值(时间:60分钟) A 组 专项基础训练题组一、选择题1.(2010·北京)给定函数①y =12x ,②y =12log (1)x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是 ( )A.①②B.②③C.③④D.①④2.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]3.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值( )A.一定大于0B.一定小于0C.等于0D.正负都有可能二、填空题4.函数f (x )=x 2-2x -3的单调增区间为______________________________________.5.设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题: ①(x 1-x 2)[f (x 1)-f (x 2)]>0; ②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-f (x 2)x 1-x 2<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号)6.已知a >0且a ≠1,若函数f (x )=log a (ax 2-x )在[3,4]上是增函数,则a 的取值范围是__________. 三、解答题7.已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是单调递增函数; (2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 8.试讨论函数f (x )=axx 2-1,x ∈(-1,1)的单调性(其中a ≠0).B 组 专项能力提升题组一、选择题1.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A.增函数B.减函数C.先增后减D.先减后增2.已知f (x )=⎩⎪⎨⎪⎧a x(x >1)⎝⎛⎭⎫4-a 2x +2 (x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A.(1,+∞)B.[4,8)C.(4,8)D.(1,8)3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是 ( ) A.(-∞,-1)∪(2,+∞) B.(-1,2) C.(-2,1)D.(-∞,-2)∪(1,+∞) 二、填空题 4.已知函数f (x )=3-axa -1(a ≠1).若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是____________.5.若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a 、b 的取值范围是____________.6.设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,那么a 的取值范围是__________.7.已知函数f (x )=⎩⎪⎨⎪⎧e -x -2(x ≤0)2ax -1 (x >0) (a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________.三、解答题8.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0成立. (1)判断f (x )在[-1,1]上的单调性,并证明它;(2)解不等式:f (x +12)<f (1x -1); (3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.答案要点梳理1.(1)f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的 (2)增函数 减函数 区间D2.(1)f (x )≤M (2)f (x 0)=M(3)f (x )≥M (4)f (x 0)=M基础自测1.[1,4] 82.43,1 3.(-3,0) 4.A 5.C 题型分类·深度剖析例1 (1)解 由2f (1)=f (-1),可得22-2a =2+a ,得a =23. (2)证明 任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)=x 21+1-ax 1-x 22+1+ax 2=x 21+1-x 22+1-a (x 1-x 2) =x 21-x 22x 21+1+x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2x 21+1+x 22+1-a . ∵0≤x 1<x 21+1,0<x 2<x 22+1,∴0<x 1+x 2x 21+1+x 22+1<1. 又∵a ≥1,∴f (x 1)-f (x 2)>0,∴f (x )在[0,+∞)上单调递减.(3)解 任取1≤x 1<x 2,f (x 1)-f (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2x 21+1+x 22+1-a , ∵f (x )单调递增,所以f (x 1)-f (x 2)<0.又x 1-x 2<0,那么必须x 1+x 2x 21+1+x 22+1-a >0恒成立. ∵1≤x 1<x 2⇒2x 21≥x 21+1,2x 22>x 22+1,∴2x 1≥x 21+1,2x 2>x 22+1.相加得2(x 1+x 2)>x 21+1+x 22+1⇒x 1+x 2x 21+1x 22+1>22,∴0<a ≤22. 变式训练1 (1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述知0<a ≤1.例2 解 令u =x 2-3x +2,则原函数可以看作y =12log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =212log (32)x x -+的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上. ∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =12log u 在(0,+∞)上是单调减函数,∴y =212log (32)x x -+的单调减区间为(2,+∞),单调增区间为(-∞,1).变式训练2 解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的 复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).例3 (1)证明 方法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ), ∴令x =y =0,得f (0)=0.再令y =-x ,得f (-x )=-f (x ).在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2).因此f (x )在R 上是减函数.方法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数.(2)解 ∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2.变式训练3 解 (1)∵当x >0,y >0时,f ⎝⎛⎭⎫x y =f (x )-f (y ),∴令x =y >0,则f (1)=f (x )-f (x )=0.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=f ⎝⎛⎭⎫x 2x 1, ∵x 2>x 1>0.∴x 2x 1>1,∴f ⎝⎛⎭⎫x 2x 1>0. ∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数.(3)由(2)知f (x )在[1,16]上是增函数.∴f (x )min =f (1)=0,f (x )max =f (16),∵f (4)=2,由f ⎝⎛⎭⎫x y =f (x )-f (y ),知f ⎝⎛⎭⎫164=f (16)-f (4),∴f (16)=2f (4)=4,∴f (x )在[1,16]上的值域为[2,4].课时规范训练A 组1.B2.D3.A4.[3,+∞)5.①③6.(1,+∞)7.(1)证明 设x 2>x 1>0,设x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, ∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增的.(2)解 ∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又f (x )在⎣⎡⎦⎤12,2上单调递增, ∴f ⎝⎛⎭⎫12=12,f (2)=2.∴易得a =25. 8.解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 21-1<0,x 22-1<0.-1<x 1x 2<1,∴x 1x 2+1>0.∴(x 2-x 1)(x 2x 1+1)(x 21-1)(x 22-1)>0. 因此,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时函数在(-1,1)上为减函数;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时函数在(-1,1)上为增函数.B 组1.B2.B3.C4.(-∞,0)∪(1,3]5.a >0且b ≤06.[1,+∞)7.①③④8.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2), 由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.(2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧ x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1. (3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立.下面来求m 的取值范围.设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0,∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或m ≥2或m ≤-2.。

