巩固测试最新2018-2019学年北师大版高中数学必修一《函数》单元测评卷及解析
(常考题)北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(1)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)3.设0a >且1a ≠,函数221x x y a a =+-在区间[]1,1-上的最大值是14,则实数a 的值为( ) A .13或2 B .2或3C .12或2 D .13或3 4.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +< B .0a b +> C .10a b -+> D .20a b ++<5.函数()21xf x x=-的图象大致是( ) A .B .C .D .6.已知函数()y f x =的定义域为[]0,4,则函数0(1)(2)1f x y x x +=+--的定义域是( ) A .[1,5]B .((1,2)(2,5) C .(1,2)(2,3]⋃D .[1,2)(2,3]⋃7.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4 C .有最大值-3 D .有最小值-38.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .9.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .10.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关D .与a 无关,且与b 无关11.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .403812.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( ) A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥二、填空题13.设函数()42x f x e x =-()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________.14.设函数()y f x =的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有3()4f x >-,则m 的取值范围是_____.15.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.16.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.17.已知函数()f x 的值域为[]0,4(2,2x),函数()1=-g x ax ,2,2x ,[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立,则实数a 的取值范围为________________.18.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.19.定义在R 上的函数()f x 满足(3)()1f x f x +=+,且[0,1]x ∈时,()6x f x =,(1,3)x ∈时,(1)()f f x x=,则函数()f x 的零点个数为__________. 20.设()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()21f m f m ->,则实数m 的取值范围是__________ 三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数()222f x x ax =++,[]5,5x ∈-.(1)当1a =-时,求函数()f x 的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数. (3)求函数()f x 的最小值()g a 的表达式,并求()g a 的最大值. 23.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.24.已知函数()0ky x k x=+>在区间(单调递减,在区间)+∞单调递增.(1)求函数2y x x=+在区间(),0-∞的单调性;(只写出结果,不需要证明) (2)已知函数()()2131x ax f x a x ++=∈+R ,若对于任意的x N *∈,有()5f x ≥恒成立,求实数a 的取值范围.25.已知函数()f x 对一切实数,x y 都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =.(1)求(0)f 的值,及()f x 的解析式;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,求a 的取值范围. 26.已知定义在()1,1-上的奇函数2()1ax bf x x +=+,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)证明:()f x 在0,1上是增函数;(3)解不等式()2(120)f t f t -+<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.D解析:D 【分析】任设120x x <<,则211x x >,21()1x f x <-,根据定义可得()f x 在(0,)+∞上为递减函数,令1x y ==得(1)1f =-,令18,8x y ==可得(8)4f =-,可得(2)2f =-,将不等式化为[(3)](2)f x x f ->,利用单调性和定义域可解得结果.任设120x x <<,则211x x >,21()1x f x <-, 所以()()()()222111111111x x f x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=++<-+= ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上为递减函数,在()()()1f xy f x f y =++中,令1x y ==得(1)2(1)1f f =+,得(1)1f =-,令18,8x y ==得11(1)(8)(8)()188f f f f =⨯=++,所以(8)1124f =---=-, 又(8)(2)(4)1f f f =++(2)(2)(2)113(2)2f f f f =++++=+4=-,所以(2)2f =-,()(3)3f x f x +->-可化为()(3)12(2)f x f x f +-+>-=,所以[(3)](2)f x x f ->,所以030(3)2x x x x >⎧⎪->⎨⎪-<⎩,解得01x <<或23x <<.故选:D 【点睛】关键点点睛:利用定义判断函数的单调性以及求出(2)f 是解题关键.3.D解析:D 【分析】本题首先可以令x t a =,将函数转化为()212y t =+-并判断出函数的单调性,然后分为01a <<、1a >两种情况进行讨论,根据最大值是14进行计算,即可得出结果. 【详解】令x t a =(0a >、1a ≠),则()222112y t t t =+-=+-, 因为0a >,所以0x t a =>,函数()212y t =+-是增函数, 当01a <<、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15-(舍去);当1a >、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时()2max 1214y a =+-=,解得3a =或5-(舍去), 综上所述,实数a 的值为13或3,【点睛】本题考查根据函数的最值求参数,能否通过换元法将函数转化为二次函数是解决本题的关键,考查二次函数单调性的判断和应用,考查分类讨论思想,考查计算能力,是中档题.4.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.5.C解析:C 【分析】由1x >时,()0f x <,排除B 、D ;由函数()f x 在区间(0,1)上的单调性,排除A ,即可求解. 【详解】由题意,函数()21xf x x =-有意义,满足210x -≠,解得1x ≠±, 又由当1x >时,()0f x <,排除B ,D ; 当01x <<时,()21xf x x=-, 设1201x x ,则2112212122222121(1)()()()11(1)(1)x x x x x x f x f x x x x x +--=-=----, 因为2221122110,10,10,0x x x x x x ->->+>->,所以21()()0f x f x ->,即12()()f x f x <,所以函数()f x 在(0,1)上单调递增,所以A 不符合,C 符合. 故选:C. 【点睛】知式选图问题的解答方法:从函数的定义域,判定函数图象的左右位置,从函数的值域判断图象的上下位置; 从函数的单调性(有时借助导数),判断函数的图象的变换趋势; 从函数的奇偶性,判断图象的对称性; 从函数的周期性,判断函数的循环往复;从函数的特殊点(与坐标轴的交点,经过的定点,极值点等),排除不和要求的图象.6.C解析:C 【分析】由函数定义域的定义,结合函数0(2)y x =-有意义,列出相应的不等式组,即可求解. 【详解】由题意,函数()y f x =的定义域为[]0,4,即[]0,4x ∈,则函数0(2)y x =-满足0141020x x x ≤+≤⎧⎪->⎨⎪-≠⎩,解得13x <≤且2x ≠,所以函数0(2)y x =+-的定义域是(1,2)(2,3]⋃. 故选:C. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记函数的定义域的定义,根据题设条件和函数的解析式有意义,列出不等式组是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.8.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C , 综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.9.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x=f (x ), ∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调,此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a--, 上递增,在[2]2a -, 上递减, 且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a -,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关 故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.11.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.12.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-, 解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.二、填空题13.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.【分析】由得得分段求解析式结合图象可得m 的取值范围【详解】时时;时;时;当时由解得或若对任意都有则故答案为:【点睛】本题考查分段函数的解析式和最值特征考查函数的图象以及一元二次不等式的解法解题的关键解析:9(,)4-∞【分析】由(1)2()f x f x +=,得()2(1)f x f x =-,得分段求解析式,结合图象可得m 的取值范围. 【详解】(1)2()f x f x +=,()2(1)f x f x ∴=-,(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-,(1,2]x ∴∈时,1(0,1],()2x f x -∈=1(1)2(1)(2),02f x x x ⎡⎤-=--∈-⎢⎥⎣⎦;(2,3]x ∴∈时,1(1,2],()2(1)4(2)(3)[1,0]x f x f x x x -∈=-=--∈-; (3,4]x ∴∈时,1(2,3],()2(1)8(3)(4)[2,0]x f x f x x x -∈=-=--∈-;当(2,3]x ∈时,由34(2)(3)4x x --=-,解得114x =或94x =,若对任意(,]x m ∈-∞,都有3()4f x >-,则94m <. 故答案为:9,4⎛⎫-∞ ⎪⎝⎭. 【点睛】本题考查分段函数的解析式和最值特征,考查函数的图象,以及一元二次不等式的解法,解题的关键点是可借助函数图象直观性找到解题思路.15.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>, 因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f aa a a ,1121f a a aa ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<, 因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭,故答案为:32⎧⎫⎨⎬⎩⎭. 【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.16.【分析】先令则求解的值然后再分类讨论求解的值【详解】令则当时有无解当时有解得或所以或当时故无解;当时若则得若则即无解综上所述:故答案为:【点睛】本题考查分段函数的应用考查根据函数值求参难度一般解答时【分析】先令()f a t =,则()2f t =,求解t 的值,然后再分类讨论,求解a 的值. 【详解】令()f a t =,则()2f t =,当0t >时,有22t -=,无解, 当0t ≤时,有2222t t ++=,解得0t =,或2t =-, 所以()0f a =或()2f a =-,当()0f a =时,()2222110a a a ++=++>,20a -<,故 ()0f a =无解;当()2f a =-时,若0a >,则22a -=-,得a =若0a ≤,则2222a a ++=-,即2240a a ++=,无解,综上所述:a =【点睛】本题考查分段函数的应用,考查根据函数值求参,难度一般,解答时注意分类讨论思想的运用.17.【分析】依题意分析的值域A 包含于的值域B 再对分类讨论得到的值域列关系计算即可【详解】因为总使得成立所以的值域A 包含于的值域B 依题意A=又函数因此当时不满足题意;当时在上递增则故即得;当时在上递减则故解析:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】依题意分析()f x 的值域A 包含于()g x 的值域B ,再对a 分类讨论得到()g x 的值域,列关系计算即可. 【详解】因为[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立, 所以()f x 的值域A 包含于()g x 的值域B ,依题意A =[]0,4,又函数()1=-g x ax ,2,2x ,因此,当0a =时,{}1B =-,不满足题意;当0a >时,()g x 在[]2,2-上递增,则[][]21,210,4B a a =---⊇,故210214a a --≤⎧⎨-≥⎩,即得52a ≥;当0a <时,()g x 在[]2,2-上递减,则[][]21,210,4B a a =---⊇, 故210214a a -≤⎧⎨--≥⎩,即得52a ≤-.综上,实数a 的取值范围为55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故答案为:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 【点睛】本题考查了恒成立问题、函数的值域,以及利用包含关系求参数范围问题,属于中档题.18.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.19.【分析】由题意首先结合所给的关系式画出函数图象结合函数图象即可确定函数图象与横轴交点个数可得函数零点的个数【详解】解:由题意可得:(1)时即:结合绘制函数图象如图所示:由图可得函数图象与横轴交点有9 解析:9【分析】由题意首先结合所给的关系式画出函数图象,结合函数图象即可确定函数图象与横轴交点个数,可得函数零点的个数. 【详解】解:由题意可得:f (1)166==,∴(1,3)x ∈时,(1)6()f f x x x==, 即:6,01()6,13x x f x x x⎧⎪=⎨<<⎪⎩,结合(3)()1f x f x +=+绘制函数图象如图所示:由图可得,函数图象与横轴交点有9个, 所以函数()f x 的零点个数为9. 故答案为:9. 【点睛】本题主要考查函数的零点,数形结合的数学思想,函数图象的绘制等知识,函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.20.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化即可得到结论【详解】解:是定义在上的偶函数且在上是减函数不等式等价为即所以即即解得即故答案为:【点睛】本题主要考查不等式的求解根据函数奇偶性和解析:1,13⎛⎫⎪⎝⎭【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论. 【详解】 解:()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,∴不等式()()21f m f m ->,等价为()()21f m f m ->,即21m m -<,所以()2221m m -<,即()22210m m --<,即()()3110m m --<,解得113m << 即1,13m ⎛⎫∈ ⎪⎝⎭故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键,属于中档题.三、解答题21.(1)单调递增,理由见解析;(2;(3)312a -≤≤且0a ≠.【分析】(1)根据函数单调性的定义先设120<m x x n ≤<≤,然后化简判断()()12f x f x -的正负,即可判断单调性;(2)由函数单调性可得,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围,进而求出n m -的最大值; (3)不等式等价于211222x a a x x x-≤+≤+对1≥x 恒成立,求出1()2h x x x =+最小值和1()2g x x x=-的最大值即可解出. 【详解】 (1)设120<m x x n ≤<≤, 则()()1212222121211x x f x f x a x a x a x x --=-+=, 120<m x x n ≤<≤,12120,0x x x x ∴>-<,()()12f x f x ∴<,故()f x 在[],m n 上单调递增;(2)由(1)可得0m n <<时,()f x 在[],m n 上单调递增,()f x 的定义域和值域都是[],m n ,(),()f m m f n n ∴==,则,m n 是方程2112x a a x+-=的不相等的两个正数根, 即()222210a x a a x -++=有两个不相等的正数根,则()2222122122Δ2402010a a a a a x x a x x a ⎧=+->⎪⎪+⎪+=>⎨⎪⎪=>⎪⎩,解得12a >,n m ∴-=== 1,2a ∞⎛⎫∈+ ⎪⎝⎭,32a ∴=时,n m -(3)221()2a f x a a x=+-,则不等式()22a f x x ≤对1≥x 恒成立, 即21222x a a x x -≤+-≤,即211222x a a x x x-≤+≤+对1≥x 恒成立, 令1()2h x x x=+,则()h x 在[1,)+∞单调递增,min ()(1)3h x h ∴==,令1()2g x x x=-,则()g x 在[1,)+∞单调递减,max ()(1)1g x g ∴==-, 222321a a a a ⎧+≤∴⎨+≥-⎩,解得312a -≤≤且0a ≠.【点睛】关键点睛:由函数单调性得出,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围是解决第二问的关键,第三问不等式的恒成立问题需要分离参数求最值.22.(1)最大值为37,最小值为1;(2)(][),55,-∞-+∞;(3)()22710,52,552710,5a a g a a a a a +≤-⎧⎪=--<<⎨⎪-≥⎩,()max 2g a =.【分析】(1)利用二次函数的基本性质可求得函数()f x 在区间[]5,5-上的最大值和最小值;(2)分析二次函数()y f x =图象的开口方向和对称轴,然后对函数()y f x =在区间上为增函数或减函数两种情况分类讨论,结合题意可得出关于实数a 的不等式,进而可求得实数a 的取值范围;(3)对实数a 的取值进行分类讨论,分析二次函数()f x 在区间[]5,5-上的单调性,进而可求得()g a 关于a 的表达式,并求出a 在不同取值下()g a 的取值范围,由此可得出()g a 的最大值.【详解】(1)当1a =-时,()()222211f x x x x =-+=-+.所以,函数()f x 在区间[]5,1-上为减函数,在区间[]1,5上为减函数, 当[]5,5x ∈-时,()()min 11f x f ==,()517f =,()537f -=,所以,()()max 537f x f =-=;(2)二次函数()222f x x ax =++的图象开口向上,对称轴为直线x a =-.①若函数()y f x =在区间[]5,5-上是增函数,则5a -≤-,解得5a ≥; ②若函数()y f x =在区间[]5,5-上是减函数,则5a -≥,解得5a ≤-. 综上所述,实数a 的取值范围是(][),55,-∞-+∞;(3)二次函数()222f x x ax =++的图象开口向上,对称轴为直线x a =-. ①当5a -≤-时,即当5a ≥时,函数()y f x =在区间[]5,5-上为增函数, 则()()52710g a f a =-=-,此时()23g a ≤-; ②当55a -<-<时,即当55a -<<时,函数()y f x =在区间[)5,a --上为减函数,在区间(],5a -上为增函数, 则()()22g a f a a =-=-,此时()(]2223,2g a a =-∈-;③当5a -≥时,即当5a ≤-时,函数()y f x =在区间[]5,5-上为减函数,则()()52710g a f a ==+,此时()271023g a a =+≤-.综上所述,()22710,52,552710,5a a g a a a a a +≤-⎧⎪=--<<⎨⎪-≥⎩,()max 2g a =.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.23.(1)单调递增,证明见解析;(2){}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)利用定义设1210-≤<<x x ,计算()()12f x f x -判断正负即可得出单调性; (2)先利用单调性求出()f x 在[)1,0-的取值范围,再根据奇函数的对称性可求出. 【详解】(1)设1210-≤<<x x ,()()()()()()122112122222121211111x x x x x x f x f x x x x x ---=-=++++, 因为1210-≤<<x x ,所以121x x <,210x x ->, 则()()120f x f x -<,()()12f x f x <, 所以()f x 在[)1,0-上单调递增; (2)函数()f x 在[)1,0-上是增函数,∴()()()10f f x f -≤<,()11f -=-,()102f =-,∴()11,2f x ⎡⎫∈--⎪⎢⎣⎭∴当10x -≤<时,()f x 的取值范围11,2⎡⎫--⎪⎢⎣⎭∴而函数()f x 为奇函数,由对称性可知,函数()y f x =在(]0,1上的取值范围为1,12⎛⎤ ⎥⎝⎦又()00f =,故()y f x =的值域{}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】思路点睛:利用定义判断函数单调性的步骤: (1)在定义域内任取12x x <; (2)计算()()12f x f x -并化简整理; (3)判断()()12f x f x -的正负;(4)得出结论,若()()120f x f x -<,则()f x 单调递增;若()()120f x f x ->,则()f x 单调递减.24.(1)在区间(,-∞的单调递增,在区间()的单调递减;(2)2,3⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)利用对勾函数的性质,直接写出结论即可;(2)利用不等式恒成立的关系,把问题从()5f x ≥恒成立,转化为对于任意的x N *∈,21351x ax x ++≥+恒成立,利用参变分离的方法,等价于()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N ,然后,根据对勾函数的性质进行求解即可 【详解】解:(1)因为函数k y x x =+()0k >在(单调递减,在)+∞单调递增,所以,当2k =时函数2y x x =+在(单调递减,在)+∞单调递增. 易知函数2y x x =+为奇函数,所以函数y x x =+在区间(,-∞的单调递增;在区间()的单调递减.(2)由题意,对任意的x N *∈,有()5f x ≥恒成立, 即对于任意的x N *∈,21351x ax x ++≥+恒成立, 等价于()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N . 设()()8g x x x x*=+∈N ,易知,当且仅当8x x=,即x =()g x 取得最小值,由题设知,函数()g x 在(0,上单调递减,在()+∞上单调递增.又因为x N *∈,且()26g =,()1733g =,而()()23g g >, 所以当3x =时,()min 173g x =. 所以81725533x x ⎛⎫-+≤-=- ⎪⎝⎭,即23a ≥-, 故所求实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭. 【点睛】关键点睛:解题的关键在于,利用参变分离法,把问题转化为证明()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N 恒成立,进而利用对勾函数性质求解,属于中档题 25.(1)()02f =-;()22f x x x =+-;(2)2a ≤. 【分析】(1)通过对抽象函数赋值,令1,1x y =-=进行求解,即得(0)f ;令0y =可消去y ,再结合()0f 的值,即求得解析式;(2)先讨论1x =时不等式恒成立,21x 时,再通过分离参数法求得a 的取值范围即可.【详解】解:(1)令1,1x y =-=,可得()()()01121f f -=--++,又由()10f =,解得()02f =-;令0y =,得()()()01f x f x x -=+,又因()02f =-,解得()22f x x x =+-;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,即()213x a x -≤+,若1x =时不等式即04≤,显然成立;若21x 时,10x ->,故231x a x +≤-恒成立,只需2min31x a x ⎛⎫+≤ ⎪-⎝⎭, 设()()()22121434()12111x x x g x x x x x---++===-+----,设(]1,0,3t x t =-∈ 则4()2g t t t=+-是对勾函数,在()0,2递减,在()2,3递增,故2t =时,即1x =-时min ()2g x =,故2a ≤,综上, a 的取值范围为2a ≤.【点睛】方法点睛:抽象函数通常利用赋值法求函数值或者求解析式;二次函数含参恒成立的问题,一般是通过分离参数进行求解,当然也可以根据判别式法进行求解,视具体情况而定.26.(1)2()1x f x x =+;(2)证明见解析;(3)102t <<. 【分析】(1)由题意可得(0)0f =,可求出b 的值,再由1225f ⎛⎫=⎪⎝⎭可求出a 的值,从而可求出函数()f x 的解析式;(2)利用增函数的定义证明即可;(3)由于函数是奇函数,所以()2(120)f t f t -+<可化为()2()12f t t f <-,再利用单调性可求解不等式【详解】(1)解:因为()f x 是()1,1-上的奇函数,所以(0)0f =,即01b =,得0b =, 因为1225f ⎛⎫= ⎪⎝⎭,所以1221514a =+,解得1a =, 所以2()1x f x x =+ (2)证明:1x ∀,2(0,1)x ∈,且12x x <,则()()()()()()122112122222121211111x x x x x x f x f x x x x x ---=-=++++, 因为1201x x ,所以2212211210,0,(1)(1)0x x x x x x -<->++>,所以()()120f x f x -<,即()()12f x f x <所以()f x 在(0,1)上是增函数.(3)解:因为()f x 在(0,1)上是增函数,且()f x 是()1,1-上的奇函数,所以()f x 是(1,1)-上的奇函数且是增函数,所以()2(120)f t f t -+<可化为()2()12f t t f <-, 所以2211112121t t t t -<-<⎧⎪-<<⎨⎪<-⎩,解得102t <<. 【点睛】关键点点睛:此题函数的奇偶性和单调性的应用,第(3)问解题的关键是利用奇函数的性质将不等式()2(120)f t f t -+<转化为()2()12f t t f <-,进而利用单调性解不等式,考查转化思想和计算能力,属于中档题。
最新北师大版高中数学必修一第二单元《函数》检测卷(含答案解析)(1)

