第十章 综合测试卷

合集下载

人教版八年级物理下册 第十章单元测试试卷含答案解析(1)

人教版八年级物理下册 第十章单元测试试卷含答案解析(1)

第十章浮力综合测试一、单选题1.放在水平桌面上的甲、乙两个相同的容器中盛有同种液体,体积相等的a 、b 两个物体在液体中静止时,两液面相平,如图所示,则()A .物体a 的密度大B .物体b 受到的浮力小C .甲容器底部受到的压力小D .两容器对桌面的压强一样大2.两个相同的容器中,分别盛有甲、乙两种液体,把完全相同的两个小球分别放入两个容器中,当两球静止时液面相平,球所处位置如图所示。

甲、乙两种液体对容器底部的压强大小分别为p 甲、p 乙,两球在甲、乙两种液体中所受浮力大小分别为F 甲、F 乙,则它们的大小关系是()A .p p 甲乙>F F =甲乙B .p p 甲乙<F F =甲乙C .p p 甲乙>F F 甲乙>D .P P <甲乙F F <甲乙3.将一木块用细线在空的容器底部,开始往容器中缓慢加水至图甲所示位,木块受到的浮力F 随容器中水深h 的变化关系如图乙,则木块()A.小球的质量是60gB.甲杯中小球受到的浮力小于4A .图甲中A 受到的浮力为12NB .木块A 的密度为0.67×103kg/m 3C .从图甲到图乙,水对A 底部的压力变化了3ND .合金块B 的密度为4×103kg/m 37.2020年4月23日,“雪龙”号考察船圆满完成历时198天的南极考察任务,返回上海码头落锚。

在铁链拉着铁锚缓慢放入水中时,经历了如图所示三种情况:图甲中铁锚部分浸入水中;图乙中铁锚完全浸没水中但未触底;图丙中铁锚沉底。

三种情况下船身受到的浮力大小分别为F 甲、F 乙、F 丙,它们的大小关系正确的是()A .F 甲=F 乙=F 丙B .F 甲>F 乙=F 丙C .F 甲>F 乙>F 丙D .F 甲<F 乙<F 丙8.如图所示,甲、乙、丙三个完全相同的烧杯中均装有适量的水,将质地均匀,且不吸水的a 、b 两实心体分别放入甲、乙烧杯中,当a 、b 静止时,a 有五分之二的体积露出水面,b 悬浮于水中,此时两烧杯液面刚好相平。

人教版高中数学必修第二册 第九章~第十章 综合测试卷 (含答案)

人教版高中数学必修第二册 第九章~第十章 综合测试卷 (含答案)