2021届高三数学一轮复习——函数的定义域与值域

2021届高三数学一轮复习——函数的定义域与值域

2021届高三数学一轮复习——函数的定义域与值域函数的定义域求下列函数的定义域:(1)y =12-|x |+x 2-1; (2)y =25-x 2+lg cos x ;(3)y =x -12x-log 2(4-x 2); (4)y =1log 0.5(x -2)+(2x -5)0. 解 (1)由⎩⎪⎨⎪⎧ 2-|x |≠0,x 2-1≥0,得⎩⎪⎨⎪⎧x ≠±2,x ≤-1或x ≥1.所以函数的定义域为{x |x ≤-1或x ≥1且x ≠±2}. (2)由⎩⎪⎨⎪⎧ 25-x 2≥0,cos x >0,得⎩⎪⎨⎪⎧-5≤x ≤5,2k π-π2<x <2k π+π2(k ∈Z ). 所以函数的定义域为⎣⎡⎭⎫-5,-32π∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5. (3)要使函数有意义,必须⎩⎨⎧x -12x ≥0,x ≠0,4-x 2>0,解得-2<x <0或1≤x <2,∴函数的定义域为(-2,0)∪[1,2).(4)由⎩⎪⎨⎪⎧ log 0.5(x -2)>0,2x -5≠0得⎩⎪⎨⎪⎧2<x <3,x ≠52, ∴函数的定义域为⎝⎛⎭⎫2,52∪⎝⎛⎭⎫52,3. 思维升华 (1)给定函数的解析式,求函数的定义域的依据是使解析式有意义,如分式的分母不等于零,偶次根式的被开方数为非负数,零指数幂的底数不为零,对数的真数大于零且底数为不等于1的正数以及三角函数的定义域等.(2)求函数的定义域往往归结为解不等式组的问题.在解不等式组时要细心,取交集时可借助数轴,并且要注意端点值或边界值.函数的值域例1 (2019·长沙月考)求下列函数的值域:(1)y =x 2-2x +3,x ∈[0,3);(2)y =2x +1x -3; (3)y =2x -x -1;(4)y =x +1+x -1.解 (1)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图①所示),可得函数的值域为[2,6).(2)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3, 显然7x -3≠0,∴y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(3)(换元法)设t =x -1,则x =t 2+1,且t ≥0,∴y =2(t 2+1)-t =2⎝⎛⎭⎫t -142+158,由t ≥0,再结合函数的图象(如图②所示),可得函数的值域为⎣⎡⎭⎫158,+∞.(4)函数的定义域为[1,+∞),∵y =x +1与y =x -1在[1,+∞)上均为增函数, ∴y =x +1+x -1在[1,+∞)上为单调递增函数,∴当x =1时,y min =2,即函数的值域为[2,+∞).结合本例(4)求函数y =x +1-x -1的值域. 解 函数的定义域为[1,+∞),y =x +1-x -1=2x +1+x -1, 由本例(4)知函数y =x +1+x -1的值域为[2,+∞), ∴0<1x +1+x -1≤22, ∴0<2x +1+x -1≤2,∴函数的值域为(0,2].思维升华 求函数值域的一般方法(1)分离常数法;(2)反解法;(3)配方法;(4)不等式法;(5)单调性法;(6)换元法;(7)数形结合法;(8)导数法.跟踪训练1 求下列函数的值域:(1)y =1-x 21+x 2; (2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝⎛⎭⎫x >12.。

高中数学高考2022届高考数学一轮复习(新高考版) 第2章 §2 1 第2课时 函数的定义域与值域

高中数学高考2022届高考数学一轮复习(新高考版) 第2章 §2 1 第2课时 函数的定义域与值域
第二章 §2.1 函数的概念及其表示
大一轮复习讲义
题型一 函数的定义域
1.函数f(x)=ln(4x-x2)+x-1 2 的定义域为
A.(0,4)
B.[0,2)∪(2,4]
√C.(0,2)∪(2,4)
D.(-∞,0)∪(4,+∞)
解析 要使函数有意义, 4x-x2>0,
则x-2≠0, 解得0<x<4且x≠2.
师生共研
(2)y=2xx-+31;
解 (分离常数法)y=2xx-+31=2x-x-33+7=2+x-7 3, 显然x-7 3≠0,∴y≠2. 故函数的值域为(-∞,2)∪(2,+∞).
(3)y=2x- x-1;
解 (换元法)设 t= x-1,则 x=t2+1,且 t≥0, ∴y=2(t2+1)-t=2t-142+185, 由 t≥0,再结合函数的图象(如图②所示),可得函数 的值域为185,+∞.
3.若函数f(x)的定义域为[0,8],则函数g(x)= f2x 的定义域为_[_0_,_3_) _. 8-2x
解析 依题意有08≤-22xx>≤0,8, 解得0≤x<3, ∴g(x)的定义域为[0,3).
思维升华
(1)根据具体的函数解析式求定义域的策略 已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合, 求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式 (组)的解集即可. (2)求抽象函数的定义域的策略 ①若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等 式a≤g(x)≤b求出; ②若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b] 上的值域.
2
∴xx- -11>≤02,, 解得1<x≤3.