一、选择题1.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.4⎤⎦C .[]3,4-D.⎡⎣3.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x <<D .{|4x x >或0}x <4.以下说法正确的有( ) (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个5.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >6.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-17.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( )A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,48.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭9.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤-D .5(3)()2f f -<-10.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .711.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦12.若函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则实数a 的取值范围是( )A .()4,+∞B .[)4,+∞C .[]4,6D .()0,∞+二、填空题13.函数y x =+______.14.已知函数y =f (n),满足f (1)=2,且f (n+1)=3f (n),n ∈N + .则f (3)=____________. 15.已知(2)1(1)()(1)xa x x f x a x -+<⎧=⎨≥⎩满足对任意121212()(),0f x f x x x x x -≠>-都有成立,那么a 的取值范围是_______16.已知函数()f x 的值域为[]0,4(2,2x),函数()1=-g x ax ,2,2x,[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立,则实数a 的取值范围为________________.17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.18.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).19.已知函数2()2f x x x a =-++,21()7log g x x=+,若对任意1[0,3]x ∈,总存在24x ⎤∈⎦,使得12()()f x g x ≤成立,则实数a 的取值范围是___________.20.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________. 三、解答题21.对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由.22.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.23.已知函数()21axf x x =-(0a ≠). (1)判断函数()f x 的奇偶性并给予证明; (2)若函数()f x 满足()1242f f ⎛⎫-= ⎪⎝⎭,判断函数()f x 在区间()1,+∞的单调性,并用单调性的定义证明.24.已知二次函数()2()f x ax bx a b R =+∈、满足:①()()11f x f x +=-;②对一切x ∈R ,都有()f x x ≤.(1)求()f x ;(2)是否存在实数(),m n m n <使得()f x 的定义域为[],m n 、值域为[]3,3m n ,如果存在,求出m ,n 的值;如果不存在,说明理由.25.已知定义在R 上的函数()f x 对任意,x y R ∈都有等式()()()1f x y f x f y +=+-成立,且当0x >时,有()1f x >.(1)求证:函数()f x 在R 上单调递增;(2)若()34f =,关于x不等式)3f t f +>有解,求t 的取值范围. 26.已知函数2()2(1)4f x x k x =+-+.(Ⅰ)若函数()f x 在区间[2,4]上具有单调性,求实数k 的取值范围; (Ⅱ)若()0f x >对任意的[1,2]x ∈恒成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.2.B解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >. 故选:B 【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.4.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误;(4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.5.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b 时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x 在[],x a b ∈时的值域.6.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦, ()()()()2211122311444f x f x x x x ∴=-=-++=--+,[)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 7.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.8.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =,因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.9.B解析:B 【分析】对于(1)(1)(1)f x f x f +=-+,令0x =,可推出(1)(1)0f f =-=;令2x =-,推出(3)0f -=;令32x =-,推出51()()22f f -=-,最后结合()f x 的单调性得解.【详解】解:对于(1)(1)(1)f x f x f +=-+,令0x =,则(1)(1)(1)f f f =-+,(1)0f ∴-=,()f x 是偶函数,∴(1)(1)0f f =-=,令2x =-,则(21)(21)(1)f f f -+=--+,即(1)(3)(1)f f f -=-+,(3)0f ∴-=, 令32x =-,则33(1)(1)(1)22f f f -+=--+,51()()22f f ∴-=-,()f x 在区间[1-,0]为减函数,51()()(1)0(3)22f f f f ∴-=-<-==-,故选:B . 【点睛】函数的单调性与奇偶性的综合运用,灵活运用赋值法是解题的关键.10.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 11.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.12.C解析:C 【分析】由题意可知二次函数282a y x x =-+在区间(],1-∞上为减函数,函数ay x =在区间()1,+∞上为减函数,且有92aa -≥,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】由于函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则二次函数282ay x x =-+在区间(],1-∞上为减函数,该二次函数的图象开口向上,对称轴为直线4ax =,所以,14a ≥;函数ay x =在区间()1,+∞上为减函数,则0a >,且有92a a -≥.所以,14092a a a a ⎧≥⎪⎪>⎨⎪⎪-≥⎩,解得46a ≤≤.因此,实数a 的取值范围是[]4,6. 故选:C. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,要注意分析每支函数的单调性以及分界点处函数值的大小关系,考查计算能力,属于中等题.二、填空题13.【分析】利用换元法将函数换元构造出新函数由新函数的定义域结合二次函数的性质求出最值即可得到值域【详解】设则所以原函数可化为:由二次函数性质当时函数取最大值2由性质可知函数无最小值所以值域为:故答案为 解析:(],2-∞【分析】利用换元法将函数换元构造出新函数,由新函数的定义域结合二次函数的性质求出最值即可得到值域. 【详解】设)0t t =≥,则21x t =-, 所以原函数可化为:()2210y t t t =-++≥,由二次函数性质,当1t =时,函数取最大值2,由性质可知函数无最小值, 所以值域为:(],2-∞. 故答案为:(],2-∞. 【点睛】本题考查换元法求函数值域,当函数解析式中含有根式时,一般考虑换元法,用换元法时要注意一定写出新变量数的取值范围.14.18【分析】根据递推关系式依次求f(2)f(3)【详解】因为f(n+1)=3f(n)所以【点睛】本题考查根据递推关系求函数值考查基本求解能力解析:18 【分析】根据递推关系式依次求f (2) ,f (3). 【详解】因为f (n+1)=3f (n),所以(2)3(1)6,(3)3(2)18.f f f f ==== 【点睛】本题考查根据递推关系求函数值,考查基本求解能力.15.【解析】由对任意成立可知函数在定义域上为增函数所以:解得答案为:解析:3[,2)2【解析】由对任意()()121212,0f x f x x x x x -≠>-都有成立可知,函数()y f x =在定义域上为增函数,所以:20121a a a a ->⎧⎪>⎨⎪≥-+⎩,解得322a ≤< 答案为:3,22⎡⎫⎪⎢⎣⎭.16.【分析】依题意分析的值域A 包含于的值域B 再对分类讨论得到的值域列关系计算即可【详解】因为总使得成立所以的值域A 包含于的值域B 依题意A=又函数因此当时不满足题意;当时在上递增则故即得;当时在上递减则故解析:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】依题意分析()f x 的值域A 包含于()g x 的值域B ,再对a 分类讨论得到()g x 的值域,列关系计算即可. 【详解】因为[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立, 所以()f x 的值域A 包含于()g x 的值域B ,依题意A =[]0,4, 又函数()1=-g x ax ,2,2x,因此,当0a =时,{}1B =-,不满足题意;当0a >时,()g x 在[]2,2-上递增,则[][]21,210,4B a a =---⊇,故210214a a --≤⎧⎨-≥⎩,即得52a ≥;当0a <时,()g x 在[]2,2-上递减,则[][]21,210,4B a a =---⊇,故210214a a -≤⎧⎨--≥⎩,即得52a ≤-.综上,实数a 的取值范围为55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故答案为:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 【点睛】本题考查了恒成立问题、函数的值域,以及利用包含关系求参数范围问题,属于中档题.17.2【分析】由函数是幂函数求得或结合幂函数的性质即可求解【详解】由题意函数是幂函数可得即解得或当时函数此时在上单调递增符合题意;当时函数此时在上单调递减不符合题意故答案为:【点睛】本题主要考查了幂函数解析:2 【分析】由函数()2(1)mf x m m x =--是幂函数,求得2m =或1m =-,结合幂函数的性质,即可求解. 【详解】由题意,函数()2(1)mf x m m x =--是幂函数,可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意;当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意,故答案为:2. 【点睛】本题主要考查了幂函数的定义及图像与性质的应用,其中解答中熟记幂函数的定义,结合幂函数的图象与性质进行判定是解答的关键,着重考查运算能力.18.【分析】先根据是幂函数求出的值再根据且有得出为增函数进而得到函数解析式再根据函数的奇偶性即可求解【详解】解:是幂函数解得:或当时当时又对且时都有在上单调递增易知的定义域为且为上的奇函数且在上单调递增 解析:<【分析】先根据()()21353m f x m m x+=++是幂函数,求出m 的值,再根据12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,得出()f x 为增函数,进而得到函数解析式,再根据函数的奇偶性即可求解. 【详解】 解:()()21353m f x m m x +=++是幂函数,23531m m +∴+=,解得:23m =-或1m =-, 当23m =-时,()13f x x =,当1m =-时,()01f x x ==,又对12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-,()f x ∴在(0,)+∞上单调递增, ()13f x x∴=,易知()f x 的定义域为R ,且()()()1133f x x x f x -=-=-=-,()f x ∴为R 上的奇函数,且在R 上单调递增, 0a b <+, a b ∴<-,()()()f a f b f b ∴<-=-,()()0f a f b ∴+<.故答案为:<. 【点睛】关键点点睛:本题解题的关键是利用幂函数以及单调性得出函数的解析式.19.【分析】由和的单调性求得它们的最大值由题意可得解不等式可得所求范围【详解】在递增递减可得在递减可得由对任意总存在使得成立可得则解得所以的取值范围是故答案为:【点睛】结论点睛:本题考查不等式的恒成立与解析:13,15⎛⎤-∞- ⎥⎝⎦【分析】由()f x 和()g x 的单调性求得它们的最大值,由题意可得()()max max f x g x ≤,解不等式可得所求范围.【详解】2()2f x x x a =-++在[0]1,递增,[1]3,递减,可得()()11max f x f a ==+, 21()7log g x x=+在⎤⎦递减,可得()max 215g x g ===,由对任意1[0,3]x ∈,总存在24x ⎤∈⎦,使得12()()f x g x ≤成立,可得()()max max f x g x ≤, 则2115a +≤,解得1315a ≤-, 所以a 的取值范围是13,15⎛⎤-∞- ⎥⎝⎦, 故答案为:13,15⎛⎤-∞- ⎥⎝⎦. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.20.【分析】由表达式可知函数为奇函数则等价转换为解不等式即可【详解】因为当时则;同理当时又综上所述为奇函数则即当时解得;当时解得故的解集为故答案为:【点睛】方法点睛:本题考查由分段函数解不等式函数奇偶性 解析:()()2,02,-+∞【分析】由表达式可知,函数()f x 为奇函数,则()()f x f x >-等价转换为()0f x >,解不等式即可 【详解】因为2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,当0x >时,0x -<,则()()()2222f x x x x x -=----=-+,()()f x f x -=-;同理当0x <时,()()()220,22x f x x x x x ->-=---=+,()()f x f x -=-,又()00f =,综上所述()f x 为奇函数,则()()()()f x f x f x f x >-⇔>-,即()20f x >,当0x >时,()2020f x x x >⇔->,解得2x >;当0x <时,()2020f x x x >⇔-->,解得20x -<<,故()()f x f x >-的解集为()()2,02,-+∞故答案为:()()2,02,-+∞【点睛】方法点睛:本题考查由分段函数解不等式,函数奇偶性的判断,常用以下方法: (1)对于分段函数判断奇偶性可用定义法,也可采用数形结合法,结合图象判断; (2)由函数性质解不等式可采用代数法直接运算求解,也可结合函数图象求解.三、解答题21.(1)[]0,1;(2)104m ≤<. 【分析】 1)由函数2yx 在[0,)+∞上是增函数,根据“不变”区间的定义,由22a ab b ⎧=⎨=⎩求解;(2)假设函数存在“不变”区间,根据函数2(0)y x m x =+≥单调递增,由22a m a b m b ⎧+=⎨+=⎩,消去m ,结合a b <,求得a 的范围,再由2m a a =-+,利用二次函数的性质求解. 【详解】 (1)因为函数2yx 在[0,)+∞上是增函数,所以22a ab b⎧=⎨=⎩,解得0a =或1a =,0b =或1b =,因为a b <, 所以 0,1a b ==,所以函数的 “不变”区间是[]0,1;(2)假设函数2(0)y x m x =+≥存在“不变”区间,因为函数2(0)y x m x =+≥单调递增,所以22a m a b m b⎧+=⎨+=⎩,消去m 得22a b a b -=-,即()()+10a b a b --=,因为a b <,所以+10a b -=,即1b a =-, 所以10a a ->≥,解得102a ≤<, 所以221124m a a a ⎛⎫=-+=--+ ⎪⎝⎭, 所以104m ≤<,所以实数m 的取值范围是104m ≤< 【点睛】关键点点睛:本题第二问关键是由a b <,即10a a ->≥求得a 的范围. 22.(1)0a =;(2)62a -≤≤. 【分析】(1)当0a =时,由()43f x x =+判断,当0a ≠时,由()(),f a f a -的关系判断;(2)根据()g x 是偶函数,将()()6g x a g x +≤-,转化为 ()()6g x a g x +≤-,再根据()g x 在[)0,+∞是增函数,转化为[]1,2x ∈时,6x a x +≤-恒成立求解. 【详解】(1)当0a =时,()43f x x =+是偶函数,当0a ≠时,a a ≠-,而()()()420f a f a a --=≠,()f x 不可能是偶函数,所以当0a =时,()f x 是偶函数;(2)由()g x 是偶函数知()()g x a g x a +=+,()()66g x g x -=-,且x a +,60x -≥,因为()g x 在[)0,+∞是增函数,及()()6g x a g x +≤-,所以当[]1,2x ∈时,6x a x +≤-恒成立, 即当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,66x x a x -≤+≤-恒成立, 即当[]1,2x ∈时,662a x -≤≤-恒成立,所以62a -≤≤. 【点睛】方法点睛:函数奇偶性与单调性求参数问题,当涉及到偶函数时,要利用()()()f x f x f x -==转化为求解.23.(1)奇函数,证明见解析;(2)在区间()1,+∞单调递减,证明见解析. 【分析】(1)求出函数的定义域,直接得到()f x 和()f x -的关系即可得结果; (2)由题意解出a 的值,由单调性的定义即可得结果. 【详解】(1)函数()y f x =是奇函数,证明如下:()y f x =的定义域为{}1x x ≠±,又()()()()2211a x axf x f x x x --==-=--+-+ ∴()y f x =是定义在{}1x x ≠±的奇函数.(2)∵()1242f f ⎛⎫-= ⎪⎝⎭,即21242433112aa a -==⎛⎫- ⎪⎝⎭,解得:3a = ∴()231xf x x =-,1x ,()21,x ∈+∞且12x x < ()()()()()()()()()()1212221222122112212222121231313111331111x x x x x x x x x x x x f x f x x x x x -=----+-=---=--- ∵1x ,()21,x ∈+∞且12x x <,∴2110x ->,2210x ->,1210x x ->,210x x ->∴()()12f x f x >,∴()y f x =在区间()1,+∞单调递减. 【点睛】利用定义证明函数单调性的步骤:(1)取值;(2)作差;(3)化简;(4)下结论.24.(1)21()2f x x x =-+;(2)存在,40m n =-⎧⎨=⎩.【分析】(1)由(1)(1)f x f x +=-,得到20b a +=,再由()f x x ≤恒成立,列出方程组,求得,a b 的值,得到函数的解析式;(2)假设存在()m n m n <、,根据题意得到[],m n 必在对称轴的左侧,且()f x 在[],m n 单调递增,列出方程组,即可求解. 【详解】(1)因为22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++,22(1)(1)(1)(2)f x a x b x ax a b x a b -=-+-=-+++,由()()11f x f x +=-可知,20a b +=,由于对一切x ∈R ,都有()f x x ≤即2()(1)0f x x ax b x -=+-≤,于是由二次函数的性质可得()()21400*a b a <⎧⎪⎨∆=--⨯≤⎪⎩由()*知()210b -≤,而()210b -≥,所以()210b -=即1b =,将1b =代入20a b +=得12a =-,所以21()2f x x x =-+; (2)因为221111()(1)2222f x x x x =-+=--+≤, 若存在满足条件的实数(),m n m n <则必有132n ≤,解得16n ≤, 又因为()f x 在(],1-∞上单调递增,所以()f x 在[],m n 上单调递增.所以()()33fm m fn n ⎧=⎪⎨=⎪⎩,22132132m m mn n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得40m n =-⎧⎨=⎩或04m n =⎧⎨=-⎩,因为m n <,所以4m n =-⎧⎨=⎩,故存在4m n =-⎧⎨=⎩满足条件.【点睛】关键点点睛:本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,以及根据函数的值域判断出函数在[,]m n 上的单调性是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 25.(1)证明见解析;(2)()1-+∞. 【分析】(1)任取12,x x R ∈,且12x x <,先得到()211f x x ->,再作差得到()()21f x f x -,判断其正负,根据单调性的定义,即可求出结果;(2)先由()34f =,根据题中条件,得到()12f =,将原不等式化为)(1)ft f >,根据(11t >,令[])2,2y x =∈-,求出其最大值,即可得出结果.【详解】(1)任取12,x x R ∈,且12x x <,则210x x ->,所以()211f x x ->, 又()()()21211f x f x f x x =+--,所以()()()212110f x f x f x x -=-->,即()()21f x f x >. 故函数()f x 在R 上单调递增.(2)因为(3)(1)(2)1(1)1(1)(1)13(1)24f f f f f f f =+-=-++-=-=, 所以()12f =,原不等式等价于))12(1)ft fft f +-=>=,1t >1t >-有解,因此只需max1t >-,令[])2,2y x =∈-,则24y =+()2,0-上单调递增,在()0,2上单调递减,所以()2max48y=+=,所以max y =因此1t -<1t >-,故t 的取值范围为()1-+∞. 【点睛】 关键点点睛:求解本题第二问的关键在于根据(1)中判断的函数单调性,将问题转为不等式1t >能成立的问题,利用分离参数的方法,分离出参数,再构造函数,通过求函数最值,即可求解.26.(1)(,3][1,)-∞-⋃-+∞(2)()1,-+∞ 【分析】(1)根据二次函数对称轴与区间关系,即可求解; (2)分离参数可得42(1)4k x ->--,求出44y x =--的最大值即可求解. 【详解】(1)由函数2()2(1)4f x x k x =+-+知,函数()f x 图象的对称轴为1x k =-. 因为函数()f x 在区间[]2,4上具有单调性, 所以12k -≤或14k -≥, 解得3k ≤-或1k ≥-,所以实数k 的取值范围为(,3][1,)-∞-⋃-+∞. (2) 因为()0f x >对任意的[1,2]x ∈恒成立, 所以可得42(1)k x x->--对任意的[1,2]x ∈恒成立,因为44()44y x x x =--=-+≤-=-,当且仅当2x =时等号成立, 即max 4y =-, 所以只需2(1)4k ->-, 解得1k -<,所以实数k 的取值范围为()1,-+∞. 【点睛】关键点睛:不等式在某区间上恒成立求参数的取值范围,一般需要分离参数,转化为求最值问题,往往可以利用函数单调性或均值不等式求最值,即可求出答案,本题中利用了均值不等式,特别注意等号是否能取到,否则不能用均值不等式求最值.。
2018-2019学年高中数学必修一第一章集合与函数概念测评A卷(含详细答案)

2018-2019学年高中数学必修一第二章基本初等函数测评A 卷(考试时间:120分钟 总分:150分)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦千净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1A =-,{}2,0,2B =-,则集合A B =( )A .0B .∅C .{}0D .{}12.设全集U =R ,集合22{|}M y y x x U ∈==+,,集合3{|}N y y x x U ∈==,, 则M N 等于( )A .{1,3,2,6}B .{(1,3),(2,6)}C .MD .{3,6}3.如图1所示,阴影部分表示的集合是( ) A .()U BA ðB .()U AB ðC .()U A B ðD .()U AB ð图14.设全集U ={x |0<x <10,x ∈Z },A ,B 是U 的两个真子集,()(){}1,9UUA B =痧,A ∩B ={2},(){}4,6,8U A B =ð,则( )A .5A ∈,且5∉B B .5∉A ,且5∉BC .5A ∈,且5B ∈D .5∉A ,且5B ∈5.下列各图中,可表示函数y =f (x )的图象的只可能是( )6.函数()12f x x =+的定义域是( ) A .[)3,-+∞B .[)3,2--C .[)()3,22,---+∞D .()2,-+∞7.数()f x ,()g x 由下列表格给出,则()3f g =⎡⎤⎣⎦( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .4B .3C .2D .18.已知函数()2,0,0x x f x x x ≥⎧⎪⎨<⎪⎩=,则2[()]f f -的值是( )A .2B .2-C .4D .4-9.函数223y x x -=+,12x -≤≤的值域是( ) A .RB .[3,6]C .[2,6]D .[2,)+∞10.已知函数f (x )()()00,∞∞-,+上的奇函数,且当x <0时,函数的部分图象如图4所示,则不等式xf (x )<0的解集是( )图4A .()2,112(),--B .()2,10,)(2,(1)--+∞C .()(),21,01(,2)--∞- D .(),21,00,12,()()()∞-+∞--11.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,)+∞上是减函数,f (7)=6,则f (x )( )A .在[]7,0-上是增函数,且最大值是6B .在[]7,0-上是减函数,且最大值是6C .在[]7,0-上是增函数,且最小值是6D .在[]7,0-上是减函数,且最小值是612.定义在R 上的偶函数f (x )满足:对任意12(,]0x x -∈∞, (x 1≠x 2),都有2121>0x x f x f x -()-(),则( )A .5()f -<f (4)<f (6)B .f (4)<5()f - <f (6)C .f (6)<5()f -<f (4)D .f (6)<f (4)<5()f -第Ⅱ卷(非选择题)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.设P 和Q 是两个集合,定义集合{|}P Q x x P x Q -=∈∉,且,若P ={1,2,3,4},Q=x ⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭R ,则P Q -=________.14.函数y ________.15.若函数()2(12)f x kx k x -=++是偶函数,则f (x )的递减区间是________. 16.设函数()1,0221,02x x x x f x x ⎧-<<⎪=⎨--≤≥⎪⎩或,则函数y =f (x ),y =12的图象的交点个数是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,()U A B ð;(2)若A C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},{|(02)14B x x x x ⎛⎫ ⎪⎝-⎭=+=,x ∈Z}.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值. 20.(12分)某公司生产的水笔上年度销售单价为08.元,年销售量为1亿支.本年度计划将销售单价调至055075.~.元(含端点值),经调查,若销售单价调至x 元,则本年度新增销售量y (亿支)与04x -.成反比,且当065x =.时,08y =.. (1)求y 与x 的函数关系式;(2)若每支水笔的成本价为03.元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,(1)求函数f(x)和g(x);(2)判断函数f(x)+g(x)的奇偶性.(3)求函数f(x)+g(x)在(上的最小值.22.(12分)函数f(x)=21ax bx++是定义在()1,1-上的奇函数,且1225f⎛⎫=⎪⎝⎭.