高三一轮复习函数及其表示 (1)

高三一轮复习函数及其表示 (1)

第四课时函数及其表示考纲要求:函数的概念(B)知识梳理:函数由定义域、对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做定义域,与x的值对应的y值叫做函数值,函数值的集合{f(x)|x ∈A}叫做值域.3.函数的表示法表示函数的常用方法有:解析法、列表法、图象法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是建立在其定义域到值域的映射.()(2)函数y=f(x)的图象与直线x=a最多有2个交点.()(3)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.()(4)若两个函数的定义域与值域相同,则这两个函数是相等函数.()(5)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.()(6)分段函数是由两个或几个函数组成的.()(7)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.()答案:(1)√(2)×(3)√(4)×(5)×(6)×(7)√2.下列四组函数中,表示同一函数的是________.(填序号)①y=x-1与y=(x-1)2;②y=x-1与y=x-1x-1;③y=4lg x与y=2lg x2;④y=lg x-2与y=lgx 100.答案:④3.函数f(x)=x-4|x|-5的定义域为________.答案:[4,5)∪(5,+∞)4.已知函数y=f(x)满足f(1)=2,且f(x+1)=3f(x),则f(4)=________.答案:545.已知函数f (x )=⎩⎪⎨⎪⎧4x ,x ≤1,-x ,x >1则f (2)=________,f (-2)=________.答案:-21166.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫13x ,x ≤0,则满足方程f (a )=1的所有a 的值组成的集合为________.答案:{0,3}例题讲解:[典题1](1)函数f (x )=3x 21-x+lg(3x +1)的定义域是________.(2)函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.(3)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.解析:(1)要使函数有意义,需满足⎩⎪⎨⎪⎧1-x >0,3x +1>0.解得-13<x <1.(2)由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].(3)由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x <1,即定义域是[0,1).答案:(1)⎝⎛⎭⎫-13,1 (2)(0,2] (3)[0,1) 小结:(1)给出解析式的函数的定义域是使解析式中各个部分都有意义的自变量的取值集合,在求解时,要把各个部分自变量的限制条件列成一个不等式(组),这个不等式(组)的解集就是这个函数的定义域,函数的定义域要写成集合或者区间的形式.(2)①若f (x )的定义域为[a ,b ],则f (g (x ))的定义域为a ≤g (x )≤b 的解集;②若f (g (x ))的定义域为[a ,b ],则f (x )的定义域为y =g (x )在[a ,b ]上的值域.[典题2] (1)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________.(2)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,则f (x )=________. 解析:(1)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .(2)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.答案:(1)12x 2+12x ,x ∈R (2)x 2-2,x ∈(-∞,-2]∪[2,+∞)[探究1] 若将本例(2)的条件改为f ⎝⎛⎭⎫2x +1=lg x ,如何求解?解:令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.[探究2] 若将本例(2)的条件改为“f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1”,如何求解?解:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x-1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.即函数f (x )的解析式为f (x )=2x 3+13,x ∈(1,+∞).小结:函数解析式的求法(1)待定系数法:适合已知函数的类型(如一次函数、二次函数).(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件将x 换成1x 或-x 构造出另外一个等式组成方程组,通过解方程组求出f (x ).练习:定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当 -1≤x ≤0时,f (x )=________.解析:当0≤x ≤1时,f (x )=x (1-x ),当-1≤x ≤0时,0≤x +1≤1, ∴f (x +1)=(x +1)[1-(x +1)]=-x (x +1),而f (x )=12f (x +1)=-12x 2-12x .∴当-1≤x ≤0时,f (x )=-12x 2-12x .答案:-12x 2-12x分段函数是一类重要的函数,是高考的命题热点,多以填空题的形式呈现,试题难度不大,多为容易题或中档题,且主要有以下几个命题角度:角度一:求分段函数的函数值[典题3](1)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=________.(2)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. [听前试做] (1)∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.(2)∵f ⎝⎛⎭⎫π4=-tan π4=-1,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. 答案:(1)9 (2)-2小结:求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.角度二:求解参数的值或取值范围 [典题4](1)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=________.(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:(1)由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3,解得a +1=8,a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(1)-74(2)(-∞,8]小结:求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.角度三:研究分段函数的性质 [典题5](1)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则下列结论正确的是________.(填序号)①|x |=x |sgn x |;②|x |=x sgn|x |;③|x |=|x |sgn x ;④|x |=x sgn x .(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是________.(填序号)①f (x )是偶函数;②f (x )是增函数;③f (x )是周期函数;④f (x )的值域为[-1,+∞). 