(1)求f(x)的解析式;(2)证明f(x)在()1,1-上为增函数;(3)解不等式f(t-1)+f(t)<0.2018-2019学年高中数学必修一第二章基本初等函数测评A 卷答 案一、选择题 1.【答案】C【解析】因为集合{}1,0,1A =-,{}2,0,2B =-,所以{}0A B =,故选C .2.【答案】C【解析】,[)2M ∞=+,N =R ..故选C . 3.【答案】A【解析】因为阴影部分既在集合U B ð中又在集合A 中, 所以阴影部分为()U B A ð,故选A .4.【答案】A【解析】可借助Venn 图(如图2)解决,数形结合.故选A .图25.【答案】A【解析】根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系. 故选A . 6.【答案】C【解析】由题可得:30320x x x ⎧⎨≥≠⎩+⇒≥-+且2x ≠-,故选C . 7.【答案】A【解析】由表可知()32g =,()()324f g f ==⎡⎤⎣⎦,故选A . 8.【答案】C【解析】∵2x =-,而20-<,∴2()(224)f --==. 又4>0,∴()[()244]f f f -==.故选C . 9.【答案】C【解析】画出函数223y x x -=+,12x -≤≤的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].故选C . 10.【答案】D【解析】xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论.故选D . 11.【答案】B【解析】∵f (x )是偶函数,∴f (x )的图象关于y 轴对称. ∴f (x )在[]7,0-上是减函数,且最大值为6.故选B . 12.【答案】C【解析】∵对任意12(,]0x x -∈∞,(x 1≠x 2),都有2121>0x x f x f x -()-(),∴对任意12(,]0x x -∈∞,,若x 1<x 2,总有f (x 1)<f (x 2), ∴f (x )在(]0-∞,上是增函数.∴()()()456f f f --->>. 又∵函数f (x )是偶函数,∴()()66f f -=,()()44f f -=, ∴f (6)<5()f -<f (4).故选C .二、填空题 13.【答案】{4}【解析】因为x Q ∉,所以x Q ∈R ð,又17Q=x|x<22⎧⎫≤⎨⎬⎩⎭,故∁17|22Q x x x ⎧⎫=<≥⎨⎬⎩⎭R ,或ð,故P Q -={4}.14.【答案】(],3-∞-【解析】由2230x x +-≥,得x ≥1或3x ≤-, ∴函数减区间为(],3-∞-.此卷只装订不密封班级 姓名 准考证号 考场号 座位号15.【答案】(]0-∞, 【解析】∵f (x )是偶函数,∴()2212()(12)()f x kx k x kx k x f x -+=-+-==-+. ∴1k =.∴f (x )=x 2+2,其递减区间为(]0-∞,. 16.【答案】4【解析】函数y =f (x )的图象如图5所示, 则函数y =f (x )与y =12的图象的交点个数是4.图5三、解答题 17.【答案】(1){}|18AB x x =<≤,()U A B ð={x |1<x <2};(2)a <8. 【解析】(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. U A ð={x |x <2或x >8}.∴()U A B ð={x |1<x <2}.(2)∵A C ≠∅,∴a <8. 18.【答案】1,{}1|a a a ≤-或=.【解析】由{|(02)14B x x x x ⎛⎫ ⎪⎝-⎭=+=,x ∈Z},得,0{}4B =-.由A ∩B =A ,得A ⊆B .于是,A 有四种可能, 即A ∅=,4{-}A =,A ={0},,{}40A -=. 以下对A 分类讨论:(1)若A ∅=,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若4{-}A =,则Δ=8a +8=0,解得a =-1. 此时x 2+2(a +1)x +a 2-1=0可化为x 2=0, 所以x =0,这与x =-4是矛盾的; (3)若A ={0},则由(2)可知,a =-1;(4)若A ={-4,0},则()288021410a a a ∆⎧=+>⎪-+=-⎨⎪-=⎩,解得a =1.综上可知,a 的取值范围1,{}1|a a a ≤-或=. 19.【答案】(1)见解析;(2)0.【解析】(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=(-2x 1+m )-2()2x m -+=2(x 2-x 1), ∵x 1<x 2,∴x 2-x 1>0.∴f (x 1)>f (x 2) ∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数, ∴对任意x ∈R ,有f (-x )=-f (x ).∴2x +m =-(-2x +m ).∴m =0. 20.【答案】(1)y =152x -00)555(7x ≤≤..;(2)06.元. 【解析】(1)设y =0.4kx -,由065x =.,08y =.,得02k =., 所以y =152x -00)555(7x ≤≤... (2)依题意,1()1031()(0)8031202%5x x ⎛⎫+⋅-⨯-⨯ ⎪⎝⎭--.=.., 解得x =06.或x =05.(舍去),所以水笔销售单价应调至06.元. 21.【答案】(1)f (x )=x ,g (x )=2x;(2)奇函数;(3) 【解析】(1)设()1f x k x =,g (x )=2k x,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴111k ⨯=,221k =. ∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x. (2)设h (x )=f (x )+g (x ),则()2h x x x+=,∴函数h (x )的定义域是()()0,,0∞-∞+.∵h (-x )=-x +2x-=-2x x ⎛⎫+ ⎪⎝⎭=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数. (3)由(2)知()2h x x x+=,设x 1,x 2是(上的任意两个实数,且x 1<x 2, 则h (x 1)-h (x 2)=112x x ⎛⎫+ ⎪⎝⎭-222x x ⎛⎫+ ⎪⎝⎭=(x 1-x 2)+1222x x ⎛⎫- ⎪⎝⎭=(x 1-x 2)1221x x ⎛⎫- ⎪⎝⎭=()()1212122x x x x x x --, ∵x 1,x 2∈(,且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(上是减函数,函数h (x )在(上的最小值是h=即函数f (x )+g (x )在(上的最小值是 22.【答案】(1)f (x )=21xx+;(2)见解析;(3)1t|0<t<2⎧⎫⎨⎬⎩⎭. 【解析】(1)由题意得001225f f ()=⎧⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得10a b =⎧⎨=⎩,所以f (x )=21x x +. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1, 则12121212222212121()()=1111x x x x x x f x f x x x x x (-)(-)--=++(+)(+). 因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0, 所以f (x 1)-f (x 2)<0,故f (x )在()1,1-上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ). 由(2)知,f (x )在()1,1-上是增函数,所以-1<t -1<-t <1,解得0<t <12, 所以原不等式的解集为1t|0<t<2⎧⎫⎨⎬⎩⎭.。
最新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(2)

一、选择题1.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R2.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-3.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)4.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉5.函数sin y x x =的图象可能是( )A .B .C .D .6.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( )A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞7.已知定义在R 上的函数()2||·x f x x e =, ()35a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>8.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭9.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( )A .()2018fB .()2019fC .()2020fD .()2021f10.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .11.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3812.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.已知二次函数()()22,f x x ax b a b R =++∈,,M m 分别是函数()f x 在区间[]0,2的最大值和最小值,则M m -的最小值是________14.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.15.已知函数y =f (n),满足f (1)=2,且f (n+1)=3f (n),n ∈N + .则f (3)=____________.16.函数()()02f x x =-的定义域为______.17.若()22f x x ax =-+与()ag x x=在区间[]1,2上都是减函数,则a 的取值范围是______. 18.函数y =的定义域是R ,则a 的取值范围是_________.19.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________.20.若函数234y x x =--的定义域为[0,]m ,值域为25[,4]4--,则m 的取值范围______.三、解答题21.已知函数()21f x x=- (1)证明函数()f x 在()0,∞+上是减函数. (2)求函数()f x 在[)2,x ∈+∞时的值域.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域.23.已知二次函数()2f x x bx c =++的图象经过点()1,13,且函数12y f x ⎛⎫=-⎪⎝⎭是偶函数.(1)求()f x 的解析式;(2)已知2t <,()()213g x f x x x ⎡⎤=--⋅⎣⎦,求函数()g x 在区间[],2t 上的最大值和最小值;24.已知函数()2h x x bx c =++是偶函数,且()20h -=,()()h x f x x=. (1)当[]1,2x ∈时,求函数()f x 的值域; (2)设()221642F x x a x x x ⎛⎫=+-- ⎪⎝⎭,[]1,2x ∈,a ∈R ,求函数()F x 的最小值()g a ;(3)对(2)中的()g a ,若不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立,求实数t 的取值范围.25.已知函数21.2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,(1)求(5)f -,(f ,5(())2f f -的值; (2)若()3f a =,求实数a 的值.26.已知二次函数2()1(,)f x ax bx a b R =++∈,x ∈R .(1)若函数()f x 的最小值为(1)0f -=,求()f x 的解析式,并写出单调区间; (2)在(1)的条件下,()f x x k >+在区间[-3,-1]上恒成立,试求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数,①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.2.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.3.D解析:D 【分析】任设120x x <<,则211x x >,21()1x f x <-,根据定义可得()f x 在(0,)+∞上为递减函数,令1x y ==得(1)1f =-,令18,8x y ==可得(8)4f =-,可得(2)2f =-,将不等式化为[(3)](2)f x x f ->,利用单调性和定义域可解得结果. 【详解】任设120x x <<,则211x x >,21()1x f x <-, 所以()()()()222111111111x x f x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=++<-+= ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上为递减函数,在()()()1f xy f x f y =++中,令1x y ==得(1)2(1)1f f =+,得(1)1f =-,令18,8x y ==得11(1)(8)(8)()188f f f f =⨯=++,所以(8)1124f =---=-, 又(8)(2)(4)1f f f =++(2)(2)(2)113(2)2f f f f =++++=+4=-,所以(2)2f =-,()(3)3f x f x +->-可化为()(3)12(2)f x f x f +-+>-=,所以[(3)](2)f x x f ->,所以030(3)2x x x x >⎧⎪->⎨⎪-<⎩,解得01x <<或23x <<.故选:D 【点睛】关键点点睛:利用定义判断函数的单调性以及求出(2)f 是解题关键.4.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.5.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.6.C解析:C由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.7.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log 5log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>, ∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.8.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =,因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.9.D解析:D 【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D 【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.10.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果. 【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】求出函数的对称轴通过讨论的范围求出函数的单调区间求出的最小值即可【详解】由题意二次函数其对称轴为当即时在区间上为增函数当即时在区间上为减函数当即时在区间上为减函数在区间上为增函数;当即时在区 解析:2【分析】求出函数的对称轴,通过讨论a 的范围,求出函数的单调区间,求出M m -的最小值即可. 【详解】由题意,二次函数()2222248a a f x x ax b x b ⎛⎫=++=++- ⎪⎝⎭,其对称轴为4a x =-,当04a-≤,即0a ≥时,()f x 在区间[]0,2上为增函数, ∴()228M f a b ==++,()0m f b ==, ∴288M m a -=+≥,当24a-≥,即8a ≤-时,()f x 在区间[]0,2上为减函数, ∴()0M f b ==,()282m f a b ==++, ∴828M m a -=--≥,当014a <-≤,即40a -≤<时,()f x 在区间0,4a ⎡⎤-⎢⎥⎣⎦上为减函数,在区间,24a ⎡⎤-⎢⎥⎣⎦上为增函数,∴()228M f a b ==++,248a a m f b ⎛⎫=-=- ⎪⎝⎭,∴()21828M m a -=+≥;当124a <-<,即84a -<<-时,()f x 在区间0,4a ⎡⎤-⎢⎥⎣⎦上为减函数,在区间,24a ⎡⎤-⎢⎥⎣⎦上为增函数,∴()0M f b ==,248a a m f b ⎛⎫=-=- ⎪⎝⎭,∴228a M m -=>.综上所述:M m -的最小值是2. 故答案为:2. 【点睛】本题考查了二次函数的性质,函数的单调性,最值问题,分类讨论思想,转化思想,属于中档题.14.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +, 由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.15.18【分析】根据递推关系式依次求f(2)f(3)【详解】因为f(n+1)=3f(n)所以【点睛】本题考查根据递推关系求函数值考查基本求解能力解析:18 【分析】根据递推关系式依次求f (2) ,f (3). 【详解】因为f (n+1)=3f (n),所以(2)3(1)6,(3)3(2)18.f f f f ==== 【点睛】本题考查根据递推关系求函数值,考查基本求解能力.16.且【分析】由中根式内部的代数式大于等于00指数幂的底数不为0联立不等式组求解【详解】由解得且x≠2∴函数的定义域是】且即答案为】且【点睛】本题考查函数的定义域及其求法是基础题解析:{|1x x ≥-且}2x ≠ 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】由1020x x +≥⎧⎨-≠⎩,解得1x ≥-且x≠2.∴函数()()02f x x =-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠ 【点睛】本题考查函数的定义域及其求法,是基础题.17.【分析】根据二次函数和分式函数的单调性求解即可【详解】根据与在区间上都是减函数又的对称轴为所以又在区间上是减函数所以所以即的取值范围为故答案为:【点睛】本题考查了已知函数的单调性求参数问题考查了数学解析:(]01, 【分析】根据二次函数和分式函数的单调性求解即可. 【详解】根据2()2f x x ax =-+与()ag x x=在区间[1,2]上都是减函数, 又()f x 的对称轴为x a =,所以1a ≤, 又()ag x x=在区间[1,2]上是减函数,所以0a > 所以01a <≤,即a 的取值范围为(]01,. 故答案为:(]01,【点睛】本题考查了已知函数的单调性求参数问题,考查了数学运算能力.属于中档题.18.【分析】根据函数的解析式可知当定义域为时说明在上恒成立则对进行分类讨论确定满足条件的的范围【详解】由题意可得在上恒成立①当时则恒成立符合题意;②当时则解得综上可得∴实数的取值范围为故答案为:【点睛】 解析:[)0,4【分析】根据函数的解析式,可知当定义域为R 时,说明210ax ax ++>在R 上恒成立,则对a 进行分类讨论,确定满足条件的a 的范围. 【详解】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4. 【点睛】不等式20ax bx c ++>的解是全体实数(或恒成立)的条件是:当0a =时,00b c >=,;当0a ≠时,00a >⎧⎨∆<⎩; 不等式20ax bx c ++<的解是全体实数(或恒成立)的条件是当0a =时,00bc <=,;当0a ≠时,00a <⎧⎨∆<⎩.19.【分析】由表达式可知函数为奇函数则等价转换为解不等式即可【详解】因为当时则;同理当时又综上所述为奇函数则即当时解得;当时解得故的解集为故答案为:【点睛】方法点睛:本题考查由分段函数解不等式函数奇偶性 解析:()()2,02,-+∞【分析】由表达式可知,函数()f x 为奇函数,则()()f x f x >-等价转换为()0f x >,解不等式即可 【详解】因为2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,当0x >时,0x -<,则()()()2222f x x x x x -=----=-+,()()f x f x -=-;同理当0x <时,()()()220,22x f x x x x x ->-=---=+,()()f x f x -=-,又()00f =,综上所述()f x 为奇函数,则()()()()f x f x f x f x >-⇔>-,即()20f x >,当0x >时,()2020f x x x >⇔->,解得2x >;当0x <时,()2020f x x x >⇔-->,解得20x -<<,故()()f x f x >-的解集为()()2,02,-+∞故答案为:()()2,02,-+∞【点睛】方法点睛:本题考查由分段函数解不等式,函数奇偶性的判断,常用以下方法: (1)对于分段函数判断奇偶性可用定义法,也可采用数形结合法,结合图象判断; (2)由函数性质解不等式可采用代数法直接运算求解,也可结合函数图象求解.20.;【分析】根据函数的函数值结合函数的图象即可求解【详解】又故由二次函数图象可知:要使函数的定义域为值域为的值最小为;最大为3的取值范围是:故【点睛】本题考查了二次函数的定义域值域特别是利用抛物线的对解析:332m ≤≤; 【分析】根据函数的函数值325 ()24f=-,()(0)34f f==-,结合函数的图象即可求解.【详解】22325()34()24f x x x x=--=--,325()24f∴=-,又()(0)34f f==-,故由二次函数图象可知:要使函数234y x x=--的定义域为[0,]m,值域为25[,4]4--m的值最小为32;最大为3.m的取值范围是:332m.故332m【点睛】本题考查了二次函数的定义域、值域,特别是利用抛物线的对称特点进行解题,考查了数形结合思想,属于基础题.三、解答题21.(1)证明见解析;(2)(]1,0-.【分析】(1)在()0,∞+上任意取两个实数1x,2x,且12x x<,然后怍差()()()2112122x xf x f xx x--=判断其符号即可.(2)根据(1)知()f x 在[)2,+∞上是减函数,由2x =取得最大值,再由20x>确定值域. 【详解】(1)在()0,∞+上任意取两个实数1x ,2x ,且12x x <, 则有()()()2112121222211x x f x f x x x x x --=--+=, 又因为120x x <<,所以210x x ->,120x x >, 所以()()120f x f x ->,即()()12f x f x >, 所以()f x 在()0,∞+上是减函数.(2)由(1)知()f x 在[)2,+∞上是减函数, 所以当2x =时()max 0f x =, 又因为20x>,所以211x ->-,所以函数()f x 在()0,∞+上的值域为(]1,0-. 【点睛】方法点睛:判断函数单调性的常用方法:(1)定义法和导数法,注意证明函数单调性只能用定义法和导数法;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.22.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++, 则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x x x x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <,即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111xa -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数. 23.(1)()211f x x x =++;(2)见详解.【分析】(1)根据二次函数过点()1,13,得到12b c +=,根据函数奇偶性,得到()y f x =关于直线12x =-对称,求出b ,得出c ,即可得出函数解析式;(2)先由(1)得到()222,02,0x x x g x x x x ⎧-≥=⎨-+<⎩,分别讨论12t ≤<,01t ≤<,10t ≤<,1t <四种情况,结合二次函数的性质,即可求出最值.【详解】(1)因为二次函数()2f x x bx c =++的图象经过点()1,13,所以131b c =++,即12b c +=①; 又函数12y f x ⎛⎫=-⎪⎝⎭是偶函数,所以12y f x ⎛⎫=- ⎪⎝⎭关于y 轴对称,因此()y f x =关于直线12x =-对称;所以122b -=-,即1b =,代入①式可得11c =, 所以()211f x x x =++; (2)由(1)()211f x x x =++,所以()()()22222,0111322,0x x x g x x x x x x x x x x ⎧-≥=++--⋅=-⋅=⎨-+<⎩,因为()11g =-,当0x <时,由221x x -+=-解得1x = 因为[],2x t ∈,所以当12t ≤<时,()22g x x x =-在[],2t 上单调递增;所以()()max 20g x g ==,()()2min 2g x g t t t ==-;当01t ≤<时,()22g x x x =-在(),1t 上单调递减,在()1,2上单调递增;所以()()max 20g x g ==,()()min 11g x g ==-;当10t <时,因为0x <时,()22g x x x =-+在[),0t 上单调递增,则(()()()1100g g t g x g -=≤≤<=; []0,2x ∈时,()22g x x x =-在()0,1上单调递增,在()1,2上单调递增,所以()()()[]1,21,0g x g g ∈=-⎡⎤⎣⎦, 所以()()max 20g x g ==,()()min 11g x g ==-;当1t <时,因为0x <时,()22g x x x =-+在[),0t 上单调递增,所以()(()()1100g t g g x g <-=-≤<<;[]0,2x ∈时,()[]221,0g x x x =-∈-,所以()()max 20g x g ==,()()2min 2g x g t t t ==-+;综上,函数()g x 在区间[],2t 上的最大值()()max 20g x g ==,最小值为()2min22,11,112,12t t t g x t t t t ⎧-+<⎪⎪=--≤<⎨⎪-≤<⎪⎩. 【点睛】 方法点睛:二次函数在闭区间上的最值问题主要有三种类型:(1)轴定区间定;(2)轴动区间定;(3)轴定区间动;不论哪种类型,解题时,都是讨论对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.24.(1)[]3,0-;(2)()()2617,(3)8,308,(0)a a g a a a a +<-⎧⎪=--≤≤⎨⎪>⎩;(3)(4,)-+∞.【分析】(1)函数()2h x x bx c =++是偶函数,则0b = ,由()20h -=得出答案.(2)()24428F x x a x x x ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭,设4t x x =-,当[]1,2x ∈时,由(1)可知,3,0t ,即求228y t at =-+ ,在3,0t上的最小值,由对称轴和区间的位置关系进行分类讨论得出答案.(3)当()3,0a ∈-时,()28g a a =-,则22824a a at ->-++对于任意的()3,0a ∈-恒成立,即24a at +>对于任意的()3,0a ∈-恒成立,所以4a t a+<对于任意的()3,0a ∈-恒成立,从而可得出答案.【详解】(1)函数()2h x x bx c =++是偶函数,则0b =()240h c -=+=,4c =- ,所以()24h x x =-则()244x f x x x x-==-当[]1,2x ∈时,()4f x x x=-单调递增. 所以()()()3120f f x f -==≤≤=所以当[]1,2x ∈时,函数()f x 的值域为[]3,0-(2)()22216444228F x x a x x a x x x x x ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 设4t x x=-,当[]1,2x ∈时,由(1)可知,3,0t228y t at =-+ ,3,0t,其对称轴方程为t a =当3a <-时,228y t at =-+在3,0t 上单调递增,则其最小值为176a + 当0a >时,228y t at =-+在3,0t上单调递减,则其最小值为8当30a -≤≤时,228y t at =-+在[]3,a -上单减,在[],0a 上单增, 所以当x a =时,则其函数的最小值为28a -+所以2617(3)()8,(30)8(0)a a g a a a a +<-⎧⎪=--≤≤⎨⎪>⎩,,(3)若不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立当()3,0a ∈-时,()28g a a =-,则22824a a at ->-++对于任意的()3,0a ∈-恒成立即24a at +>对于任意的()3,0a ∈-恒成立 所以4a t a+<对于任意的()3,0a ∈-恒成立,由函数4y a a =+在()3,2--上单调递增,在()2,0-上单调递减. 所以当2x =-时,4y a a=+有最大值4- ,所以4t >- 不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立,实数t 的取值范围是()4+-∞,【点睛】关键点睛:本题考查求二次函数的解析式和分类讨论求二次函数的最小值以及分离参数求差参数的范围,解答本题的关键是由二次函数的对称轴方程与区间的相对位置关系讨论求函数的最小值,和分离参数法求参数的范围,即24a at +>对于任意的()3,0a ∈-恒成立 所以4a t a+<对于任意的()3,0a ∈-恒成立,属于中档题. 25.(1)(5)4f -=-,(3f =-53(())24f f -=-;(2)1a =或2a =. 【分析】(1)本题首先可以根据题意明确函数()f x 在各段的解析式,然后代入值进行计算即可; (2)本题可分为2a ≤-、22a -<<、2a ≥三种情况进行讨论,依次求解()3f a =,即可得出结果.【详解】(1)因为函数21,2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,所以()5514f -=-+=-,(((223f =+⨯=-5531222f ⎛⎫-=-+=- ⎪⎝⎭,253339323222244f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=-+⨯-=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (2)当2a ≤-时,(13)f a a +==,解得2a =,不合题意,舍去;当22a -<<时,2(3)2f a a a ,即()()130a a -+=,解得1a =或3a =-(舍去),故此时1a =;当2a ≥时,()213f a a =-=,即2a =,综上所述,1a =或2a =.【点睛】本题考查分段函数值的求法以及根据分段函数值求自变量,能否明确分段函数在各段的解析式是解决本题的关键,根据分段函数值求自变量时要注意求出的自变量是否在取值范围内,考查分类讨论思想,是中档题.26.(1)2(1)2f x x x =++;单调递增区间为[-1,+∞),单调递减区间为(-∞,-1];(2)(-∞,1).【分析】(1)由1x =-时二次函数最小值为0,求出,a b 得函数解析式,写单调区间即可;(2)可转化为21k x x <++在区间[-3,-1]上恒成立,求出21y x x =++最小值即可.【详解】(1)由题意知12(1)10b a f a b ⎧-=-⎪⎨⎪-=-+=⎩,解得12a b =⎧⎨=⎩,∴2(1)2f x x x =++.由2()(1)f x x =+知函数()f x 的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,221x x x k ++>+在区间[-3,-1]上恒成立,即21k x x <++在区间[-3,-1]上恒成立,令2()1g x x x =++,x ∈[-3,-1],由213()()24g x x =++知 g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,故k 的取值范围是(-∞,1).【点睛】 关键点点睛:二次函数的解析式求法,大多用到待定系数法,本题需根据当1x =-时二次函数最小值为0,建立方程组求解,即可求出函数解析式.。