解析:(1)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,故④正确. (2)因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,故①错误;因为函数f (x ) 在(-2π,-π)上单调递减,故②错误;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,故③错误;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞),故④正确.答案:(1)④ (2)④ 注意:解决分段函数问题时,一定要注意自变量的取值所在的区间,要注意分类讨论的应用.总结:1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数表达式有意义的准则一般有:(1)分式中的分母不为0;(2)偶次根式的被开方数非负;(3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. 5.复合函数的定义域(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.注意:1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化. 2.利用换元法求解析式时,要注意函数的定义域.3.分段函数中,各段函数的定义域不可以相交,这是由函数定义的惟一性决定的. 4.求分段函数应注意的问题:在求分段函数的值f (x )时,首先要判断x 属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.课后作业:1.函数g (x )=x +3+log 2(6-x )的定义域是________.解析:由⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6,故函数的定义域为[-3,6).答案:{x |-3≤x <6}2.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={x |0≤x ≤1}为值域的函数的是________.(填序号)解析:①中的值域不对,②中的定义域错误,④不是函数的图象,由函数的定义可知③正确.答案:③3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是________. 解析:因为g (x +2)=f (x )=2x +3=2(x +2)-1,所以g (x )=2x -1. 答案:g (x )=2x -14.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12. 答案:125.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],那么满足条件的整数数对(a ,b )共有________对.解析:由题意函数f (x )=4|x |+2-1的值域是[0,1],∴1≤4|x |+2≤2,∴0≤|x |≤2,∴-2≤x ≤2,∴[a ,b ]⊂[-2,2].由于x =0时,y =1,x =±2时,y =0,故在定义域中一定有0,而±2必有其一,又a ,b ∈Z ,取b =2时,a 可取-2,-1,0,取a =-2时,b 可取0,1.故满足条件的整数数对(a ,b )共有5对. 答案:56.下列集合A 到集合B 的对应f 中:①A ={-1,0,1},B ={-1,0,1},f :A 中的数平方; ②A ={0,1},B ={-1,0,1},f :A 中的数开方; ③A =Z ,B =Q ,f :A 中的数取倒数;④A =R ,B ={正实数},f :A 中的数取绝对值, 是从集合A 到集合B 的函数的为________.解析:其中②,由于1的开方数不惟一,因此f 不是A 到B 的函数;其中③,A 中的元素0在B 中没有对应元素;其中④,A 中的元素0在B 中没有对应元素.答案:①7.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=________.解析:因为-2<0,所以f (-2)=2-2=14>0,所以f ⎝⎛⎭⎫14=1-14=1-12=12. 答案:128.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a , 由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-349.已知函数f (x )满足f ⎝⎛⎭⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析:要使f ⎝⎛⎭⎫2x +|x |=log 2x |x |有意义,则x |x |>0,即x >0.故f ⎝⎛⎭⎫1x =log 2x ,即f (x )=log 21x =-log 2x .答案:f (x )=-log 2x10.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于________. 解析:f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3.答案:311.定义域为R 的函数f (x )满足f (x +2)=2f (x )-2,当x ∈(0,2]时,f (x )=⎩⎪⎨⎪⎧x 2-x ,x ∈(0,1),1x,x ∈[1,2],若x ∈(0,4]时,t 2-7t 2≤f (x )恒成立,则实数t 的取值范围是________.解析:当x ∈(2,3)时,x -2∈(0,1),则f (x )=2f (x -2)-2=2(x -2)2-2(x -2)-2,即为f (x )=2x 2-10x +10,当x ∈[3,4]时,x -2∈[1,2],则f (x )=2f (x -2)-2=2x -2-2.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-52;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为-1.综上可得,f (x )在(0,4]的最小值为-52.若x ∈(0,4]时,t 2-7t2≤f (x )恒成立,则有t 2-7t 2≤-52.解得1≤t ≤52.答案:⎣⎡⎦⎤1,52 12.如图展示了一个由(0,1)到实数集R 的映射过程;(0,1)中的实数x 对应数轴上的点M ,如图①;将线段AB 围成一个圆,使两端点A ,B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为(0,1),如图③.图③中直线AM 与x 轴交于点N (n,0),则x 的象就是n ,记作f (x )=n .下列命题中正确的是________(填上所有正确命题的序号). ①f (x )在定义域上单调递增; ②f (x )的图象关于y 轴对称; ③12是f (x )的零点; ④f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫23=1;⑤f (x )>1的解集是⎝⎛⎭⎫34,1.解析:①正确,由图③知,当m 由0增大到1时,点M 由A 运动到B ,此时N 由x 轴的负半轴向正半轴运动,由此可知此时N 点的横坐标逐渐变大,即函数在定义域(0,1)上为增函数;②错,函数定义域不关于原点对称,故为非奇非偶函数,因此其图象不关于y 轴对称;③正确,当m =12时,M 位于圆与y 轴的下交点处,直线为x =0,故f ⎝⎛⎭⎫12=0,即12是函数的零点;④错,因为f (x )=-f (1-x ),即其图象关于点⎝⎛⎭⎫12,0成中心对称,故f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫23=0;⑤正确,由已知定义可求得f ⎝⎛⎭⎫34=1,又函数在定义域(0,1)上为增函数,故f (x )>1=f ⎝⎛⎭⎫34的解集是⎝⎛⎭⎫34,1.综上可知,正确命题的序号是①③⑤.答案:①③⑤13.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. 14.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2;当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2,即y =110x -2.综上,f (x )=⎩⎪⎨⎪⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].。

函数的定义域、值域 高三数学一轮复习备考

函数的定义域、值域1.设函数f (x )=lg(1-x ),那么函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞)D .[-9,1)2.以下四个函数:①y =3-x ;①y =2x -1(x >0);①y =x 2+2x -10;①y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .43.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)①(2,+∞)D .(-∞,2)①(2,+∞)4.以下函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -15.函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,那么f (f (1))=( )A .-12B .2C .4D .116.(多项选择题)以下函数中,与函数y =13x定义域不同的函数为( ) A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx7.(多项选择题)以下函数中,定义域与值域不相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -18.(多项选择题)假设函数f (x )=mx 2+mx +1的定义域为一切实数,那么实数m 的取值可以是( ) A .0 B .4 C .5D .69.(多项选择题)f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值可能是( )A .-1B .0 C.12D .110.f (x )=x 2+x +1在[-1,1]上的值域为( ) A .[1,3] B .[34,1]C .[34,3]D .[34,+∞)11.函数y =2x 2-2x +3x 2-x +1的值域为 .12.(2021·浙江台州模拟)函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -1,x >0,g (x )=2x -1,那么f (g (2))=__ __,f (g (x ))的值域为__ .13.设函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x ,x <1,那么f (f (0))=________,假设f (m )>1,那么实数m 的取值范围是________.14.函数f (x )的定义域是[0,2],那么函数g (x )=f (x +12)+f (x -12)的定义域是 .15.函数y =10x +10-x10x -10-x的值域为__ _.16.函数f (x )=⎩⎪⎨⎪⎧ln x +b ,x >1,e x -2,x ≤1,假设f (e)=-3f (0),那么函数f (x )的值域为__ __.17.函数y =16-4x 的定义域为_ __;值域为_ __.答案与解析1.设函数f (x )=lg(1-x ),那么函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞)D .[-9,1)解析:f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],那么⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0①-9<x <1.应选B.2.以下四个函数:①y =3-x ;①y =2x -1(x >0);①y =x 2+2x -10;①y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,①y =2x -1(x >0)的定义域为(0,+∞),值域为(12,+∞),①y=x 2+2x -10的定义域为R ,值域为[-11,+∞),①y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0),的定义域和值域均为R.所以定义域与值域相同的函数是①①,共有2个,应选B.3.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)①(2,+∞)D .(-∞,2)①(2,+∞)解析:选C.由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.4.以下函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D.对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)①(0,+∞),值域为(-∞,-1)①(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)①(1,+∞),值域也是(-∞,1)①(1,+∞).5.函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,那么f (f (1))=( )A .-12B .2C .4D .11解析:选C.因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.应选C. 6.(多项选择题)以下函数中,与函数y =13x定义域不同的函数为( ) A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:因为y =13x的定义域为{x |x ≠0},而y =1sin x 的定义域为{x |x ≠k π,k ①Z},y =ln xx的定义域为{x |x >0},y =x e x 的定义域为R ,y =sin xx的定义域为{x |x ≠0},应选A 、B 、C.7.(多项选择题)以下函数中,定义域与值域不相同的是( ) A .y =x -1B .y =ln xC .y =13x -1D .y =x +1x -1解析:①y =x +1x -1=1+2x -1≠1,x ≠1.①函数y =x +1x -1的定义域与值域相同.应选A 、B 、C.8.(多项选择题)假设函数f (x )=mx 2+mx +1的定义域为一切实数,那么实数m 的取值可以是( ) A .0 B .4 C .5D .6[解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,那么⎩⎪⎨⎪⎧m >0,m 2-4m ≤0,解得0<m ≤4.综上可得,0≤m ≤4.应选A 、B.9.(多项选择题)f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值可能是( )A .-1B .0 C.12D .1解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a .解得⎩⎪⎨⎪⎧a <12,a ≥-1,①-1≤a <12,即a 的取值范围是[-1,12).应选A 、B.10.f (x )=x 2+x +1在[-1,1]上的值域为( ) A .[1,3] B .[34,1]C .[34,3]D .[34,+∞)解析:∵f (x )=x 2+x +1的对称轴为x =-12,∴f (x )min =f (-12)=34,又f (-1)=1,f (1)=3,∴f (x )∈[34,3].11.函数y =2x 2-2x +3x 2-x +1的值域为 .解析:y =2x 2-2x +3x 2-x +1=2(x 2-x +1)+1x 2-x +1=2+1x 2-x +1=2+1(x -12)2+34.①(x -12)2+34≥34,①2<2+1(x -12)2+34≤2+43=103.故所求函数的值域为(2,103]. 12.(2021·浙江台州模拟)函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -1,x >0,g (x )=2x -1,那么f (g (2))=__ __,f (g (x ))的值域为__ .解析:g (2)=22-1=3,①f (g (2))=f (3)=2.易得g (x )的值域为(-1,+∞),①假设-1<g (x )≤0,f (g (x ))=[g (x )]2-1①[-1,0);假设g (x )>0,f (g (x ))=g (x )-1①(-1,+∞),①f (g (x ))的值域是[-1,+∞).13.设函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x ,x <1,那么f (f (0))=________,假设f (m )>1,那么实数m 的取值范围是________.解析:f (f (0))=f (1)=ln 1=0;如下图,可得f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x ,x <1的图象与直线y =1的交点分别为(0,1),(e ,1).假设f (m )>1,那么实数m 的取值范围是(-∞,0)①(e ,+∞).答案:0 (-∞,0)①(e ,+∞)14.函数f (x )的定义域是[0,2],那么函数g (x )=f (x +12)+f (x -12)的定义域是 .解析:因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足⎩⎨⎧0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是[12,32].15.函数y =10x +10-x10x -10-x 的值域为__ _.解析:y =10x +10-x 10x -10-x =102x +1102x -1=1+2102x -1, ①102x >0,①102x -1>-1且102x -1≠0, ①2102x -1①(-∞,-2)①(0,+∞), ①y ①(-∞,-1)①(1,+∞).16.函数f (x )=⎩⎪⎨⎪⎧ln x +b ,x >1,e x -2,x ≤1,假设f (e)=-3f (0),那么函数f (x )的值域为__ __.解析:因为f (x )=⎩⎪⎨⎪⎧ln x +b ,x >1,e x -2,x ≤1,f (e)=-3f (0),所以1+b =-3×(-1),所以b =2,即函数f (x )=⎩⎪⎨⎪⎧ln x +2,x >1,e x -2,x ≤1.当x >1时,y =ln x +2>2;当x ≤1时,y =e x -2①(-2,e -2].故函数f (x )的值域为(-2,e -2]①(2,+∞).17.函数y =16-4x 的定义域为_ __;值域为_ __. 解析:16-4x ≥0,4x ≤16,①x ≤2定义域是(-∞,2].①0≤16-4x<16,①0≤16-4x<4.。