最新北师大版高中数学必修一第二单元《函数》测试(含答案解析)(2)

一、选择题1.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <2.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .1()()2xf x =B .()lg f x x =C .()f x x =-D .1()f x x=3.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >4.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,35.对二次函数()2f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ). A .1-是()0f x =的一个解 B .直线1x =是()f x 的对称轴 C .3是()f x 的最大值或最小值D .点()2,8在()f x 的图象上6.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .67.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉8.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( )A .0B .12C .1D .29.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,10.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2C .()1,2D .(],1-∞ 11.设函数()y f x =在(),-∞+∞上有定义,对于给定的正数K ,定义函数(),()()()k f x f x K f x K f x K≤⎧=⎨>⎩,, 取函数()||()1x f x a a -=>,当1K a =时,函数()k f x 在下列区间上单调递减的是( )A .(),0-∞B .(),a -+∞C .(),1-∞-D .()1,+∞12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.已知函数(3)5,1()2,1a x x f x a x x--≤⎧⎪=⎨->⎪⎩是R 上的增函数,则a 的取值范围是________.14.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.15.已知定义在R 上的偶函数()f x 满足:()()14f x f x +=,当(]0,2x ∈时,()2x f x =,则()2019f =_____.16.若函数2(21)1,0()(2),0b x b x f x x b x x -+->⎧=⎨-+-≤⎩,满足对任意12x x ≠,都有1212()()0f x f x x x ->-成立,那么b 的取值范围是_____.17.若函数2()f x x k =+,若存在区间[,](,0]a b ⊆-∞,使得当[,]x a b ∈时,()f x 的取值范围恰为[,]a b ,则实数k 的取值范围是________. 18.若函数()log (3)4,1(43)41,1a x x f x a x a x ++≥-⎧=⎨-+-<-⎩且满足对任意的实数m n ≠都有()()0f m f n m n-<-成立,则实数a 的取值范围____.19.已知函数22, 1()+1, 1x ax x f x ax x ⎧-+≤=⎨>⎩,若()f x 在定义域上不是单调函数,则实数a 的取值范围是_______.20.已知函数2262()2x ax x f x a x x⎧-+⎪=⎨>⎪⎩,≤,,是R 上的减函数,则a 的取值范围为______.三、解答题21.已知函数()21f x x=- (1)证明函数()f x 在()0,∞+上是减函数. (2)求函数()f x 在[)2,x ∈+∞时的值域.22.设函数()f x 的定义域是(0,)+∞,且对任意的正实数,x y 都有()()()f xy f x f y =+恒成立,已知(2)1f =,且1x >时,()0f x >. (1)求12f ⎛⎫⎪⎝⎭的值; (2)判断()y f x =在(0,)+∞上的单调性,并给出你的证明;(3)解不等式2()(86)1f x f x >--.23.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.24.已知函数()21axf x x =-(0a ≠). (1)判断函数()f x 的奇偶性并给予证明; (2)若函数()f x 满足()1242f f ⎛⎫-= ⎪⎝⎭,判断函数()f x 在区间()1,+∞的单调性,并用单调性的定义证明.25.已知二次函数2()1(0)f x ax x a =++>. (1)求函数()f x 在区间[4,2]--的最大值()M a ; (2)若关于x 的方程()0f x =有两个实根1x 、2x ,且121,1010x x ⎡⎤∈⎢⎥⎣⎦,求实数a 的最大值.26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.2.C解析:C 【分析】根据函数的单调性和奇偶性,排除选项得到答案. 【详解】A. 1()()2xf x =,非奇非偶函数,排除;B. ()lg ||lg ||()f x x x f x -=-==,函数为偶函数,排除;C. ()()f x x f x -==-,函数为奇函数,且单调递减,正确;D. 1()()f x f x x-=-=-,函数为奇函数,在[1,0)-和(0,1] 单调递减,排除. 故选:C 【点睛】熟悉函数的单调性和奇偶性是解题关键.3.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b 时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x 在[],x a b ∈时的值域.4.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==, ∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围5.A解析:A 【分析】可采取排除法,分别考虑A 、B 、C 、D 中有一个错误,通过解方程求得a ,判断a 是否为非零整数,即可得出结论. 【详解】①若A 错,则B 、C 、D 正确,直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得212434428b a ac baa b c ⎧-=⎪⎪-⎪=⎨⎪++=⎪⎪⎩,解得5108a b c =⎧⎪=-⎨⎪=⎩,合乎题意; ②若B 错,则A 、C 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=,3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得20434428a b c ac b a a b c -+=⎧⎪-⎪=⎨⎪++=⎪⎩,该方程组无解,不合乎题意; ③若C 错误,则A 、B 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=,可得012428a b c b a a b c -+=⎧⎪⎪-=⎨⎪++=⎪⎩,解得831638a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,不合乎题意;④若D 错误,则A 、B 、C 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,可得2012434a b c b a ac b a⎧⎪-+=⎪⎪-=⎨⎪⎪-=⎪⎩,解得343294a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,不合乎题意. 故选:A. 【点睛】关键点点睛:本题考查利用二次函数的基本性质求解参数,解本题的关键就是根据已知信息列出关于a 、b 、c 的方程组,解出参数的值,再逐一判断.6.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值.【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.7.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.8.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.9.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围.【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.10.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.11.D解析:D 【分析】作出函数()y f x =与1y a=的图象,数形结合可得()k f x ,即可得解. 【详解】 令||1()x f x aa-==,解得1x =±, 在同一直角坐标系中作出()y f x =与1y a=的图象,如图,所以,11()11,1x k x a x f x x a a x --⎧≤-⎪⎪=-<<⎨⎪⎪≥⎩,,所以函数()k f x 的单调减区间为()1,+∞. 故选:D. 【点睛】本题考查了函数图象的应用及函数单调性的求解,考查了运算求解能力与数形结合思想,属于中档题.12.C解析:C【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A .所以()h x 的最小值为4811. 故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.二、填空题13.【分析】函数是增函数可得且即可求解【详解】因为函数为上的增函数所以当时递增即当时递增即且解得∴综上可知实数的取值范围是故答案为:【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围需满足分段函数 解析:(]0,2【分析】函数是增函数可得30a ->,0a >且2(3)151aa -⨯-≤-,即可求解. 【详解】因为函数()f x 为R 上的增函数,所以当1x ≤时,()f x 递增,即30a ->,当1x >时,()f x 递增,即0a >, 且2(3)151aa -⨯-≤-,解得2a ≤,∴02a <≤, 综上可知实数a 的取值范围是(]0,2. 故答案为:(]0,2. 【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围,需满足分段函数每部分分别单调,还应注意在分段处的函数值大小问题,这是容易漏掉的地方.14.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩, ∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.15.【分析】根据条件判断函数的周期性利用函数周期性和奇偶性的关系进行转化求解即可【详解】得即函数是周期为8的周期函数故答案为【点睛】本题主要考查函数值的计算结合条件求出函数的周期是解决本题的关键形如或的解析:12【分析】根据条件判断函数的周期性,利用函数周期性和奇偶性的关系进行转化求解即可. 【详解】()()14f x f x +=得()()()184f x f x f x +==+,即函数()f x 是周期为8的周期函数,()()()()()()111201925283314112f f f f f f =⨯+==-+===-, 故答案为12. 【点睛】本题主要考查函数值的计算,结合条件求出函数的周期是解决本题的关键.形如()()f a x f a x +=-,或()()2f x f x a -=+的条件,说明的都是函数()f x 图像关于x a =对称.形如()()f x a f x a +=-,或()()f x a f x +=-的条件,说明的是函数()f x 是周期为2a 的周期函数.16.【分析】由已知得出单调增然后由及可得结论【详解】因为对任意都有成立所以为单调递增函数因此故答案为:【点睛】本题考查分段函数的单调性分段函数在定义域内单调需满足分段函数的所有段同单调及相邻段端点处的函 解析:[1,2]【分析】 由已知1212()()0f x f x x x ->-得出单调增,然后由2210,02b b -->≥及10b -≥可得结论. 【详解】因为对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 为单调递增函数,因此21020210b b b ->⎧⎪-⎪≥⎨⎪-≥⎪⎩,12b ∴≤≤. 故答案为:[1,2].. 【点睛】本题考查分段函数的单调性,分段函数在定义域内单调,需满足分段函数的所有段同单调及相邻段端点处的函数值满足相应的大小关系.17.【分析】根据二次函数的单调性得出是上的减函数从而有整理得即关于的方程在区间内有实数解记由二次函数的单调性和零点存在定理建立不等式组可求得范围【详解】∵函数是上的减函数∴当时即两式相减得即代入得由且得解析:31,4⎡⎫--⎪⎢⎣⎭【分析】根据二次函数的单调性得出2()f x x k =+是(,0]-∞上的减函数,从而有()()f a bf b a =⎧⎨=⎩,整理得22a k b b k a⎧+=⎨+=⎩,即关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解,记2()1h a a a k =+++,由二次函数的单调性和零点存在定理建立不等式组,可求得范围.【详解】∵函数2()f x x k =+是(,0]-∞上的减函数,∴当[,]x a b ∈时,()()f a bf b a =⎧⎨=⎩,即22a k bb k a⎧+=⎨+=⎩, 两式相减得22a b b a -=-,即(1)b a =-+,代入2a k b +=得210a a k +++=, 由0a b <≤,且(1)b a =-+得112a -≤<-, 故关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解, 记2()1h a a a k =+++,所以函数()h a 在11,2⎡⎫--⎪⎢⎣⎭上单调递减,则()10102h h ⎧-≥⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩,即()()221110111022k k ⎧-+-++≥⎪⎨⎛⎫⎛⎫-+-++<⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得31,4k ⎡⎫∈--⎪⎢⎣⎭, 故答案为:31,4⎡⎫--⎪⎢⎣⎭. 【点睛】关键点点睛:在解决二次函数的值域问题,关键在于得出二次函数的对称轴与区间的关系,也即是判断出二次函数在区间上的单调性.18.【分析】根据对任意实数都有成立得出在R 上单调递减从而得出解出a 的范围即可【详解】函数对任意的实数都有成立得在R 上单调递减∴故答案为:【点睛】关键点点睛:依函数单调性的定义得函数在R 上单调递减利用分段34a ≤<. 【分析】根据对任意实数m n ≠,都有()()0f m f n m n-<-成立,得出()f x 在R 上单调递减,从而得出()()()4300143141log 134a a a a a ⎧-<⎪<<⎨⎪-⋅-+-≥-++⎩,解出a 的范围即可.【详解】函数()f x 对任意的实数m n ≠,都有()()0f m f n m n-<-成立,得()f x 在R 上单调递减,∴()()()4300143141log 134a a a a a ⎧-<⎪<<⎨⎪-⋅-+-≥-++⎩34301242a a a a ⎧<⎪⎪⎪⇒<<⇒≤<⎨⎪⎪≥⎪⎩.34a ≤<. 【点睛】关键点点睛:依函数单调性的定义得函数在R 上单调递减,利用分段函数的单调性求解.19.【分析】结合二次函数的图象与性质按照分类再由分段函数的单调性即可得解【详解】因为函数的图象开口朝下对称轴为且所以当时函数在上不单调符合题意;当时函数在上均单调递增若要使在定义域上不是单调函数则解得故 解析:(),1(2,)-∞+∞【分析】结合二次函数的图象与性质,按照1a <、1a ≥分类,再由分段函数的单调性即可得解. 【详解】因为函数22y x ax =-+的图象开口朝下,对称轴为x a =,且22,?1()+1,?1x ax x f x ax x ⎧-+≤=⎨>⎩,所以当1a <时,函数()f x 在(],1-∞上不单调,符合题意; 当1a ≥时,函数()f x 在(],1-∞,()1,+∞上均单调递增, 若要使()f x 在定义域上不是单调函数,则2121a a -+>+,解得2a >,故2a >符合题意;综上,实数a 的取值范围是(),1(,)2-∞⋃+∞. 故答案为:(),1(,)2-∞⋃+∞. 【点睛】解决本题的关键是将分段函数不单调转化为两种情况,分类求解.20.2【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求【详解】解;是上的减函数解可得故答案为:【点睛】本题主要考查了分段函数的单调性的应用二次函数及反比例函数性质的应用是求解问题的关键解析:[2,209] 【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求. 【详解】 解;226,2(),2x ax x f x a x x⎧-+⎪=⎨>⎪⎩是R 上的减函数,∴204462a a a a ⎧⎪⎪>⎨⎪⎪-+⎩, 解可得,2029a. 故答案为:202,9⎡⎤⎢⎥⎣⎦【点睛】本题主要考查了分段函数的单调性的应用,二次函数及反比例函数性质的应用是求解问题的关键,属于中档题.三、解答题21.(1)证明见解析;(2)(]1,0-. 【分析】(1)在()0,∞+上任意取两个实数1x ,2x ,且12x x <,然后怍差()()()2112122x x f x f x x x --=判断其符号即可. (2)根据(1)知()f x 在[)2,+∞上是减函数,由2x =取得最大值,再由20x>确定值域.【详解】(1)在()0,∞+上任意取两个实数1x ,2x ,且12x x <, 则有()()()2112121222211x x f x f x x x x x --=--+=, 又因为120x x <<,所以210x x ->,120x x >, 所以()()120f x f x ->,即()()12f x f x >, 所以()f x 在()0,∞+上是减函数.(2)由(1)知()f x 在[)2,+∞上是减函数, 所以当2x =时()max 0f x =, 又因为20x>,所以211x ->-,所以函数()f x 在()0,∞+上的值域为(]1,0-. 【点睛】方法点睛:判断函数单调性的常用方法:(1)定义法和导数法,注意证明函数单调性只能用定义法和导数法;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.22.(1)1-; (2)函数单调递增,证明见解析; (3)3{|14x x <<或3}x >. 【分析】(1)利用赋值法,即可求得所求的函数值,得到答案;(2)首先判定函数为增函数,然后利用函数的单调性的定义和所给条件进行证明即可; (3)利用函数的单调性和所得函数值对应的自变量得到函数不等式,得出不等式组,即可求解. 【详解】(1)由题意,函数()f x 对任意的正实数x ,y 都有()()()f xy f x f y =+恒成立, 令1x y ==,可得(1)(1)(1)f f f =+,所以()10f =, 令12,2x y ==,可得1(1)(2)()2f f f =+,即11()02f +=,解得1()12f =-. (2)函数()f x 为增函数,证明如下: 设12,(0,)x x ∈+∞且12x x <, 令211,x x x y x ==,根据题意,可得2121()()()x f x f f x x +=,即2211()()()x f x f x f x -=, 又由1x >时,()0f x >,因为211x x >,可得21()0x f x >,即21()()0f x f x ->,即21()()f x f x >, 所以函数()y f x =在(0,)+∞上的单调性.(3)由题意和(1)可得11(86)1(86)()[(86)](43)22f x f x f f x f x --=-+=-=-, 又由不等式2()(86)1f x f x >--,即2()(43)f x f x >-,可得243430x x x ⎧>-⎨->⎩,解得314x <<或3x >,即不等式2()(86)1f x f x >--的解集为3{|14x x <<或3}x >. 【点睛】求解函数有关的不等式的方法及策略: 解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 23.(1)0a =;(2)62a -≤≤. 【分析】(1)当0a =时,由()43f x x =+判断,当0a ≠时,由()(),f a f a -的关系判断;(2)根据()g x 是偶函数,将()()6g x a g x +≤-,转化为 ()()6g x a g x +≤-,再根据()g x 在[)0,+∞是增函数,转化为[]1,2x ∈时,6x a x +≤-恒成立求解. 【详解】(1)当0a =时,()43f x x =+是偶函数,当0a ≠时,a a ≠-,而()()()420f a f a a --=≠,()f x 不可能是偶函数,所以当0a =时,()f x 是偶函数;(2)由()g x 是偶函数知()()g x a g x a +=+,()()66g x g x -=-,且x a +,60x -≥,因为()g x 在[)0,+∞是增函数,及()()6g x a g x +≤-,所以当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,66x x a x -≤+≤-恒成立, 即当[]1,2x ∈时,662a x -≤≤-恒成立,所以62a -≤≤. 【点睛】方法点睛:函数奇偶性与单调性求参数问题,当涉及到偶函数时,要利用()()()f x f x f x -==转化为求解.24.(1)奇函数,证明见解析;(2)在区间()1,+∞单调递减,证明见解析. 【分析】(1)求出函数的定义域,直接得到()f x 和()f x -的关系即可得结果; (2)由题意解出a 的值,由单调性的定义即可得结果. 【详解】(1)函数()y f x =是奇函数,证明如下:()y f x =的定义域为{}1x x ≠±,又()()()()2211a x axf x f x x x --==-=--+-+ ∴()y f x =是定义在{}1x x ≠±的奇函数.(2)∵()1242f f ⎛⎫-= ⎪⎝⎭,即21242433112aa a -==⎛⎫- ⎪⎝⎭,解得:3a = ∴()231xf x x =-,1x ,()21,x ∈+∞且12x x < ()()()()()()()()()()1212221222122112212222121231313111331111x x x x x x x x x x x x f x f x x x x x -=----+-=---=--- ∵1x ,()21,x ∈+∞且12x x <,∴2110x ->,2210x ->,1210x x ->,210x x ->∴()()12f x f x >,∴()y f x =在区间()1,+∞单调递减. 【点睛】利用定义证明函数单调性的步骤:(1)取值;(2)作差;(3)化简;(4)下结论.25.(1)141,061163,6a a a a ⎧-<≤⎪⎪⎨⎪->⎪⎩;(2)14.【分析】(1)根据对称轴的位置讨论两种情况:113,322-≤-->-a a,分别根据二次函数的单调性求出最大值即可得结果;(2)设11221,,1010⎡⎤==∈⎢⎥⎣⎦x x t t x x ,由韦达定理可得 211(1)2==+++t a t t t,利用函数的单调性可得实数a 的最大值.【详解】(1)对称轴12x a =-,[4,2],0∈-->x a 二次函数开口向上, ①当132-≤-a ,即106a <≤时:()(2)41=-=-M a f a , ②当132->-a ,即16a >时:()(4)163=-=-M a f a , 综上所述,141,06()1163,6a a M a a a ⎧-<≤⎪⎪=⎨⎪->⎪⎩. (2)由题知:方程210ax x ++=的两个根分别为1x x =、2x x =, 由韦达定理知:121x x a ⋅=①,121x x a +=-②, 又已知121,1010⎡⎤=∈⎢⎥⎣⎦x t x ,③ 联立12121x x a x tx ⎧+=-⎪⎨⎪=⎩,得121,(1)(1)--==++t x x t a t a , 带入121x x a⋅=知:221(1)=+⋅t t a a , 即211(1)2==+++t a t t t ,其中1,1010⎡⎤∈⎢⎥⎣⎦t . 当1t =时,分母12t t++取得最小值4,所以a 得最大值为14. 【点睛】 本题考查二次函数图像、对称轴、最值的基本关系,清楚一元二次方程根与系数的关系的处理,对“对勾函数”的单调性、最值的理解是解题的关键.26.(1)(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+;(2)3a >-. 【分析】(1)利用函数的奇偶性,列方程组,求函数的解析式;(2)由(1)知,()()2,[1,)a f x g x x x x∞+=++∈+,方法一,讨论a 的正负,以及函数的单调性,转化为求函数的最小值大于0,求a 的取值范围;方法二,利用参变分离,()22a x x >-+,转化为求函数最大值,即求a 的取值范围.【详解】(1)由已知条件()()2a f x g x x x-=+-——① ①式中以x -代替x ,得()()2a f x g x x x ---=---——② 因为()f x 是奇函数,()g x 是偶函数,故()(),()()f x f x g x g x -=--=②可化为()()2a f x g x x x --=---——③ ①-③,得22()2a f x x x =+故(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+ (2)由(1)知,()()2,[1,)a f x g x x x x ∞+=++∈+ 当0a ≥时,函数()()f x g x +的值恒为正;当0a <时,函数()()2a f x g x x x +=++在[1,)+∞上为增函数 故当1x =时,()f x 有最小值3a +故只需30a +>,解得30a -<<.综上所述,实数a 的取值范围是(3,)-+∞法二:由(1)知,()()2a f x g x x x+=++ 当[1,)x ∈+∞时,()()0f x g x +>恒成立,等价于()22a x x >-+ 而二次函数()222(1)1y x x x =-+=-++在[1,)+∞上单调递减 1x =时,max 3y =-故3a >-【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.。
【优质文档】2018-2019学年高中数学必修一第一章集合与函数概念测评B卷(含详细答案)

( 1)求 A B 和 A B ;
( 2)求 eU B ; ( 3)定义 A B { x | x A, 且x B} ,求 A B , A
A B.
18.(12 分)已知函数 f x = 2 x 1 . x1
( 1)判断函数 f x 在区间 [1, ) 上的单调性,并用定义证明你的结论; ( 2)求该函数在区间 [1,4] 上的最大值与最小值.
)
i1
A.0
B. m
C.2m
D. 4m
12.已知 f x
3-2 x , g x
x 2-2 x , F x = g x ,若 f x f x ,若f x
gx ,则 F x 的
gx
最值是 ( ) A .最大值为 3,最小值 1
B .最大值为 7 2 7 ,无最小值 C.最大值为 3,无最小值 D .既无最大值,又无最小值
号 位 座 封
密
号 场 不考
订
装号 证 考 准
只
卷 名 姓
此
级 班
2018-2019 学年高中数学必修一第 一章集合与函数概念测评 B 卷
(考试时间: 120分钟 总分: 150分)
注意事项: 1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。答卷前,考 生务必将自己的姓名、准考证号填写在答题卡上。 2. 回答第 I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案 标号涂黑。如需改动,用橡皮擦千净后,再选涂其他答案标号。写在本试卷上无 效。 3. 回答第 II 卷时,将答案写在答题卡上。写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。
3
则实数 a 的取值范围是(
)
A. a 2 C. 2 a 2
最新北师大版高中数学必修一第二单元《函数》检测卷(有答案解析)(2)
一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .1()()2xf x =B .()lg f x x =C .()f x x =-D .1()f x x=2.已知函数f (x )的定义域为R ,满足f (x )=2f (x +2),且当x ∈[2-,0) 时,19()4f x x x =++,若对任意的m ∈[m ,+∞),都有1()3f x ≤,则m 的取值范围为( ) A .11,5⎡⎫-+∞⎪⎢⎣⎭ B .10,3⎡⎫-+∞⎪⎢⎣⎭C .)5,2⎡-+∞⎢⎣ D .11,4⎡⎫-+∞⎪⎢⎣⎭3.若()f x 是偶函数,其定义域为(,)-∞+∞,且在[0,)+∞上是减函数,则(1)f -与2(22)f a a ++的大小关系是( )A . 2(1)(22)f f a a ->++B .2(1)(22)f f a a -<++C .2(1)(22)f f a a -≥++D . 2(1)(22)f f a a -≤++4.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对5.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭6.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,7.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( ) A .1或3B .3或134C .3D .1348.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( ) A .(1,2)-B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞9.设函数()y f x =在(),-∞+∞上有定义,对于给定的正数K ,定义函数(),()()()k f x f x K f x K f x K≤⎧=⎨>⎩,, 取函数()||()1x f x a a -=>,当1K a =时,函数()k f x 在下列区间上单调递减的是( )A .(),0-∞B .(),a -+∞C .(),1-∞-D .()1,+∞10.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .11.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关D .与a 无关,且与b 无关12.已知函数()f x 是定义在()0,∞+上的增函数,且()21f =,()()()f xy f x f y =+,则不等式()()23f x f x +-≤( )A .()1,2B .[)1,3C .()2,4D .(]2,4二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.若函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,且它的值域为(,1]-∞,则a=_____. 15.函数2()2f x x x =-,()1g x ax =+(0a >),若对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,则a 的取值范围是___________.16.已知函数()f x 对于任意实数x 满足条件()()12f x f x +=-,若()113f =- ,则()2019f = _________.17.当12x x ≠时,有1212()()()22x x f x f x f ++<,则称函数()f x 是“严格下凸函数”,下列函数是严格下凸函数的是__________. ①y x =②||y x =③2y x ④2log y x =18.函数的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数,例如,函数()21f x x =+()R x ∈是单函数,下列命题: ①函数4()f x x =()R x ∈是单函数;②若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠;③若:f A B →为单函数,则对于任意b B ∈,在A 中至多有一个数与它对应; ④函数()f x 在某区间上具有单调性,则()f x 在其定义域上一定是单函数. 期中正确命题的序号是___________. 19.下列给出的命题中:①若()f x 的定义域为R ,则()()()g x f x f x =+-一定是偶函数;②若()f x 是定义域为R 的奇函数,对于任意的x ∈R 都有()(2)0f x f x +-=,则函数()f x 的图象关于直线1x =对称;③某一个函数可以既是奇函数,又是偶函数;④若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则12a >; 其中正确的命题序号是__________.20.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.三、解答题21.已知22()2x af x x -=+.(1)若0a =,证明:()f x 在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由.22.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.23.已知函数()y f x =的定义域为D ,如果存在区间[],a b D ⊆,使得[]{}[]|(),,,=∈=y y f x x a b a b ,则称区间,a b 为函数()y f x =的一个和谐区间.(1)直接写出函数3()f x x =的所有和谐区间;(2)若区间[]0,m 是函数3()22=-f x x 的一个和谐区间,求实数m 的值; (3)若函数2()2()=-+∈f x x x m m R 存在和谐区间,求实数m 的取值范围.24.已知函数22()3mx f x x n+=+是奇函数,且()523f =(1)求实数m 和n 的值;(2)利用“函数单调性的定义”判断()f x 在区间[]2,1--上的单调性,并求()f x 在该区间上的最值.25.已知函数2()3f x x ax a =++-,a R ∈.当[]0,2x ∈时,()f x 的最大值是关于a 的函数()M a .求函数()M a 的表达式及()M a 的最小值26.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据函数的单调性和奇偶性,排除选项得到答案. 【详解】A. 1()()2xf x =,非奇非偶函数,排除;B. ()lg ||lg ||()f x x x f x -=-==,函数为偶函数,排除;C. ()()f x x f x -==-,函数为奇函数,且单调递减,正确;D. 1()()f x f x x-=-=-,函数为奇函数,在[1,0)-和(0,1] 单调递减,排除. 故选:C 【点睛】熟悉函数的单调性和奇偶性是解题关键.2.D解析:D 【分析】求出[2,0)x ∈-时,()f x 的值域,满足1()3f x ≤,根据函数的定义,[0,2)x ∈时,满足1()3f x ≤,同时可得0x ≥时均满足1()3f x ≤,然后求得[4,2)x ∈--时的解析式,解不等式1()3f x ≤得解集,分析后可得m 的范围. 【详解】[2,0)x ∈-时,19()4f x x x =++在[]2,1--上递增,在[1,)-+∞上递减,1(),4f x ⎛⎤∈-∞ ⎥⎝⎦,满足1()3f x ≤,当[0,2)x ∈时,2[2,0)x -∈-,11()(2)[,)28f x f x =-∈-∞,满足满足1()3f x ≤, 按此规律,2x ≥时,()f x 均满足1()3f x ≤, 当[4,2)x ∈--时,29()2(2)2(2)22f x f x x x =+=++++,由2912(2)223x x +++≤+, 解得1043x -≤≤-或1124x -≤<-,当101134x -<<-时,1()3f x >. 因此当114x ≥-时,都有1()3f x ≤, 所以114m ≥-. 故选:D . 【点睛】关键点点睛:本题考查函数不等式恒成立问题,解题关键是依照周期函数的性质,根据函数的定义求出()f x 在[2,22)k k +(k ∈N )满足1()3f x ≤,在[2,0)-上直接判断,求出[4,2)--上的解析式,确定1()3f x ≤的范围,此时有不满足1()3f x ≤的x 出现,于是可得结论m 的范围.3.C解析:C 【分析】由()f x 是偶函数,可知(1)(1)f f -=,故只需比较(1)f 与2(22)f a a ++的大小即可,而2222(1)11a a a ++=++≥,再结合函数()f x 的单调性,即可得(1)f 与2(22)f a a ++大小关系.【详解】因为()f x 是偶函数,所以(1)(1)f f -=,又2222(1)11a a a ++=++≥,()f x 在[0,)+∞上是减函数,所以2(22)(1)f a a f ++≤,即2(22)(1)f a a f ++≤-. 故选:C 【点睛】关键点点睛:本题主要考查利用函数的单调性比较大小,关键是借助函数的奇偶性,将要比较的函数值对应的自变量转化到同单调区间上,并且比较它们的大小,再利用单调性作出判断.4.C解析:C 【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵x ∈,∴2[1,3]x ∈, ∴224()3[1,2]f x x x =-∈+. 当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .5.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =,因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.6.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围.【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.7.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D . 【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.8.A解析:A 【分析】由函数的单调性列x 的不等式求解即可. 【详解】由()()()12120f x f x x x -->⎡⎤⎣⎦,则函数()f x 在R 上为增函数, 由()()2211f x f m m +>--对x ∈R 恒成立,故22min 1(1)m m x --<+,即211m m --<解得12m -<<.故选:A. 【点睛】本题考查函数的单调性,考查恒成立问题,是基础题9.D解析:D 【分析】作出函数()y f x =与1y a=的图象,数形结合可得()k f x ,即可得解. 【详解】 令||1()x f x aa-==,解得1x =±, 在同一直角坐标系中作出()y f x =与1y a=的图象,如图,所以,11()11,1x k x a x f x x aa x --⎧≤-⎪⎪=-<<⎨⎪⎪≥⎩,,所以函数()k f x 的单调减区间为()1,+∞. 故选:D. 【点睛】本题考查了函数图象的应用及函数单调性的求解,考查了运算求解能力与数形结合思想,属于中档题.10.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a--, 上递增,在[2]2a -, 上递减, 且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时,函数f x ()在区间[2]2a-,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关 故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.12.D解析:D 【分析】根据()()()f xy f x f y =+且()21f =可得()42f =,83f ,则()()23f x f x +-≤可化为()()28f x x f -≤⎡⎤⎣⎦,然后根据单调性求解.【详解】根据()()()f xy f x f y =+可得,()()23f x f x +-≤可转化为()23f x x -≤⎡⎤⎣⎦, 又()()()()422222f f f f =+==,所以()()()842213f f f =+=+=,即()()28f x x f -≤⎡⎤⎣⎦,因为()f x 是定义在()0,∞+上的增函数,所以只需满足()28020x x x x ⎧-≤⎪>⎨⎪->⎩,解得:24x <≤.故选:D. 【点睛】本题考查抽象函数的应用,考查利用函数的单调性解不等式,难度一般,根据题目条件将问题灵活转化是关键.二、填空题13.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解.【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k >⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题.14.【分析】根据函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数利用得到进而得到或然后分类讨论即可求解【详解】函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数明显可知该函数定义域 解析:±1【分析】根据函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,利用()()f x f x -=,得到(1)0a b +=,进而得到0a =或1b =-,然后,分类讨论即可求解【详解】函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,明显可知,该函数定义域为x ∈R ,令1x =和1x =-得(1)(1)()f a b a =++(1)(1)()f a a b =-=--,得22a b ab a a ab a b +++=--+⇒a ab ab a +=--(1)0a b ⇒+=,可得0a =或1b =-;若0a =,则2()f x bx =,若0b >,不满足()f x 的值域为(,1]-∞,0b =,明显不成立,0b <时,不满足()f x 的值域为(,1]-∞,所以,0a =时,不符题意;若1b =-时,22()()()f x x a a x a x =+-=-,由于20x -≤,则2()f x a ≤,所以,21a =,求得1a =±故答案为:±1 【点睛】关键点睛:解题的关键在于,利用()()f x f x -=,得到(1)0a b +=,然后,分别讨论0a =和1b =-两种情况进行分类讨论,主要考查学生分类讨论的思想,难度属于中档题 15.【分析】求出在上的值域再求出在上的值域由可得的范围【详解】所以又所以时因为对任意的存在使所以解得故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:一般地已知函数(1)若总解析:7,2⎡⎫+∞⎪⎢⎣⎭【分析】求出()f x 在[2,2]-上的值域A ,再求出()g x 在[2,2]-上的值域B ,由A B ⊆可得a 的范围. 【详解】2()2f x x x =-2(1)1x =--,[2,2]x ∈-,所以()[1,8]f x ∈-,又0a >,所以[2,2]x ∈-时,()1[21,21]g x ax a a =+∈-++, 因为对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =, 所以211218a a -+≤-⎧⎨+≥⎩,解得72a ≥.故答案为:7,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .16.3【分析】根据题意求得函数的周期性得出函数的周期然后利用函数的周期和的值即可求解得到答案【详解】由题意函数对任意实数满足条件则即函数是以4为周期的周期函数又由令则即所以【点睛】本题主要考查了抽象函数解析:3 【分析】根据题意,求得函数的周期性,得出函数的周期,然后利用函数的周期和()1f 的值,即可求解,得到答案. 【详解】由题意,函数()f x 对任意实数x 满足条件1(2)()f x f x +=-, 则()1(4)[(2)2](2)f x f x f x f x +=++=-=+,即函数()f x 是以4为周期的周期函数, 又由()113f =-,令1x =-,则1(12)(1)f f -+=--,即1(1)3(1)f f -==, 所以()2019(14505)(1)3f f f =-+⨯=-=. 【点睛】本题主要考查了抽象函数的应用,以及函数的周期性的判定和函数值的求解,其中解答中根据题设条件求得函数的周期是解答本题的关键,着重考查了推理与运算能力,属于基础题.17.③【解析】按照严格下凸函数的定义检测四个函数如①不满足严格下凸函数的定义对于②当同号时相等不满足定义;对于③作差可知对于④因为所以不正确故选③点睛:本题涉及新概念及函数大小的比较属于创新题有一定难度解析:③ 【解析】按照严格下凸函数的定义检测四个函数,如①121222x x x x f ++⎛⎫=⎪⎝⎭,()()121222f x f x x x ++=,不满足严格下凸函数的定义,对于②,121222x x x xf ++⎛⎫= ⎪⎝⎭,()()121222x x f x f x ++=,当1x ,2x 同号时,相等,不满足定义;对于③2121222x x x x f ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,()()22121222f x f x x x ++=,作差可知()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,对于④12122l 22x xx x f og ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,()()122122212l l 1l 222f x f x og x og x og x x og ++===,因为122x x +>不正确,故选③.点睛:本题涉及新概念及函数大小的比较,属于创新题,有一定难度.解决此类问题时,要紧扣新给出的定义、法则、运算,然后去甄别那些符合这些要求,本题在给出严格下凸函数的定以后,要去应用定义,看看那个函数符合这一要求,解题中遇到大小比较时可以作差比较.18.②③【分析】结合单函数的定义对四个命题逐个分析可选出答案【详解】命题①:对于函数设则由与可能相等也可能互为相反数即不是单函数故①错误;命题②:假设因为函数为单函数所以与已知矛盾故即命题②正确;命题③解析:②③【分析】结合单函数的定义,对四个命题逐个分析,可选出答案. 【详解】命题①:对于函数4()f x x =()R x ∈,设()4400f x x a ==,则0x a =±,由a 与a -可能相等,也可能互为相反数,即4()f x x =不是单函数,故①错误;命题②:假设12()()f x f x =,因为函数()f x 为单函数,所以12x x =,与已知12x x ≠矛盾,故12()()f x f x ≠,即命题②正确;命题③:若:f A B →为单函数,则对于任意b B ∈,()b f a =,假设不只有一个原象与其对应,设为12,,a a ,则()()12f a f a ==,根据单函数定义,可得12a a ==,又因为原象中元素不重复,故函数:f A B →至多有一个原象,即命题③正确; 命题④:函数()f x 在某区间上具有单调性,并不意味着在整个定义域上具有单调性,则可能存在不同的12,x x ,使得12()()f x f x =,不符合单函数的定义,故命题④错误. 综上可知,真命题为②③. 故答案为②③. 【点睛】关键点点睛:本题考查新定义函数,解题关键是根据新定义的特点,弄清新定义的性质,按照新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决,考查学生的逻辑推理能力,计算求解能力,属于中档题.19.①③④【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数转化为熟悉的函数判断【详解】①函数的定义域为所以函数的定义域也是即所以函数是偶函数故①正确;②对解析:①③④ 【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数,转化为熟悉的函数判断. 【详解】①函数()f x 的定义域为R ,所以函数()g x 的定义域也是R ,()()()g x f x f x -=-+,即()()g x g x -=,所以函数()g x 是偶函数,故①正确;②对应任意的x ∈R ,都有()()20f x f x +-=,即函数()f x 关于()1,0对称,并不关于1x =对称,故②不正确;③函数0y =既是偶函数又是奇函数,故③正确; ④()()212112222a x a ax af x a x x x ++-+-===++++,若函数在()2,-+∞上单调递增,则120a -<,解得:12a >,故④正确. 故答案为:①③④ 【点睛】方法点睛:函数的对称性包含中心对称和轴对称,一般判断的方法包含:1.若对函数()y f x =的定义域内的任一自变量x 的值都有()()2f x f a x =-,则()y f x =的图象关于x a =成轴对称;若对函数()y f x =的定义域内的任一自变量x 的值都有()()22f x b f a x =--,则()y f x =的图象关于(),a b 成中心对称;20.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】 由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.三、解答题21.(1)证明见解析;2132m +<≤;(2)存在;2m ≥或2m ≤-. 【分析】(1)运用单调性的定义,注意取值、作差和变形、定符号和下结论等步骤,可得f (x)在递增,由奇函数的性质推得f (x)在(递增,可得m 的不等式组,解得m 的范围;(2)运用韦达定理和配方,可得|x 1﹣x 2|的最大值,再由m 2+tm ﹣2≥0对任意t ∈[﹣1,1]恒成立,设g (t )=m 2+tm ﹣2=tm +m 2﹣2,由一次函数的单调性可得m 的不等式组,解不等式可得所求范围. 【详解】(1)当0a =时,任取12,x x ∈,12x x <, 则()()()()()()()()()()2212212112121222222212212122222222222222x x x x x x x x x x f x f x x x x x x x +-+--⎛⎫⎛⎫-=-== ⎪ ⎪++++++⎝⎭⎝⎭,12x x <∈()()211220x x x x ∴--<,()()120f x f x ∴-<,即()f x在递增;∵()f x 为R 上的奇函数,∴()f x在(递增,又∵()f x 在区间(12,1)m m --递增,则121121m m m m ⎧≤-⎪⎪-≤⎨⎪-<-⎪⎩,解得2132m +<≤(2)由2212x a x x-=+,得220x ax --=,此时280a ∆=+>恒成立,由于1x ,2x 是方程220x ax --=的两实根,所以12122x x a x x +=⎧⎨=-⎩,从而12x x -==11a -≤≤,123x x ∴-=,不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立,当且仅当213m tm ++≥对任意[1,1]t ∈-恒成立,即220m tm +-≥对任意[1,1]t ∈-恒成立,设22()22g t m tm tm m =+-=+-,则()0g t ≥对任意[1,1]t ∈-恒成立,(1)0(1)0g g ≥⎧∴⎨-≥⎩,即222020m m m m ⎧+-≥⎨-+-≥⎩,解得2m ≥或2m ≤-. 【点睛】方法点睛:证明函数的单调性.定义法:在定义域内任意取值、作差和变形、定符号和下结论;导数法:给函数求导,在定义域内判断导数的正负,若导数为正,则函数递增,若导数为负,则函数递减.22.(1)不是;证明见详解.(2)∅ 【分析】(1)求出2()1y f u u ==+的值域以及[]()y f g x =的值域,根据题中定义即可判断.(2)根据题意可得221()1x ax g x x x ++=++的值域与u 的取值范围相同,转化为()2211x ax u x x ++=++,从而可得0∆≥,再由12u ≤≤,利用韦达定理即可求解.【详解】(1)1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”, 证明如下:2()11y f u u ==+≥,()f u ∴的值域为[)1,+∞,又[]22211()13y f g x x x x x ⎛⎫==++=++ ⎪⎝⎭,2212x x +≥=,当且仅当1x =时取等号, []221()35y f g x x x+∴==+≥, 即[]()y f g x =的值域为[)5,+∞, 两函数的值域不同,∴1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”. (2)()y f u =在定义域[]1,2上为单调函数,∴()y f u =在两端点处取得最值,又221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”, ∴[]()y f g x =与()y f u =值域相同,()12g x ∴≤≤,即()g x 的值域与u 的取值范围相同,由2211x ax u x x ++=++得()2211x ax u x x ++=++,()()2110u x a u x u ∴-+-+-=有根,()()22410a u u ∴∆=---≥,即()2232840u a u a +-+-≤,又12u ≤≤,1,2∴是方程()2232840u a u a +-+-=的两个根,228121324123a a a a a -⎧+=-⎧⎪=-⎪⎪∴⇒⇒∈∅⎨⎨-⎪⎪∈∅⨯=⎩⎪⎩,所以实数a 的取值范围是∅. 【点睛】方法点睛:本题考查了函数的值域求法,常见方法如下: (1)利用函数的单调性求值域. (2)对于分式型的值域利用分离常数法. (3)换元法. (4)数形结合法. (5)判别式法. 23.(1) 1.0,0,1,[]1,1-;(2)4m =或2;(3)904≤<m . 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令322x x -=,解得45x =或4,最后绘出函数图像,结合函数图像即可得出结果; (3)讨论1a b <≤或1a b ≤<或1a b <<,根据二次函数的性质确定函数的单调区间,再由单调性求出函数的值域,根据题干,函数的新定义即可求解. 【详解】解:(1)函数()3f x x =是增函数,定义域为R ,令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、0,1、[]1,1-.