江苏省张家港高级中学高三数学专题复习:函数 缺答案

张家港高级中学2014—2015学年第一学期函数专题复习1主备人:师全义一、填空题考点1:函数解析式 1.设,0()ln ,0x e x f x x x ⎧≤=⎨>⎩,则1(())2f f = .2.已知1)1f x =+,则函数()f x = .3.已知函数34)(2++=x x x f ,若2410)(2++=+x x b ax f ,则b a -5=考点2:函数的定义域、值域与最值4.函数1ln(1)y x =+的定义域为 .5.函数22()1x y x R x =∈+的值域是______________.6.若函数()log(01)af x x a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a的值为 .考点3:函数的单调性、奇偶性7.已知函数()f x 是定义在(,)-∞+∞上的偶函数. 当(,0)x ∈-∞时,4()f x x x =-,则当(0,)x ∈+∞时,()f x = . 8.已知函数())ln 31f x x x =++,则()1lg 2lg 2f f ⎛⎫+= ⎪⎝⎭. 9.若()x xxxke e f x ke e ---=+为奇函数,则k 的值为10.已知1()log (01a mxf x a x -=>-且1)a ≠是奇函数.M =11.设定义在[]2,2-上的偶函数()f x 在区间[]0,2上若对于区间内任意两个不等的实数,p q ,不等式()()0f p f q p q->-恒成立,若(1)()f m f m -<,求实数m的取值范围 .12.已知偶函数()f x 在(,0)-∞内是减函数,若(1)(lg )f f x -<,则实数x 的取值范围是 . 13.若函数2()f x xx a b=+-+在区间(],0-∞上为减函数,则实数a 的取值范围是 .考点4:函数周期性及应用14.设函数()f x 是定义在R 上周期为3的奇函数,若()()211121a f f a -<=+,,则则a 的取值范围是 .15.已知偶函数()f x 满足1(2)()f x f x +=-,且当23x <<时,()1f x x =+,则)5.5(f =.考点5:二次函数的图像和性质 16.已知二次函数()25f x x ax =++对任意t 都有()()4f t f t =--,且在区间[],0m 上有最大值5,最小值1,则m 的取值范围为 .17.设a R ∈,函数2()22f x xx a=--,若()0f x >的解集为A ,{}|13B x x =<<,AB φ≠,实数a 的取值范围是 . 18.0122≥+++x ax ax恒成立,求a 的范围.考点6:幂、指、对数函数的图像和性质 19.函数12y x -=的值域是 .20.已知幂函数()232()m m f x x m Z +-=∈是偶函数,且在(0,+)∞上是增函数,则m =.21.已知函数|lg |,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是_____________. 考点7:函数与方程 22.已知函数()logaf x x x b=+-(0a >,且1a ≠).当234a b <<<<时,函数()f x 的零点()0,1x n n ∈+,*n N ∈,则n = .23.若直线2y a =与函数1xy a=-(01)a a >≠且的图像有两个公共点,则a 的取值范围是 .24.已知函数()2,0()ln ,0kx x f x k R x x +≤⎧=∈⎨>⎩,若函数()y f x k=+有三个零点,则实数k的取值范围是 . 考点8:函数综合问题 25.已知()2f x x =,1()2xg x m ⎛⎫=- ⎪⎝⎭,若对12[1,3],[0,2]x x ∀∈∈-,()()12 f x g x ≥,则实数m的取值范围是________. 二、解答题26.已知函数()2(8)f x ax b x a ab=+---,当(3,2)x ∈-时,()0f x >,当(,3)(2,)x ∈-∞-+∞时,()0f x <.(1)求()f x 在[]0,1内的值域; (2)c 为何值时,2axbx c ++≤的解集为R ?27.已知函数()22xx f x a-=+(常数)a ∈R .(1)若1a =-,且()4f x =,求x 的值;(2)若存在[0,1]x ∈,使得2(2)[()]f x f x >成立,求实数a 的取值范围.28.已知()f x 为R 上的偶函数,当0x ≥时,()ln(2)f x x =+。

高三数学一轮复习学案函数及其表示

高三数学一轮精品复习学案:函数及其表示【高考目标定位】一、考纲点击1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

3.了解简单的分段函数,并能简单应用。

二、热点、难点提示1.本节是函数的起始部分,以考查函数的概念、三要素及表示法为主,同时函数的图象、分段函数的考查是热点,另外,实际问题中的建模能力偶尔也有所考查。