(2)因为()322f x x =-, 所以()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,因为[]()0,0m m >为函数()322f x x =-的一个“和谐区间”, 所以可令322x x -=,解得45x =或4,如图所示,绘出函数图像:结合“和谐区间”的定义易知,当4x =时满足题意,因为()02f =,所以当2m =时,()min max 2,()0f x f x ==,满足题意, 故m 的值为4或2.(3)①当1a b <≤时,()f x 在,a b 上时单调递减函数,由题意有()()f a bf b a=⎧⎨=⎩,2222a a m b b b m a⎧-+=⎨-+=⎩得1a b +=,因为1a b <≤,所以110,122≤<<≤a b , 且221-+=-a a m a ,即210-+-=a a m ,解得15412+-=≥m a 舍去, 或154122-=<m a ,15412-=-=mb a . 由211(0)2=-++≤<m a a a , 得514m ≤<,所以当514m ≤<时,和谐区间为15415422⎡--⎢⎣⎦m m . ②1a b ≤<时,()f x 在,a b 上时单调递增函数, 由题意有()()f a af b b=⎧⎨=⎩,所以,a b 是方程22-+=x x m x 的两个不等实根.因为3a b +=,又1a b ≤<,得2b ≤,因而有3122≤<<≤a b , 故方程2()30=-+=g x x x m 在31,2⎡⎫⎪⎢⎣⎭和3,22⎛⎤⎥⎝⎦内各有一个实根, 即3943022-≤<m 且3394222+-<≤m, 解得924≤<m ,故当924≤<m时,和谐区间为⎣⎦. ③当1a b <<时,min ()(1)11==-=<f x f m a ,得2m < 当12a b +≤时,即2a b +≤,则max ()()==f x f a b ,得22-+=a a m b , 又1a m =-,得2331=-+>b m m ,得 2m >或1m <,又由2222+=-+≤a b m m 及2m <,解得01m ≤<,此时和谐区间为21,33⎡⎤--+⎣⎦m m m . 当12+≥a b 时,即2a b +≥,则max ()()==f x f b b ,得22-+=b b m b ,解得=b .若=b 则由2m <知12+=-+<a b m ,舍去;若32=b,3122+=-+≥a b m ,解得904≤≤m , 又2m <,所以02m ≤<,此时和谐区间为⎡-⎢⎣⎦m , 综上,所求范围是904≤<m . 【点睛】 关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.24.(1)2m =;0n =;(2)单调递增;()max 43f x =-,()min 53f x =-. 【分析】(1)根据函数的奇偶性的关系建立方程即可求实数m 和n 的值;(2)利用定义证明函数的单调性,即取值,作差,变形,定号,下结论,再利用单调性即可求最值.【详解】(1)∵()f x 是奇函数,∴()()f x f x -=-, ∴222222333mx mx mx x n x n x n+++=-=-++--. 所以33x n x n -+=--,解得:0n =,又()523f =,∴425(2)63m f +==,解得2m =. ∴实数m 和n 的值分别是2和0. (2)由(1)知22222()333x x f x x x+==+. 任取[]12,2,1x x ∈--,且12x x <,则()()()()1212121212121212133x x f x f x x x x x x x x x ⎛⎫--=--=- ⎪⎝⎭, ∵1221x x -≤<≤-,∴120x x -<,121x x >,1210x x ->,∴()()120f x f x -<,即()()12f x f x <,∴函数()f x 在区间[]2,1--上单调递增,∴()()max 413f x f =-=-,()()min 523f x f =-=-. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.25.7,2()5,23,2a a M a a a a +>-⎧⎪==-⎨⎪-<-⎩,5.【分析】 讨论对称轴2a x =-和定义域的关系,分三种情况得到函数()M a ,根据分段函数求()M a 的最小值.【详解】函数()f x 的对称轴为2a x =-,[]0,2x ∈,不确定区间与对称轴的关系,分三类进行讨论:(1)当12a -<时,2a >-,()(2)7M a f a ==+;(2)当12a -=时,2a =-,()(0)(2)M a f f f ===; (3)当12a ->时,2a <-,()(0)3M a f a ==-. 所以,7,2()5,23,2a a M a a a a +>-⎧⎪==-⎨⎪-<-⎩.当2a >-时,()5M a >,2a <-时,()5M a >,所以当2a =-时,()M a 有最小值5.【点睛】思路点睛:含参二次函数求最值,当不能确定对称轴是否属于区间[],m n ,则需分类讨论,以对称轴与区间的关系确定讨论的标准.26.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域; (2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果.【详解】 (1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤, 所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈,又()0f x ≥,所以()2]f x ∈.(2)()h x ==令t =2]∈,则22t =-, 所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =,所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或, 所以1m ≤-或1m ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。
北师大版高中数学必修一第二单元《函数》检测卷(有答案解析)(2)
一、选择题1.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A .4,⎡-⎣B .4⎤⎦C .[]3,4-D .⎡⎣2.定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度的最大值为( ) A .1B .74C .114D .723.设0a >且1a ≠,函数221x x y a a =+-在区间[]1,1-上的最大值是14,则实数a 的值为( ) A .13或2 B .2或3C .12或2 D .13或3 4.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .45.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对6.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭7.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞.⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .18.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤-D .5(3)()2f f -<-9.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 10.若函数()f x =0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞11.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-12.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( ) A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥二、填空题13.函数2()2f x x x =-,()1g x ax =+(0a >),若对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,则a 的取值范围是___________.14.函数()()02f x x =-的定义域为______.15.已知函数2123y kx kx =++的定义域为R ,则实数k 的取值范围是__________.16.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.17.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.18.若()22f x x ax =-+与()a g x x=在区间[]1,2上都是减函数,则a 的取值范围是______.19.已知函数()(12)3,1ln ,1a x a x f x x x -+<⎧⎨⎩=的值域为R ,则实数a 的取值范围是________.20.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.三、解答题21.已知函数()243f x x x =-+.(1)若函数()f x 在区间[]1,2t t ++上是单调的,求t 的取值范围;(2)在区间[]1,1-上,()y f x =的图象恒在22y x m =+-的图象上方,求实数m 的取值范围. 22.已知22()2x af x x -=+.(1)若0a =,证明:()f x 在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由.23.已知11012x f x x x ⎛⎫⎛⎫=<≤ ⎪ ⎪-⎝⎭⎝⎭.(1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明. 24.已知函数()21ax bf x x +=+是()1,1-上的奇函数,且12.25f ⎛⎫= ⎪⎝⎭ (1)求()f x 的解析式;(2)判断()f x 的单调性,并加以证明;(3)若实数t 满足()()10f t f t ++>,求t 的取值范围. 25.已知二次函数2()23=-+f x x x . (Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈⎥⎝⎦的值域; (Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围. 26.已知函数6()f x x=,2()1g x x =+. (1)求函数()()f g x 的解析式; (2)关于x 的不等式()()af g x x>解集中正整数解恰有3个,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.2.B解析:B 【分析】根据定义作出函数()f x 的解析式和图象,根据函数值域,求出对应点的坐标,利用数形结合进行判断即可. 【详解】其中(1,1)A ,(3,3)B , 即()233,133313x x x f x x x x ⎧--=⎨-+⋅<<⎩或,当3()4f x =时,当3x 或1x 时,由33|3|4x --=,得9|3|4x -=,即34C x =或214G x =,当7()4f x =时,当13x <<时,由27334x x -+=,得52E x =,由图象知若()f x 在区间[m ,]n 上的值域为3[4,7]4,则区间[m ,]n 长度的最大值为537244E C x x -=-=,故选:B . 【点睛】利用数形结合思想作出函数的图象,求解的关键是对最小值函数定义的理解. 3.D解析:D 【分析】本题首先可以令x t a =,将函数转化为()212y t =+-并判断出函数的单调性,然后分为01a <<、1a >两种情况进行讨论,根据最大值是14进行计算,即可得出结果. 【详解】令x t a =(0a >、1a ≠),则()222112y t t t =+-=+-, 因为0a >,所以0x t a =>,函数()212y t =+-是增函数,当01a <<、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15-(舍去);当1a >、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时()2max 1214y a =+-=,解得3a =或5-(舍去), 综上所述,实数a 的值为13或3, 故选:D. 【点睛】本题考查根据函数的最值求参数,能否通过换元法将函数转化为二次函数是解决本题的关键,考查二次函数单调性的判断和应用,考查分类讨论思想,考查计算能力,是中档题.4.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.5.C解析:C 【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵x ∈,∴2[1,3]x ∈, ∴224()3[1,2]f x x x =-∈+.当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .6.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =,因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法:设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.7.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.8.B解析:B 【分析】对于(1)(1)(1)f x f x f +=-+,令0x =,可推出(1)(1)0f f =-=;令2x =-,推出(3)0f -=;令32x =-,推出51()()22f f -=-,最后结合()f x 的单调性得解.【详解】解:对于(1)(1)(1)f x f x f +=-+,令0x =,则(1)(1)(1)f f f =-+,(1)0f ∴-=,()f x 是偶函数,∴(1)(1)0f f =-=,令2x =-,则(21)(21)(1)f f f -+=--+,即(1)(3)(1)f f f -=-+,(3)0f ∴-=, 令32x =-,则33(1)(1)(1)22f f f -+=--+,51()()22f f ∴-=-,()f x 在区间[1-,0]为减函数,51()()(1)0(3)22f f f f ∴-=-<-==-,故选:B . 【点睛】函数的单调性与奇偶性的综合运用,灵活运用赋值法是解题的关键.9.A解析:A 【分析】由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x <的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;10.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.11.D解析:D 【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.故选:D . 【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.12.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-,解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.二、填空题13.【分析】求出在上的值域再求出在上的值域由可得的范围【详解】所以又所以时因为对任意的存在使所以解得故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:一般地已知函数(1)若总解析:7,2⎡⎫+∞⎪⎢⎣⎭【分析】求出()f x 在[2,2]-上的值域A ,再求出()g x 在[2,2]-上的值域B ,由A B ⊆可得a 的范围. 【详解】2()2f x x x =-2(1)1x =--,[2,2]x ∈-,所以()[1,8]f x ∈-,又0a >,所以[2,2]x ∈-时,()1[21,21]g x ax a a =+∈-++, 因为对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =, 所以211218a a -+≤-⎧⎨+≥⎩,解得72a ≥.故答案为:7,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.且【分析】由中根式内部的代数式大于等于00指数幂的底数不为0联立不等式组求解【详解】由解得且x≠2∴函数的定义域是】且即答案为】且【点睛】本题考查函数的定义域及其求法是基础题解析:{|1x x ≥-且}2x ≠ 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】 由1020x x +≥⎧⎨-≠⎩ ,解得1x ≥-且x≠2.∴函数()()02f x x =-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠ 【点睛】本题考查函数的定义域及其求法,是基础题.15.【解析】解:当k=0时满足条件当时综上:点睛:定义域为分母在上都不为0注意分母不一定为二次所以先考虑二次项系数为零解析:0k ≤<3. 【解析】 解: 当k=0时,13y =,满足条件 当k 0≠时,24120k k -< 综上:0k 3≤<.点睛:定义域为R ,分母在R 上都不为0,注意分母不一定为二次,所以先考虑二次项系数为零.16.【分析】先令则求解的值然后再分类讨论求解的值【详解】令则当时有无解当时有解得或所以或当时故无解;当时若则得若则即无解综上所述:故答案为:【点睛】本题考查分段函数的应用考查根据函数值求参难度一般解答时【分析】先令()f a t =,则()2f t =,求解t 的值,然后再分类讨论,求解a 的值. 【详解】令()f a t =,则()2f t =,当0t >时,有22t -=,无解, 当0t ≤时,有2222t t ++=,解得0t =,或2t =-, 所以()0f a =或()2f a =-,当()0f a =时,()2222110a a a ++=++>,20a -<,故 ()0f a =无解;当()2f a =-时,若0a >,则22a -=-,得a =若0a ≤,则2222a a ++=-,即2240a a ++=,无解,综上所述:a =【点睛】本题考查分段函数的应用,考查根据函数值求参,难度一般,解答时注意分类讨论思想的运用.17.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.18.【分析】根据二次函数和分式函数的单调性求解即可【详解】根据与在区间上都是减函数又的对称轴为所以又在区间上是减函数所以所以即的取值范围为故答案为:【点睛】本题考查了已知函数的单调性求参数问题考查了数学解析:(]01, 【分析】根据二次函数和分式函数的单调性求解即可. 【详解】根据2()2f x x ax =-+与()ag x x=在区间[1,2]上都是减函数, 又()f x 的对称轴为x a =,所以1a ≤, 又()ag x x=在区间[1,2]上是减函数,所以0a > 所以01a <≤,即a 的取值范围为(]01,.故答案为:(]01,【点睛】本题考查了已知函数的单调性求参数问题,考查了数学运算能力.属于中档题.19.【分析】先求出当时函数的值域根据函数的值域为R 可以确定函数在时的单调性以及左侧函数的值域的区间的右端点的值与右侧函数的值域的区间的左端点的值的大小关系这样可求出实数a 的取值范围是【详解】由题意知的值解析:11,2⎡⎫-⎪⎢⎣⎭【分析】先求出当1x 时,函数的值域,根据函数的值域为R ,可以确定函数在1x <时的单调性,以及左侧函数的值域的区间的右端点的值与右侧函数的值域的区间的左端点的值的大小关系,这样可求出实数a 的取值范围是 【详解】由题意知() 1y ln x x ≥=的值域为[0,+∞),故要使()f x 的值域为R ,则必有23(1)y a x a =-+为增函数,且1230a a ≥-+,所以120a ->且1a ≥-,解得112a ≤-<,实数a 的取值范围是11,2⎡⎫-⎪⎢⎣⎭. 【点睛】本题考查了已知分段函数的值域求参问题,考查了逻辑推理能力、数形结合能力.20.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】 根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.三、解答题21.(1)(][),01,-∞⋃+∞;(2) 【分析】(1)分函数()f x 在区间[]1,2t t ++上单调递增和单调递减两种情况讨论,可得出关于实数t 的不等式,由此可解得实数t 的取值范围;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,利用参变量分离法可得出265m x x <-+,利用二次函数求出函数()265g x x x =-+在区间[]1,1-上的最小值,由此可得出实数m 的取值范围. 【详解】(1)二次函数()243f x x x =-+的图象开口向上,对称轴为直线2x =.①若函数()f x 在区间[]1,2t t ++上单调递增,则12t +≥,解得1t ≥; ②若函数()f x 在区间[]1,2t t ++上单调递减,则22t +≤,解得0t ≤. 综上所述,实数t 的取值范围是(][),01,-∞⋃+∞;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立, 则265m x x <-+对任意的[]1,1x ∈-恒成立,令()()226534g x x x x =-+=--,则函数()g x 在区间[]1,1-上单调递减,所以,()()min 10g x g ==,0m ∴<. 因此,实数m 的取值范围是(),0-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.22.(1)证明见解析;2132m +<≤;(2)存在;2m ≥或2m ≤-.【分析】(1)运用单调性的定义,注意取值、作差和变形、定符号和下结论等步骤,可得f (x)在递增,由奇函数的性质推得f (x)在(递增,可得m 的不等式组,解得m 的范围;(2)运用韦达定理和配方,可得|x 1﹣x 2|的最大值,再由m 2+tm ﹣2≥0对任意t ∈[﹣1,1]恒成立,设g (t )=m 2+tm ﹣2=tm +m 2﹣2,由一次函数的单调性可得m 的不等式组,解不等式可得所求范围. 【详解】(1)当0a =时,任取12,x x ∈,12x x <, 则()()()()()()()()()()2212212112121222222212212122222222222222x x x x x x x x x x f x f x x x x x x x +-+--⎛⎫⎛⎫-=-== ⎪ ⎪++++++⎝⎭⎝⎭,12x x <∈()()211220x x x x ∴--<,()()120f x f x ∴-<,即()f x在递增;∵()f x 为R 上的奇函数,∴()f x在(递增,又∵()f x 在区间(12,1)m m --递增,则121121m m m m ⎧≤-⎪⎪-≤⎨⎪-<-⎪⎩,解得2132m +<≤(2)由2212x a x x-=+,得220x ax --=,此时280a ∆=+>恒成立,由于1x ,2x 是方程220x ax --=的两实根,所以12122x x a x x +=⎧⎨=-⎩,从而12x x -==11a -≤≤,123x x ∴-=,不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立,当且仅当213m tm ++≥对任意[1,1]t ∈-恒成立,即220m tm +-≥对任意[1,1]t ∈-恒成立,设22()22g t m tm tm m =+-=+-,则()0g t ≥对任意[1,1]t ∈-恒成立,(1)0(1)0g g ≥⎧∴⎨-≥⎩,即222020m m m m ⎧+-≥⎨-+-≥⎩,解得2m ≥或2m ≤-. 【点睛】方法点睛:证明函数的单调性.定义法:在定义域内任意取值、作差和变形、定符号和下结论;导数法:给函数求导,在定义域内判断导数的正负,若导数为正,则函数递增,若导数为负,则函数递减. 23.(1)()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明见解析. 【分析】 (1)令1(2)t t x =≥,则1x t=,求得()1(2)1f t t t =≥-,从而可得答案. (2)()f x 在[)2,+∞上递减,证任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,可证明()()120f x f x -<,从而可得结论.【详解】 (1)令1(2)t t x =≥,则1x t= 因为11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭所以()111(2)11t tf t t t ==≥--, 所以()1(2)1f x x x =≥-; (2)()f x 在[)2,+∞上递减,证明如下:任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>, 因为()()12121111f x f x x x -=--- ()()()()21121111x x x x ---=-- ()()2112011x x x x -=<--所以()()12f x f x <, 则()f x 在[)2,+∞上递减. 【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.24.(1)()2xf x x x=+,()1,1x ∈-;(2)()f x 在()1,1-上递增,证明见解析;(3)1,12⎛⎫ ⎪⎝⎭.【分析】(1)由奇偶性知()00f =,进而结合1225f ⎛⎫=⎪⎝⎭待定系数求解即可得函数解析式; (2)()f x 在()1,1-上递增,利用函数单调性的定义证明即可;(3)由奇偶性将问题转化为()()1f t f t ->-,再根据单调性解不等式111111t t t t -<-<⎧⎪-<<⎨⎪->-⎩即可. 【详解】解:(1)因为函数()21ax bf x x +=+是()1,1-上的奇函数,12.25f ⎛⎫= ⎪⎝⎭ 所以()0,0012122152514b f a bf =⎧⎪⎧=⎪⎪+⇒⎨⎨⎛⎫== ⎪⎪⎪⎝⎭⎩+⎪⎩,解得10a b =⎧⎨=⎩, ∴ ()2xf x x x=+,()1,1x ∈-. (2)()f x 在()1,1-上递增,证明如下: 任取()12,1,1x x ∈-,且12x x >,则()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()()()()()2212121212122222121211111x x x x x x x x x x x x x x ---+-==++++, ∵()12,1,1x x ∈-,∴1210x x ->, 又12x x >,∴ 120x x ->, ∴()()120f x f x ->,∴ ()()12f x f x >,即()f x 在()1,1-上递增. (3)()()10f t f t -+>可化为()()1f t f t ->-,∴111021111112112t t t t t t t t ⎧⎪-<-<<<⎧⎪⎪-<<⇒-<<⇒<<⎨⎨⎪⎪->-⎩⎪>⎩.∴t 的取值范围1,12⎛⎫⎪⎝⎭.【点睛】(1)本题是函数性质的综合运用,在解题中要熟练掌握函数奇偶性、单调性的的判定及性质,对于单调性的证明要掌握规范的解题步骤.(2)在解含“f ”号得不等式时,首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内. 25.(Ⅰ)[]2,11;(Ⅱ)[)6,+∞. 【分析】(Ⅰ)令2log 2t x =+,求出其值域;再结合二次函数的性质即可求解;(Ⅱ)设12x x <,可得()()2211f x kx f x kx -<-,令()()g x f x kx =-,()2,4x ∈, 问题转化为()g x 在()2,4上是减函数,利用二次函数的性质建立不等式,即可求解. 【详解】(Ⅰ)令2log 2t x =+,因为1,44x ⎛⎤∈⎥⎝⎦, 所以(]2log 2,2x ∈-,(]2log 20,4t x =+∈,()()22log 223y f x f t t t =+==-+,对称轴为:1t = ,所以()223f t t t =-+在区间()0,1上单调递减,在区间()1,4上单调递增,所以()()min 11232f t f ==-+=,()()2max 4424311f t f ==-⨯+=,所以函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域为[]2,11,(Ⅱ)设12x x <,易知2()23=-+f x x x 在区间(2,4)上单调递增,所以()()12f x f x <,故()()1212f x f x k x x -<-可化为()()2122f x f x kx kx -<-, 即()()2211f x kx f x kx -<-,令()()()223g x f x kx x k x =-=-++,()2,4x ∈,所以()()21g x g x <,即()g x 在()2,4上是减函数,故242k+≥, 解得:6k ≥所以实数k 的取值范围是[)6,+∞ 【点睛】关键点点睛:第二问的关键点是将已知条件转化为()()2211f x kx f x kx -<-,构造函数()()g x f x kx =-,可得()()21g x g x <,问题转化为()g x 在()2,4上是减函数,利用二次函数的对称轴建立不等式,即可求解. 26.(1)()2()61f x xg =+;(2)249175a ≤<. 【分析】(1)代入函数解析式运算即可得解; (2)转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解,结合对勾函数的性质即可得解. 【详解】(1)因为函数6()f x x=,2()1g x x =+, 所以()()()2661f g x g x x ==+; (2)由(1)得()()a f g x x >即261ax x>+, 当0x >时,有261xa x <+恰有三个正整数解, 当0a ≤时,不合题意;当0a >时,则1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解, 设不等式1116x x a ⎛⎫>+ ⎪⎝⎭的解集为12(,)x x , 则由函数1y x x=+的性质可得(]12(0,1),3,4x x ∈∈, 所以11111346364a ⎛⎫⎛⎫+<≤+ ⎪ ⎪⎝⎭⎝⎭,解得249175a ≤<, 所以实数a 的取值范围为249175a ≤<. 【点睛】关键点点睛:解决本题的关键是转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解及对勾函数性质的应用.。
北师大版高中数学必修一第二单元《函数》检测卷(答案解析)
一、选择题1.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞2.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为1x =-,给出下面四个结论:①24b ac >;②21a b -=;③0a b c -+=;④若0y >,则()3,1x ∈-.其中正确的是( ) A .①④B .②④C .①③D .①②③3.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.以下说法正确的有( ) (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个5.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个6.对二次函数()2f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ). A .1-是()0f x =的一个解 B .直线1x =是()f x 的对称轴 C .3是()f x 的最大值或最小值 D .点()2,8在()f x 的图象上7.定义,min(,),a a ba b b a b ≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .108.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣ C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确11.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.已知函数(3)5,1()2,1a x x f x a x x--≤⎧⎪=⎨->⎪⎩是R 上的增函数,则a 的取值范围是________.14.设函数()x f x e =()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________. 15.函数y x =+______.16.已知函数y =f (n),满足f (1)=2,且f (n+1)=3f (n),n ∈N + .则f (3)=____________.17.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是________________.18.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 19.若函数()f x 满足()()1f x f x =-,()()13f x f x +=--当且仅当(]1,3x ∈时,()f x x =,则()57f =______.20.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________.三、解答题21.已知函数()21f x x=- (1)证明函数()f x 在()0,∞+上是减函数. (2)求函数()f x 在[)2,x ∈+∞时的值域.22.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.23.已知二次函数()2f x x bx c =++的图象经过点()1,13,且函数12y f x ⎛⎫=-⎪⎝⎭是偶函数.(1)求()f x 的解析式;(2)已知2t <,()()213g x f x x x ⎡⎤=--⋅⎣⎦,求函数()g x 在区间[],2t 上的最大值和最小值;24.已知函数()y f x =是定义在R 上的奇函数,且当0x ≥时,()22f x x x =+.(1)求函数()f x 的解析式;(2)指出函数()f x 在R 上的单调性(不需要证明);(3)若对任意实数m ,()()20f m f m t +->恒成立,求实数t 的取值范围.25.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 26.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象过()0,1A ,()1,5B 两点,且它的对称轴的方程为12x =-.(1)求该二次函数的表达式;(2)当26x ≤≤时,函数()22y ax b m x c =+-+的最大值为()G m ,最小值为()H m ,令()()()h m G m H m =-,求()h m 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.2.A解析:A 【分析】由抛物线与x 轴有两个交点,可判定①正确;由对称轴方程为12bx a=-=-,可判定②不正确;由()10f ->,可判定③不正确;由根据函数的对称性和(3)0f -=,可判定④正确. 【详解】由函数2y ax bx c =++的图象,可得函数的图象开口向下,与x 轴有两个交点,所以0a <,240b ac ∆=->,所以①正确; 由对称轴方程为12bx a=-=-,可得2a b =,所以20a b -=,所以②不正确; 由()10f ->,可得0a b c -+>,所以③不正确; 由图象可得(3)0f -=,根据函数的对称性,可得()10f =, 所以0y >,可得31x -<<,所以④正确. 故选:A. 【点睛】识别二次函数的图象应用学会“三看”:一看符号:看二次项系数的符号,它确定二次函数图象的开口方向; 二看对称轴:看对称轴和最值,它确定二次函数图象的具体位置;三看特殊点:看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点、函数图象的最高点或最低点等.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 4.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误; (4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.5.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.6.A解析:A 【分析】可采取排除法,分别考虑A 、B 、C 、D 中有一个错误,通过解方程求得a ,判断a 是否为非零整数,即可得出结论. 【详解】①若A 错,则B 、C 、D 正确,直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得212434428b a ac baa b c ⎧-=⎪⎪-⎪=⎨⎪++=⎪⎪⎩,解得5108a b c =⎧⎪=-⎨⎪=⎩,合乎题意; ②若B 错,则A 、C 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=,3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得20434428a b c ac b a a b c -+=⎧⎪-⎪=⎨⎪++=⎪⎩,该方程组无解,不合乎题意;③若C 错误,则A 、B 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=,可得012428a b c b a a b c -+=⎧⎪⎪-=⎨⎪++=⎪⎩,解得831638a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,不合乎题意; ④若D 错误,则A 、B 、C 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,可得2012434a b c b a ac b a⎧⎪-+=⎪⎪-=⎨⎪⎪-=⎪⎩,解得343294a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,不合乎题意. 故选:A. 【点睛】关键点点睛:本题考查利用二次函数的基本性质求解参数,解本题的关键就是根据已知信息列出关于a 、b 、c 的方程组,解出参数的值,再逐一判断.7.C解析:C 【分析】根据定义确定()F x 的解析式及单调性后可得最大值. 【详解】由2246x x x <--+得2230x x +-<,31x -<<,所以()22,3146,31x x F x x x x x ⎧-<<=⎨--+≤-≥⎩或,所以()F x 在(,3)-∞-和(0,1)上都是增函数,在(3,0)-和(1,)+∞上都是减函数,(3)9F -=,(1)1F =,所以max ()9F x =. 故选:C .【点睛】关键点点睛:本题考查求函数的最大值.解题关键是根据新函数定义确定新函数的解析式,单调性.结合单调性易得最值.8.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221xf x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a ⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】函数是增函数可得且即可求解【详解】因为函数为上的增函数所以当时递增即当时递增即且解得∴综上可知实数的取值范围是故答案为:【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围需满足分段函数 解析:(]0,2【分析】函数是增函数可得30a ->,0a >且2(3)151aa -⨯-≤-,即可求解. 【详解】因为函数()f x 为R 上的增函数,所以当1x ≤时,()f x 递增,即30a ->,当1x >时,()f x 递增,即0a >, 且2(3)151aa -⨯-≤-,解得2a ≤,∴02a <≤, 综上可知实数a 的取值范围是(]0,2. 故答案为:(]0,2. 【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围,需满足分段函数每部分分别单调,还应注意在分段处的函数值大小问题,这是容易漏掉的地方.14.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .15.【分析】利用换元法将函数换元构造出新函数由新函数的定义域结合二次函数的性质求出最值即可得到值域【详解】设则所以原函数可化为:由二次函数性质当时函数取最大值2由性质可知函数无最小值所以值域为:故答案为 解析:(],2-∞【分析】利用换元法将函数换元构造出新函数,由新函数的定义域结合二次函数的性质求出最值即可得到值域. 【详解】设)0t t =≥,则21x t =-, 所以原函数可化为:()2210y t t t =-++≥,由二次函数性质,当1t =时,函数取最大值2,由性质可知函数无最小值, 所以值域为:(],2-∞. 故答案为:(],2-∞. 【点睛】本题考查换元法求函数值域,当函数解析式中含有根式时,一般考虑换元法,用换元法时要注意一定写出新变量数的取值范围.16.18【分析】根据递推关系式依次求f(2)f(3)【详解】因为f(n+1)=3f(n)所以【点睛】本题考查根据递推关系求函数值考查基本求解能力解析:18 【分析】根据递推关系式依次求f (2) ,f (3). 【详解】因为f (n+1)=3f (n),所以(2)3(1)6,(3)3(2)18.f f f f ==== 【点睛】本题考查根据递推关系求函数值,考查基本求解能力.17.【分析】令由题意得出解出该不等式组即可得出实数的取值范围【详解】对于任意的不等式恒成立即不等式恒成立令则解得或因此实数的取值范围是故答案为:【点睛】本题考查不等式恒成立问题涉及主元思想的应用将问题转 解析:()(),52,-∞-+∞【分析】令()()224f m t m t =-+-,由题意得出()10230f f ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪>⎩,解出该不等式组,即可得出实数t 的取值范围. 【详解】对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,即不等式()2240t m t -+->恒成立,令()()224f m t m t =-+-,则()()()()()()2211524202223324250f t t t t f t t t t ⎧⎛⎫⎛⎫=-+-=-+>⎪ ⎪⎪⎝⎭⎝⎭⎨⎪=-+-=-+>⎩, 解得5t <-或2t >,因此,实数t 的取值范围是()(),52,-∞-+∞.故答案为:()(),52,-∞-+∞.【点睛】本题考查不等式恒成立问题,涉及主元思想的应用,将问题转化为一次函数不等式恒成立是解题的关键,考查运算求解能力,属于基础题.18.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.19.2【分析】根据函数满足的关系可得是以6最小正周期的周期函数根据代入解析式即可【详解】根据已知条件进而有于是显然则是以6最小正周期的周期函数∵当时则故答案为:2【点睛】本题以抽象函数为载体研究抽象函数解析:2 【分析】根据函数满足的关系可得()f x 是以6最小正周期的周期函数,根据()()573f f =代入解析式即可. 【详解】 根据已知条件()()()()113f x f x f x f x ⎧=-⎪⎨+=--⎪⎩,进而有()()()()()1133f x f x f x f x f x =-=+-=⎡⎤⎡⎤⎣⎦⎣⎦---=-+, 于是()()3+=-f x f x ,显然()()()()()6333f x f x f x f x f x +=++=-⎡⎤⎡⎤+=--⎦⎦=⎣⎣, 则()f x 是以6最小正周期的周期函数, ∵当(]1,3x ∈时()f x x =,则()()()57693332f f f =⨯+===.故答案为:2. 【点睛】本题以抽象函数为载体,研究抽象函数的结构特征,且挖掘暗含条件,巧妙地对复合函数的连续变形,体现了数学抽象,数学化归等关键能力与学科素,属于中档题.20.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤【分析】利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--, 当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤.故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.三、解答题21.(1)证明见解析;(2)(]1,0-. 【分析】(1)在()0,∞+上任意取两个实数1x ,2x ,且12x x <,然后怍差()()()2112122x x f x f x x x --=判断其符号即可.(2)根据(1)知()f x 在[)2,+∞上是减函数,由2x =取得最大值,再由20x>确定值域. 【详解】(1)在()0,∞+上任意取两个实数1x ,2x ,且12x x <,则有()()()2112121222211x x f x f x x x x x --=--+=,又因为120x x <<,所以210x x ->,120x x >, 所以()()120f x f x ->,即()()12f x f x >,所以()f x 在()0,∞+上是减函数.(2)由(1)知()f x 在[)2,+∞上是减函数, 所以当2x =时()max 0f x =, 又因为20x>,所以211x ->-,所以函数()f x 在()0,∞+上的值域为(]1,0-. 【点睛】方法点睛:判断函数单调性的常用方法:(1)定义法和导数法,注意证明函数单调性只能用定义法和导数法;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.22.(1)证明见解析;(2)12x <<. 【分析】(1)计算出(1)f 后由单调性可证;(2)求得(2)2f =,利用定义不等式可化为([(32)(1)](2)f x x f x --<,然后由单调性求解. 【详解】解(1)令1a b ==,代入条件式子得(1)1f =;()f x 在R +上单调递增∴当1x >时,()(1)1f x f >=,得证.(2)令1,22a b ==,代入①式得1(1)()(2)1(2)22f f f f =+-⇒= (32)(1)()2f x f x f x ∴-+-<+(32)(1)()(2)f x f x f x f ⇔-+-<+320,10,0,[(32)(1)]1(2)1x x x f x x f x ->⎧⎪->⎪⇔⎨>⎪⎪--+<+⎩11121(32)(1)223x x x x x x x ⎧>⎧>⎪⎪⇔⇔⇔<<⎨⎨--<<<⎪⎪⎩⎩.【点睛】关键点点睛:本题考查抽象函数的单调性的应用,解关于抽象函数的不等式,关键是利用函数的定义,把不等式转化为12()()f x f x <形式,然后由单调性求解.转化时注意函数的定义域.23.(1)()211f x x x =++;(2)见详解.【分析】(1)根据二次函数过点()1,13,得到12b c +=,根据函数奇偶性,得到()y f x =关于直线12x =-对称,求出b ,得出c ,即可得出函数解析式;(2)先由(1)得到()222,02,0x x x g x x x x ⎧-≥=⎨-+<⎩,分别讨论12t ≤<,01t ≤<,10t ≤<,1t <四种情况,结合二次函数的性质,即可求出最值.【详解】(1)因为二次函数()2f x x bx c =++的图象经过点()1,13,所以131b c =++,即12b c +=①;又函数12y f x ⎛⎫=- ⎪⎝⎭是偶函数,所以12y f x ⎛⎫=- ⎪⎝⎭关于y 轴对称,因此()y f x =关于直线12x =-对称;所以122b -=-,即1b =,代入①式可得11c =, 所以()211f x x x =++; (2)由(1)()211f x x x =++,所以()()()22222,0111322,0x x x g x x x x x x x x x x ⎧-≥=++--⋅=-⋅=⎨-+<⎩,因为()11g =-,当0x <时,由221x x -+=-解得1x = 因为[],2x t ∈,所以当12t ≤<时,()22g x x x =-在[],2t 上单调递增;所以()()max 20g x g ==,()()2min 2g x g t t t ==-;当01t ≤<时,()22g x x x =-在(),1t 上单调递减,在()1,2上单调递增;所以()()max 20g x g ==,()()min 11g x g ==-;当10t <时,因为0x <时,()22g x x x =-+在[),0t 上单调递增,则(()()()1100g g t g x g -=≤≤<=; []0,2x ∈时,()22g x x x =-在()0,1上单调递增,在()1,2上单调递增,所以()()()[]1,21,0g x g g ∈=-⎡⎤⎣⎦, 所以()()max 20g x g ==,()()min 11g x g ==-;当1t <时,因为0x <时,()22g x x x =-+在[),0t 上单调递增,所以()(()()1100g t g g x g <-=-≤<<;[]0,2x ∈时,()[]221,0g x x x =-∈-,所以()()max 20g x g ==,()()2min 2g x g t t t ==-+;综上,函数()g x 在区间[],2t 上的最大值()()max 20g x g ==,最小值为()2min22,11,112,12t t t g x t t t t ⎧-+<⎪⎪=--≤<⎨⎪-≤<⎪⎩. 【点睛】 方法点睛:二次函数在闭区间上的最值问题主要有三种类型:(1)轴定区间定;(2)轴动区间定;(3)轴定区间动;不论哪种类型,解题时,都是讨论对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.24.(1)()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩;(2)增函数;(3)14t <-.【分析】(1)当0x <时,0x ->,求出()f x -,根据奇函数得到()f x ; (2)由解析式可直接写出;(3)先根据奇函数的性质化不等式为()()2f m f t m>-,利用单调性脱去“f ”,转化为2t m m <+恒成立,求出2m m +的最小值即可.【详解】(1)当0x <时,0x ->,又()f x 是奇函数, ∴()()()22f x x x f x -=--=-∴()()220f x x x x =-+<,∴()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩(2)由()f x 的解析式以及二次函数、分段函数的性质可知()f x 为R 上的增函数: (3)由()()210f m f m +->和()f x 是奇函数得()()()22f m f m t f t m>--=-,因为()f x 为R 上的增函数, ∴2m t m >-,221124t m m m ⎛⎫<+=+- ⎪⎝⎭,∴14t <-. 【点睛】方法点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.25.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式. 【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析.26.(1)2221y x x =++;(2)()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩.【分析】(1)待定系数法求出参数,,a b c ,写出二次函数表达式即可;(2)由(1)知22(22)1y x m x =+-+,即对称轴为12m x -=,讨论12m -与区间[]2,6的位置关系求m 范围及对应()h m .【详解】解:(1)由题可得12215b a c a b c ⎧-=-⎪⎪=⎨⎪++=⎪⎩,解得221a b c =⎧⎪=⎨⎪=⎩,即2221y x x =++; (2)22(2)2(22)1y ax b m x c x m x =+-+=+-+,其图象对称轴的方程为12m x -=. ①当122m -<时,即5m <时,()8512G m m =-,()134H m m =-,()728h m m =-;②当1242m -≤≤时,即59m ≤≤时,()8512G m m =-,221()2m m H m -++=,21169()1322h m m m =-+; ③当1462m -<≤时,即913m <≤时,()134G m m =-,221()2m m H m -++=,2125()522h m m m =-+; ④当162m ->时,即13m >时,()134G m m =-,()8512H m m =-,()872h m m =-.综上,()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩. 【点睛】关键点点睛:已知过定点及对称轴,应用待定系数法求二次函数解析式;当对称轴含参数时,研究区间最值需要讨论对称轴与区间的关系确定最值情况.。
最新北师大版高中数学必修一第二单元《函数》检测题(包含答案解析)