2.以多种题型出现在高考试题中,要求相对较低,但很重要,特别是函数的表达式、对应法则,仍是明年高考考查的重要内容。

【考纲知识梳理】一、函数与映射的概念注:函数与映射的区别:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集。

二、函数的其他有关概念 (1)函数的定义域、值域在函数()y f x =,x A ∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值{()|}f x x A ∈的集合叫做函数的值域(2)一个函数的构成要素 定义域、值域和对应关系 (3)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。

注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。

如果函数y=x 和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx 与y=cosx ,其定义域为R ,值域都为[-1,1],显然不是相等函数。

因此凑数两个函数是否相等,关键是看定义域和对应关系)(4)函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。

(5)分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。

分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是个函数。

高三 一轮复习 函数的概念及其表示 教案

函数及其表示1.函数映射的概念函数映射两集合A,B设A,B是两个非空数集设A,B是两个非空集合对应关系f:A→B 如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B是一个映射2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成.[试一试]1.(2013·苏锡常镇一调)已知常数t是负实数,则函数f(x)=12t2-tx-x2的定义域是________.2.(2013·扬州期末)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,则f (f (0))=________.求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ). [练一练]1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于________.2.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________.考点一函数与映射的概念1.下列四组函数中,表示同一函数的是________.(填写序号) ①y =x -1与y =(x -1)2 ②y =x -1与y =x -1x -1③y =4lg x 与y =2lg x 2 ④y =lg x -2与y =lg x1002.以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx ;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:x x ≤1 1<x <2 x ≥2 y123(3)f 1:y =2x ;f 2:如图所示.[类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.考点二函数的定义域问题函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分.归纳起来常见的命题角度有:(1)求给定函数解析式的定义域;(2)已知f (x )的定义域,求f (g (x ))的定义域; (3)已知定义域确定参数问题.角度一 求给定函数解析式的定义域1.(1)(2013·山东高考改编)函数f (x )= 1-2x +1x +3的定义域为________.(2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________.角度二 已知f (x )的定义域,求f (g (x ))的定义域 2.已知函数f (x )的定义域是[-1,1],求f (log 2x )的定义域.角度三 已知定义域确定参数问题3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.[类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.考点三求函数的解析式[典例] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).(4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[类题通法]求函数解析式常用的方法有(1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法; (4)解方程组法. [针对训练]1.已知f (x +1)=x +2x ,求f (x )的解析式.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.考点四分段函数[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.[类题通法]分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒:当分段函数的自变量范围不确定时,应分类讨论. [针对训练]设函数f (x )=⎩⎨⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[课堂练通考点]1.(2013·南京一模)函数y =2x -x 2的定义域是________.2.(2013·苏北四市二调)若函数f (x )=⎩⎨⎧2x , x <0,-2-x , x >0,则函数y =f (f (x ))的值域是________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案4 函数及其表示方法,函数的定义域 一、课前准备: 【自主梳理】 1.函数的三要素:,,。 2.相同函数的判断方法:①;② (两点必须同时具备) 3.函数解析式的求法: ①定义法(拼凑):②③④赋值法. 4.若{,,}Aabc,{1,4}B;问:A到B的映射有个,B到A的映射有个. 5.函数定义域的求法: ①)()(xgxfy,则; ②)()(*2Nnxfyn则; ③0)]([xfy,则; ④)(log)(xgyxf,则. 【自我检测】 1. 已知函数()fxaxb,且(1)4f,(2)5,(0)_________ff则. 2. 设2:fxx是集合A到B(不含2)的映射,如果1,2A,则________AB. 3. 函数24yx的定义域是 . 4. 函数21log(32)xyx的定义域是 . 5.函数2223log(2)yxxx的定义域是 . 6.已知()fx是一次函数,且[()]41ffxx,则()fx的解析式为 . 二、课堂活动: 【例1】填空题: (1)若一次函数f(x)的定义域为[-3,2],值域为[2,7],那么f(x)=.

(2)函数y=xxx224的定义域为. (3)若f(21)1xxx(x>0),则f(x)=. (4)若函数f(x)=x-4mx2+4mx+3的定义域为R,则实数m的取值范围是________. 【例2】给出下列两个条件:(1)f(x+1)=x+2xf(x)为二次函数且f(0)=3, f(x+2)f(x)=4x+2.试分别求出f(x)的解析式.

【例3】某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在图中的两条线段上.该股票在30天内(包括第30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示:

第t天 4 10 16 22

Q(万股) 36 30 24 18

(1)根据提供的图象,写出该种股票每股的交易价格P(元)与时间t(天)所满足的函数关系式; (2)根据表中数据确定日交易量Q(万股)与时间t(天)的函数关系式; (3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少? 课堂小结

三、课后作业 1.设函数f1(x)=x21,f2(x)=x-1,f3(x)=x2,则))0072((123fff=. 2.函数f(x)=)1(log1|21|2x的定义域为. 3.若f(x)=)6(log)6()3(2xxxxf,则f(1)的值为.

4.已知f(2211)11xxxx,则f(x)的解析式为. 5.函数f(x)=xx132 +lg(3x+1)的定义域是. 6.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(3)=.

7.已知函数f(x),g(x)分别由下表给出 x 1 2 3 f(x) 1 3 1

则f[g(1)]的值为,满足f[g(x)]>g[f(x)]的x的值是. 8.已知函数(x)=f(x)+g(x),其中f(x)是x的正比例函数,g(x)是x的反比例函数,且(31)=16, (1)=8,则(x)=.