一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.若函数()f x =在[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .233.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个4.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,35.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值 6.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦ C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦7.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭8.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .49.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对10.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .711.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( ) A .1或3B .3或134C .3D .13412.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( ) A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥二、填空题13.函数()2f x x a =- 在区间[]1,1-上的最大值()M a 的最小值是__________.14.函数222421x x y x ++=+的值域为_________.15.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.16.已知函数()()14f x a ax =--[]0,2上是减函数,则实数a 的取值范围是_____.17.已知函数y =f (n),满足f (1)=2,且f (n+1)=3f (n),n ∈N + .则f (3)=____________. 18.若函数()f x 满足()()1f x f x =-,()()13f x f x +=--当且仅当(]1,3x ∈时,()3log f x x =,则()57f =______.19.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.20.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.三、解答题21.已知函数()22f x mx mx n =-+ ()0m >在区间[]1,3上的最大值为5,最小值为1,设()()=f xg x x. (1)求m 、n 的值; (2)证明:函数()g x 在),n +∞上是增函数;(3)若函数F ()()22xxx g k =-⋅=0,在[]1,1x ∈-上有解,求实数k 的取值范围.22.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围. 23.已知函数()22mf x x x=-. (1)当1m =时,判断()f x 在()0,∞+上的单调性,并用定义法加以证明. (2)已知二次函数()g x 满足()()2446g x g x x =++,()13g =-.若不等式()()g x f x >恒成立,求m 的取值范围.24.已知函数2()21,[1,3]f x ax bx x =++∈(,a b ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值.25.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.26.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由; (3)若对任意的[]1,1x ∈-,不等式()()22333310xxxx f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意; 当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2a x =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.3.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.4.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==, ∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围5.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.6.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.7.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.8.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.9.C解析:C 【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵x ∈,∴2[1,3]x ∈, ∴224()3[1,2]f x x x =-∈+. 当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .10.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 11.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D . 【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.12.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-, 解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.二、填空题13.【分析】由题意函数为偶函数分和去掉绝对值然后根据单调性求出最大值再根据单调性求出的最小值【详解】解:由题意函数为偶函数①当时在上单调递增则;②当时当即时在上单调递减则;当即时在上单调递减在上单调递增 解析:12【分析】由题意,函数()2f x x a =-为偶函数,分0a ≤和0a >去掉绝对值,然后根据单调性求出最大值()M a ,再根据单调性求出()M a 的最小值. 【详解】解:由题意,函数()2f x x a =-为偶函数,①当0a ≤时,()2f x x a =-,()f x 在[]0,1上单调递增,则()()()111M a f f a ==-=-;②当0a >时,()22,,x a x x f x a x x ⎧-≤≥⎪=⎨-<<⎪⎩或1即1a ≥时,()f x 在[]0,1上单调递减,则()()0M a f a ==;1<即01a <<时,()f x在⎡⎣上单调递减,在⎤⎦上单调递增,∵()0f a =,()11f a =-, 由1a a 得112a <<,此时()M a a =; 由1a a ≤-得102a <≤,此时()1M a a =-; ∴()11,21,2a a M a a a ⎧-≤⎪⎪=⎨⎪>⎪⎩,∴()min 1122M a M ⎛⎫== ⎪⎝⎭, 故答案为:12. 【点睛】关键点点睛:本题主要考查利用函数的单调性求函数的最值,本题的关键在于分类讨论去掉绝对值,然后再根据单调性求出最值,属于中档题.14.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求. 【详解】因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .15.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()xxf x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).16.【分析】根据f (x )定义在02上且4﹣ax≥0即可得出a≤2然后讨论:①1<a≤2时满足条件;②a=1时不合题意;③0<a <1时不合题意;④a=0时不合题意;⑤a <0时满足条件这样即可求出实数a 的取 解析:012a a <<≤或【分析】根据f (x )定义在[0,2]上,且4﹣ax≥0,即可得出a≤2,然后讨论:①1<a≤2时,满足条件;②a=1时,不合题意;③0<a <1时,不合题意;④a=0时,不合题意;⑤a <0时,满足条件,这样即可求出实数a 的取值范围. 【详解】∵f (x )定义在[0,2]上;∴a >2时,x=2时,4﹣ax <0,不满足4﹣ax≥0; ∴a≤2;①1<a≤2时,a ﹣1>0;∴()(1f x a =-[0,2]上是减函数; ②a=1时,f (x )=0,不满足在[0,2]上是减函数; ∴a≠1;③0<a <1时,a ﹣1<0; ∵[0,2]上是减函数;∴()(1f x a =-[0,2]上是增函数; ∴0<a <1不合题意;④a=0时,f (x )=﹣2,不满足在[0,2]上是减函数; ∴a≠0;⑤a <0时,a ﹣1<0;[0,2]上是增函数;∴()(1f x a =-[0,2]上是减函数; ∴综上得,实数a 的取值范围为012a a <<≤或. 故答案为012a a <<≤或. 【点睛】考查函数定义域的概念,函数单调性的定义及判断.17.18【分析】根据递推关系式依次求f(2)f(3)【详解】因为f(n+1)=3f(n)所以【点睛】本题考查根据递推关系求函数值考查基本求解能力解析:18 【分析】根据递推关系式依次求f (2) ,f (3). 【详解】因为f (n+1)=3f (n),所以(2)3(1)6,(3)3(2)18.f f f f ==== 【点睛】本题考查根据递推关系求函数值,考查基本求解能力.18.2【分析】根据函数满足的关系可得是以6最小正周期的周期函数根据代入解析式即可【详解】根据已知条件进而有于是显然则是以6最小正周期的周期函数∵当时则故答案为:2【点睛】本题以抽象函数为载体研究抽象函数解析:2 【分析】根据函数满足的关系可得()f x 是以6最小正周期的周期函数,根据()()573f f =代入解析式即可. 【详解】根据已知条件()()()()113f x f x f x f x ⎧=-⎪⎨+=--⎪⎩, 进而有()()()()()1133f x f x f x f x f x =-=+-=⎡⎤⎡⎤⎣⎦⎣⎦---=-+, 于是()()3+=-f x f x ,显然()()()()()6333f x f x f x f x f x +=++=-⎡⎤⎡⎤+=--⎦⎦=⎣⎣, 则()f x 是以6最小正周期的周期函数, ∵当(]1,3x ∈时()f x x =,则()()()57693332f f f =⨯+===.故答案为:2. 【点睛】本题以抽象函数为载体,研究抽象函数的结构特征,且挖掘暗含条件,巧妙地对复合函数的连续变形,体现了数学抽象,数学化归等关键能力与学科素,属于中档题.19.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解. 【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值,此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==,所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩, 所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭. 故答案为:198. 【点睛】本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.20.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减,所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .三、解答题21.(1)12m n =⎧⎨=⎩;(2)证明见解析;(3)1[5]2,. 【分析】(1)二次函数()f x 的对称轴为1x =,得到()f x 为[]13,上的增函数, 从而得()()11335f n m f m n ⎧=-=⎪⎨=+=⎪⎩,解得12m n =⎧⎨=⎩ 得解(2)()()22f x g x x x x==+-,设任意的12)x x ∈+∞,且12x x <,用单调性的定义证明即可.(3)分离变量得2112()2()122x x k -=+,令 1()2x t =,换元得2112()22k t =-+ 利用函数在1[2]2,上单调递增,求得函数最大小值得解 【详解】(1)因为0m >,二次函数()f x 的对称轴为1x =,所()f x 为[]13,上的增函数, 从而得()()11335f n m f m n ⎧=-=⎪⎨=+=⎪⎩,解得12m n =⎧⎨=⎩,所以()222f x x x =-+(2)()()22f x g x x x x==+-,设任意的12)x x ∈+∞,且12x x <, 则()()22121122(2)(2)g x g x x x x x -=+--+- ()21x x =-+2122()x x -=()21122(1)x x x x --=()()2112122x x x x x x --12211202x x x x x x ≤∴-<>>,,所以()()1221200x x g x g x ->->,, ()()12g x g x ∴> 所以g ()2x x x=+—2为)+∞上的增函数. (3)因为函数(20)()2x xF x g k =-⋅=, 在[]11x ∈-,上能成立即222202xx xk +--⋅= 在[]11x ∈-,有解 整理得2112()2()122x xk -=+ 令 1()2xt =,因为[]111[2]2x t ∈-∴∈,,, 221122(2221)k t t t =--++=在1[2]2,上单调递增,12t ∴=,时min 12k =,2,t =时max 5k =,所以k 的取值范围为1[5]2,【点睛】利用函数的单调性求解函数最值的步骤: (1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值.22.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩,简图答案见解析;(2)单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-;(3)1m .【分析】(1)设0x <,则0x ->,利用()f x f x =--()即可求出0x <时,()f x 的解析式,进而可得函数()f x 的解析式,按步骤列表描点连线即可作出函数图象; (2)根据图象上升和下降趋势即可得单调区间;(3)将原问题转化为max 21m f x ≤-(),利用单调性求出()f x 在区间[1,3]-上的最大值即可求解. 【详解】(1)设0x <,则0x ->,因为f x ()是奇函数所以()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦() 所以222,02,0x x x f x x x x ⎧-≥=⎨--<⎩() , 列表如下:x … 3- 2-1-0 1 2 3 … y…3-11-3…(2)由图知:函数f x ()的单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-(3)不等式21f x m -≥()在1[]3x ∈-,上有解, 等价于在21m f x ≤-()在1[]3x ∈-,有解.可得max 21m f x ≤-(), 由(2)可知f x ()在[11-,)上单调递减,在[1]3,上单调递增, 因为()()()211211f -=---⨯-=,()233233f =-⨯=所以()max 3f x =,所以2312m ≤-=,所以1m 【点睛】方法点睛:求不等式有解问题常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可.23.(1)减函数,证明见解析;(2)1m <-. 【分析】(1)()212f x x x=-在区间()0+∞,上为减函数,运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(2)设()()20g x ax bx c a =++≠,由题意可得关于,,a b c 的方程,解得,,a b c 的值,可得222mx x->,由参数分离和二次函数的最值求法,可得所求范围. 【详解】 (1)当1m =时,()212f x x x =-,函数()f x 是区间()0+∞,上的减函数, 证明如下:设1x ,2x 是区间()0+∞,上的任意两个实数,且12x x <, 则()()121222121122f x f x x x x x -=--+ ()()22212121212222121222x x x x x x x x x x x x ⎛⎫-+=+-=-+ ⎪⎝⎭. ∵120x x <<,∴210x x ->,210x x +>,22120x x >,∴()()120f x f x ->,()()12f x f x >, ∴函数()f x 是区间()0,∞+上的减函数.(2)设()()20g x ax bx c a =++≠,则()2242g x ax bx c =++,()()244644446g x x ax b x c ++=++++.又∵()()2446g x g x x =++, ∴442,46,b bc c +=⎧⎨+=⎩∴2b =-,2c =-,又∵()13g a b c =++=-,∴1a =,∴()222g x x x =--.∵()()g x f x >,∴222m x x ->,∴()4220m x x x <-≠,又∵()2422211x x x -=--,∴1m <-.【点睛】方法点睛:该题考查的是有关函数的问题,解题方法如下:(1)先判断函数()f x 在()0,∞+上的单调性,再用定义证明,在证明的过程中,注意其步骤要求;(2)先用待定系数法求得函数()g x 的解析式,将恒成立问题转化为最值来处理,求得结果.24.(1)答案见解析;(2)19. 【分析】(1)讨论2b -<和2b -≥两种情况根据二次函数性质求解; (2)讨论11a ≤,113a<<和13a ≥三种情况结合二次函数的单调性求解.【详解】(1)1a =时,2()21f x x bx =++,对称轴为x b =-,二次函数()f x 的图象开口向上,当2b -<,即2b >-时,max ()(3)106f x f b ==+; 当2b -≥,即2b ≤-时,max ()(1)22f x f b ==+.(2)2()21f x ax x =-+,对称轴为1x a=,二次函数()f x 的图象开口向上, 当11a≤,即1a ≥时,()f x 在[]1,3单调递增,()()min 114f x f a ==-=-,解得3a =-,不符合;当113a <<,即113a <<时,2min 112()14f x f a a a a ⎛⎫⎛⎫==⋅-+=- ⎪ ⎪⎝⎭⎝⎭,解得15a =,不符合;当13a ≥,即103a <≤时,()f x 在[]1,3单调递减,()()min 3954f x f a ==-=-,解得19a =,符合,综上,19a =.【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.25.(1)1;(2)82[,]35-.【分析】(1)()f x 为R 上的奇函数,由()00f =得解;(2)由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”得到等价命题是 “()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集”,分别求出两个函数的值域得解.【详解】(1)因为()f x 为R 上的奇函数,所以()00f =,即102a -=,解得1a = (2)因为[]20,3x ∈,且()g x 在[]0,1上是减函数,在[]1,3上为增函数所以()g x 在[]0,3上的取值集合为[]1,3m m -+. 由122()11221x x x f x -==-+++得()f x 是减函数, 所以()f x 在[]1,2-上是减函数所以()f x 在[]1,2-上的取值集合为31[,]53-.由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立” ()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集, 即[]31[,]1,353m m -⊆-+. 则有315m -≤-,且133m +≥,解得:8235m -≤≤. 即实数m 的取值范围是82[,]35-.【点睛】探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围;类似的,对于不等式()()0(0)f x g m -≥≤,也可仿效此法.26.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100x x x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围.【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >.(3)由(2)得()223333100x x x x m --+≥+->恒成立, 令10332,3x x t -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-, 原不等式可化为:22100t mt -≥->,由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8t t +≥=8t t=,即t =时等号成立,所以m ≤. 由100mt ->恒成立可得:max 10m t ⎛⎫> ⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤.【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版高中数学必修一单元测评(二) 函 数(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.若集合A ={y|y =x 13,-1≤x ≤1},B ={y|y =2-x ,0<x ≤1},则A ∩B 等于( )A .(-∞,-1]B .[-1,1]C .∅D .{1}解析:∵由y =x 13(-1≤x ≤1)可得-1≤y ≤1, 故A ={y|-1≤y ≤1}.由y =2-x(0<x ≤1)得1≤y <2, 故B ={y|1≤y <2},故A ∩B ={1}. 答案:D 2.函数f(x)=12x -3的定义域是( )A.⎝⎛⎭⎪⎪⎫0,32B.⎣⎢⎢⎡⎭⎪⎪⎫32,+∞C.⎝⎛⎦⎥⎥⎤-∞,32D.⎝ ⎛⎭⎪⎪⎫32,+∞解析:由2x -3>0得x >32.答案:D3.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3},f :x →x 的平方根;②A =R ,B =R ,f :x →x 的倒数;③A =R ,B =R ,f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1},f :A 中数的平方.其中A 到B 的映射的是( )A .①③B .②④C .③④D .②③解析:根据映射的概念易知③④是A 到B 的映射. 答案:C4.设f(x)=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎪⎫12=( )A .1B .-1 C.35D .-35解析:f(x)=x 2-1x 2+1,f ⎝ ⎛⎭⎪⎪⎫1x =1x 2-11x 2+1=1-x 21+x 2=-x 2-1x 2+1=-f(x). f (x )f ⎝ ⎛⎭⎪⎪⎫1x =-1.则f (2)f ⎝ ⎛⎭⎪⎪⎫12=-1.5.下列函数为偶函数的是( ) A .f(x)=x 4-1 B .f(x)=x 2(-1<x <3) C .f(x)=x +1xD .f(x)=x 4x解析:由定义域关于原点对称,且f(-x)=f(x)得B 、C 、D 都错. 答案:A6.若偶函数f(x)在(-∞,-1]上是增函数,则( ) A .f(-1.5)<f(-1)<f(2) B .f(-1)<f(-1.5)<f(2) C .f(2)<f(-1)<f(-1.5) D .f(2)<f(-1.5)<f(-1)解析:f(x)在(-∞,-1]上是增函数, ∴f(-2)<f(-1.5)<f(-1), 又f(x)是偶函数, ∴f(2)=f(-2),∴f(2)<f(-1.5)<f(-1). 答案:D7.函数y =x 2-4x +1,x ∈[2,5]的值域是( ) A .[1,6] B .[-3,1] C .[-3,6]D .[-3,+∞)解析:y =(x -2)2-3,函数在[2,+∞)上是增函数,所以f(2)=-3,又x ∈[2,5],∴f(5)=6.8.已知f(x)是奇函数,且对任意实数x 1,x 2(x 1≠x 2),恒有f (x 1)-f (x 2)x 1-x 2>0,则下列结论一定正确的是( )A .f(-3)>f(5)B .f(-3)<f(-5)C .f(-5)>f(3)D .f(-3)>f(-5)解析:设x 1>x 2>0,则f(x 1)>f(x 2),∴f(x)在(0,+∞)上为增函数,又f(x)为奇函数, ∴f(x)在R 上为增函数, ∵-3>-5,∴f(-3)>f(-5),故正确答案为D. 答案:D9.设f(x)是R 上的偶函数,且在(-∞,0)上为减函数,若x 1<0,且x 1+x 2>0,则( )A .f(x 1)>f(x 2)B .f(x 1)=f(x 2)C .f(x 1)<f(x 2)D .无法比较f(x 1)与f(x 2)的大小解析:x 1<0,且x 1+x 2>0,∴x 1>-x 2, 又f(x)在(-∞,0)为减函数, ∴f(x 1)<f(-x 2),又f(x)是偶函数,∴f(x 1)<f(x 2). 答案:C10.已知反比例函数y =kx 的图像如图所示,则二次函数y =2kx 2-4x +k 2的图像大致为( )A.B.C.D.解析:由反比例函数的图像知k <0,∴二次函数开口向下,排除A 、B ,又对称轴为x =1k<0,排除C.答案:D第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.已知f(x)为偶函数,当-1≤x <0时,f(x)=x +1,那么当0<x ≤1时,f(x)=__________.解析:0<x ≤1时,-1≤-x <0,f(-x)=-x +1, ∴此时f(x)=f(-x)=-x +1=1-x. 答案:1-x12.若函数f(x)=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为__________.解析:函数f(x)的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调,∴a -12≥2或a -12≤1,即a ≥52或a ≤32.答案:a ≥52或a ≤3213.已知函数f(x),g(x)分别由下表给出x 1 2 3 f(x)231x 1 2 3 g(x)321则f[g(1)]的值为__________;当g[f(x)]=2时,x =__________. 解析:f[g(1)]=f(3)=1, ∵g[f(x)]=2,∴f(x)=2,∴x =1. 答案:1 114.设奇函数f(x)的定义域为[-5,5],若当x ∈[0,5]时,f(x)的图像如图所示,则不等式f(x)<0的解集是__________.解析:注意到奇函数的图像关于原点成中心对称,用对称的思想方法补全函数f(x)在[-5,5]上的图像,如下图所示.由图可知,f(x)<0的解集为{x|-2<x <0,或2<x ≤5}. 答案:(-2,0)∪(2,5]三、解答题:本大题共4小题,满分50分. 15.(12分)已知二次函数f(x)=x 2+2(m -2)x +m -m 2. (1)若函数的图像经过原点,且满足f(2)=0,求实数m 的值; (2)若函数在区间[2,+∞)上为增函数,求m 的取值范围. 解:(1)∵f(0)=0,f(2)=0,∴⎩⎪⎨⎪⎧-2(m -2)=2,m -m 2=0,∴m =1.(6分)(2)∵y =f(x)在[2,+∞)为增函数, ∴对称轴x =-2(m -2)2≤2,∴m ≥0.(12分)16.(12分)已知函数f(x)=1+x 21-x 2. (1)求f(x)的定义域; (2)判断并证明f(x)的奇偶性;(3)求证:f ⎝ ⎛⎭⎪⎪⎫1x =-f(x).解:(1)由1-x 2≠0得x ≠±1,故f(x)的定义域为{x|x ≠±1,x ∈R}.(4分) (2)f(x)是偶函数,证明如下:设x ∈{x|x ≠±1,x ∈R},则-x ∈{x|x ≠±1,x ∈R}. ∵f(-x)=1+(-x )21-(-x )2=1+x 21-x 2=f(x), ∴f(x)是偶函数.(8分)(3)∵f ⎝ ⎛⎭⎪⎪⎫1x =1+⎝ ⎛⎭⎪⎪⎫1x 21-⎝ ⎛⎭⎪⎪⎫1x 2=1+1x 21-1x 2=x 2+1x 2-1 =-1+x 21-x2=-f(x), ∴f ⎝ ⎛⎭⎪⎪⎫1x =-f(x)成立.(12分) 17.(12分)已知函数f(x)的定义域为(-2,2),函数g(x)=f(x -1)+f(3-2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.解:(1)由题意可知⎩⎪⎨⎪⎧-2<x -1<2,-2<3-2x <2,解得⎩⎪⎨⎪⎧-1<x <3,12<x <52.即12<x <52.(4分) 故函数f(x)的定义域为⎝ ⎛⎭⎪⎪⎫12,52.(6分)(2)由g(x)≤0,得f(x -1)+f(3-2x)≤0, ∴f(x -1)≤-f(3-2x).(8分) ∵f(x)为奇函数, ∴f(x -1)≤f(2x -3). 而f(x)在(-2,2)上单调递减, ∴⎩⎪⎨⎪⎧x -1≥2x -3,12<x <52.解得12<x ≤2.(10分)∴g(x)≤0的解集为⎝ ⎛⎦⎥⎥⎤12,2.(12分)18.(14分)已知函数f(x)=x 2+2x +ax ,x ∈[1,+∞).(1)当a =12时,求函数f(x)的最小值;(2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围. 解:(1)当a =12时,f(x)=x +12x+2.用单调函数定义可证f(x)在区间[1,+∞)上为增函数,(4分) ∴f(x)在区间[1,+∞)上的最小值为f(1)=72.(6分)(2)在区间[1,+∞)上,f(x)=x 2+2x +ax >0恒成立,等价于x 2+2x +a>0恒成立.(8分)设y =x 2+2x +a ,x ∈[1,+∞).∵y =x 2+2x +a =(x +1)2+a -1在[1,+∞)上单调递增, ∴当x =1时,y min =3+a.(12分)于是,当且仅当y min =3+a >0时,f(x)>0恒成立. ∴a >-3.(14分)。