9.设函数f(x)= x2+bx+c, x≤0,2, x>0.若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为________. 10.已知f(x)=x2-1,g(x)= x-1,x>0,2-x,x<0, (1)求f[g(2)]和g[f(2)]的值; (2)求f[g(x)]和g[f(x)]的表达式. 11.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元.

(1)当每辆车的月租金定为3 600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

x 1 2 3 g(x) 3 2 1 四、纠错分析 错题卡 题 号 错 题 原 因 分 析 参考答案: 一、课前准备: 【自主梳理】 1.定义域,值域,对应法则;2.定义域,对应法则;3. 换元法,待定系数法;

4.8,9; 5. ①()0gx②()0fx③()0fx④()0()1()0{fxfxgx且 【自我检测】

1.-1 2.{1} 3.[-2,2] 4.2(,1)(1,)3 5.[3,) 6.12-213xx或 二、课堂活动 【例1】(1)5-4xx或 (2)[2,1)(1,0)(0,1)(1,2]

(3)2111(0)xxx (4)[0,34)

【例2】解:(1)令t=x+1,∴t≥1,x=(t-1)2. 则f(t)=(t-1)2+2(t-1)=t2-1,即f(x)=x2-1,x∈[1,+∞). (2)设f(x)=ax2+bx+c (a≠0), ∴f(x+2)=a(x+2)2+b(x+2)+c,则f(x+2)-f(x)=4ax+4a+2b=4x+2.

∴22444baa,∴11ba,又f(0)=3c=3,∴f(x)=x2-x+3. 【例3】解:(1)设表示前20天每股的交易价格P(元)与时间t(天)的一次函数关系式为P=k1t+m,

由图象得 2=k1×0+m6=k1×20+m,解得 k1=15m=2,即P=15t+2; 设表示第20天至第30天每股的交易价格P(元)与时间t(天)的一次函数关系式为P=k2t+n, 由图象得 6=k2×20+n5=k2×30+n,解得 k2=-110n=8, 即P=-110t+8. 综上知P= 15t+2, 0≤t<20-110t+8, 20≤t≤30(t∈N). (2)由表知,日交易量Q(万股)与时间t(天)满足一次函数关系式,设Q=at+b(a、b为常数且a≠0),将(4,36)与(10,30)的坐标代入,

得 4a+b=36,10a+b=30,解得 a=-1,b=40. 所以日交易量Q(万股)与时间t(天)的函数关系式为 Q=40-t(0≤t≤30且t∈N). (3)由(1)(2)可得

y= 15t+-,0≤t<20-110t+-,20≤t≤30(t∈N).

即y= -15t2+6t+80,0≤t<20110t2-12t+320,20≤t≤30(t∈N). 当0≤t<20时,函数y=-15t2+6t+80的图象的对称轴为直线t=15, ∴当t=15时,ymax=125; 当20≤t≤30时,函数y=110t2-12t+320的图象的对称轴为直线t=60, ∴该函数在[20,30]上单调递减, 即当t=20时,ymax=120. 而125>120, ∴第15天日交易额最大,最大值为125万元. 三、课后作业

1. 007212. ,33. 3 4. f(x)=212xx5. (-31,1)6. 6 7. 1, 2 8. 3x+x5 9. 解析:法一:若x≤0,则f(x)=x2+bx+c. ∵f(-4)=f(0),f(-2)=-2, ∴ -2+-+c=c,-2+-+c=-2,解得 b=4,c=2.

∴f(x)= x2+4x+2,x≤0,2, x>0. 当x≤0时,由f(x)=x,得x2+4x+2=x, 解得x=-2,或x=-1; 当x>0时,由f(x)=x,得x=2. ∴方程f(x)=x有3个解. 法二:由f(-4)=f(0)且f(-2)=-2,可得f(x)=x2+bx+c的对称轴是x=-2,且顶点为(-2,-2),于是可得到f(x)的简图(如图所示).方程f(x)=x的解的个数就是函数图象y=f(x)与y=x的图象的交点的个数,所以有3个解. 答案:3 10. 解:(1)由已知,g(2)=1,f(2)=3, ∴f[g(2)]=f(1)=0,g[f(2)]=g(3)=2. (2)当x>0时,g(x)=x-1, 故f[g(x)]=(x-1)2-1=x2-2x; 当x<0时,g(x)=2-x, 故f[g(x)]=(2-x)2-1=x2-4x+3;

∴f[g(x)]= x2-2x,x>0,x2-4x+3,x<0. 当x>1或x<-1时,f(x)>0, 故g[f(x)]=f(x)-1=x2-2; 当-1故g[f(x)]=2-f(x)=3-x2.

∴g[f(x)]= x2-2,x>1或x<-1,3-x2,-1

11. 解 (1)当每辆车的月租金定为3 600元时,未租出的车辆数为5000036003=12,所以这时租出了88辆车. (2)设每辆车的月租金定为x元,则租赁公司的月收益为f(x)=(100-500003)150)(500003xxx×50. 整理得f(x)=-502x +162x-21 000=-501(x-4 050)2+307 050. 所以,当x=4 050时,f(x)最大,最大值为f(4 050)=307 050.

即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.

相关文档
最新文档