人教版高中数学必修第二册第九章~第十章综合测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现要完成下列两项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①抽签法,②比例分配的分层随机抽样B.①随机数法,②比例分配的分层随机抽样C.①随机数法,②抽签法D.①抽签法,②随机数法2.若A,B为对立事件,则下列式子中成立的是()A.P(A)+P(B)<1B.P(A)+P(B)>1C.P(A)+P(B)=0D.P(A)+P(B)=13.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.2B.0.35C.0.3D.0.44.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如图C6-1所示,则这30只宠物狗体重的平均值大约为()图C6-1A.15.5千克B.15.6千克C.15.7千克D.16千克5.以下数据为参加数学竞赛决赛的15人的成绩(单位:分):78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90分B.91.5分C.91分D.90.5分6.一组样本数据a,3,4,5,6的平均数是b,且不等式x2-6x+c<0的解集为(a,b),则这组样本数据的标准差是()A.1B.2C.3D.27.我国历史上有田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上、中、下等马各1匹,双方各随机选1匹马进行1场比赛,则齐王的马获胜的概率为()A.23B.13C.12D.568.在发生某公共卫生事件期间,有专业机构认为在一段时间内没有发生规模群体感染的标志为“连续10天,每天新增疑似病例数量不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体的平均数为3,中位数为4B.乙地:总体的平均数为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体的平均数为2,总体方差为3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.给出下列四个说法,其中正确的说法有()A.做100次抛硬币的试验,结果有51次出现正面朝上,因此,出现正面朝上的概率是51100B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D.随机事件发生的频率不一定是这个随机事件发生的概率10.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图C6-2所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()图C6-2A.成绩在[70,80)内的考生人数最多B.不及格的考生人数为1000C.考生竞赛成绩的平均数约为70.5分D.考生竞赛成绩的中位数为75分11.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图C6-3(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况:图C6-3对比数据,关于这20名肥胖者,下面结论正确的是()A.健身后,体重在区间[90,100)内的人数较健身前增加了2B.健身后,体重原在区间[100,110)内的人员一定无变化C.健身后,20人的平均体重大约减少了8kgD.健身后,原来体重在区间(110,120]内的肥胖者体重都有减少12.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是()A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为12请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查的结果如下:甲:3,4,5,6,8,8,8,10;乙:3,3,4,7,9,10,11,12.两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别采用了平均数、众数、中位数中的哪一个特征数:甲:,乙:.14.如图C6-4是容量为100的样本数据的频率分布直方图,则样本数据落在区间[6,18)内的频数为.图C6-415.已知甲、乙、丙3名运动员射击一次击中目标的概率分别为0.7,0.8,0.85,若这3人向目标各射击一次,则目标没有被击中的概率为.16.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{0,1,2,…,9}.若|a-b|≤1,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数012345概率0.10.16x y0.2z(1)若获奖人数不超过2的概率为0.56,求x的值;(2)若获奖人数最多为4的概率为0.96,获奖人数最少为3的概率为0.44,求y,z的值.18.(12分)甲、乙两台机床同时加工直径为100cm的零件,为检验质量,各从中抽取6个零件测量其直径,所得数据如下.甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.19.(12分)某校高一年级举行了一次数学竞赛,为了了解参加本次竞赛的学生的成绩情况,从中抽取了部分学生的成绩(取正整数,单位:分)作为样本(样本量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图C6-5所示,已知成绩在[50,60),[90,100]内的频数分别为8,2.(1)求样本量n和频率分布直方图中的x,y的值;(2)估计参加本次竞赛的学生成绩的众数、中位数、平均数.图C6-520.(12分)生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲、乙机床生产的产品中各任取1件,求:(1)至少有1件废品的概率;(2)恰有1件废品的概率.21.(12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图C6-6所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯的概率与获得饮料的概率的大小,并说明理由.图C6-622.(12分)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分).根据调查数据制成如下表格和如图C6-7所示的频率分布直方图.已知评分在[80,100]内的居民有600人.满意度评分[40,60)[60,80)[80,90)[90,100]满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及参与评分的总人数.(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大的调整,否则不需要进行大调整.根据所学知识判断该区防疫工作是否需要进行大调整.(3)为了解部分居民不满意的原因,从不满意的居民(评分在[40,50),[50,60)内)中用比例分配的分层随机抽样的方法抽取6位居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有1人对防疫工作的评分在[40,50)内的概率.图C6-7参考答案与解析1.A[解析]①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样.故选A.2.D[解析]若事件A与事件B是对立事件,则P(A)+P(B)=1.故选D.3.B[解析]∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.4.B[解析]由频率分布直方图可以计算出各组的频率分别为0.1,0.2,0.3,0.2,0.1,0.1,故各组的频数分别为3,6,9,6,3,3,则这30只宠物狗体重的平均值为11×3+13×6+15×9+17×6+19×3+21×330=15.6(千克),故选B.5.D[解析]将这15人的成绩(单位:分)由小到大依次排列为56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,第12,13个数据分别为90分、91分,所以这15人成绩的第80百分位数是90.5分.故选D.6.B[解析]由题意得a+3+4+5+6=5b,a+b=6,解得a=2,b=4,所以样本数据的方差s2=15×[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,所以标准差s=2.故答案为B.7.A[解析]依题意,记田忌的上等马、中等马、下等马分别为a,b,c,齐王的上等马、中等马、下等马分别为A,B,C.由题意可知,样本空间Ω={aA,bA,cA,aB,bB,cB,aC,bC,cC},共有9个样本点,其中事件“田忌可以获胜”包含的样本点为aB,aC,bC,共3个,则齐王的马获胜的概率P=1-39=23.故选A.8.D[解析]由于甲地总体数据的平均数为3,中位数为4,即按从小到大排序后,中间两个数据的平均数为4,因此后面的数据可以大于7,故甲地不一定符合.乙地总体数据的平均数为1,因此这10天的新增疑似病例总数为10,又由于方差大于0,故这10天中新增疑似病例数量不可能每天都是1,可以有一天大于7,故乙地不一定符合.丙地总体数据的中位数为2,众数为3,故数据中可以出现8,故丙地不一定符合.丁地总体数据的平均数为2,方差为3,故丁地一定符合.9.CD[解析]对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B 错误;对于C,抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.故选CD.10.ABC [解析]由频率分布直方图可得,成绩在[70,80)内的频率最高,考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)内的频率为0.25,则不及格的考生人数为4000×0.25=1000,故B 正确;由频率分布直方图可得,平均数为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5(分),故C 正确;因为成绩在[40,70)内的频率为0.45,在[70,80)内的频率为0.3,所以中位数为70+10×0.050.3≈71.67(分),故D 错误.故选ABC .11.AD[解析]体重在区间[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,故A 正确;健身后,体重在区间[100,110)内的频率没有变,但人员组成可能改变,故B 错误;健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)-(0.1×85+0.4×95+0.5×105)=5(kg),故C 错误;因为图(2)中没有体重在区间(110,120]内的人员,所以原来体重在区间(110,120]内的肥胖者体重都有减少,故D 正确.故选AD .12.ACD[解析]设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,“2个球都是红球”为事件A 1A 2,其概率为13×12=16,A 正确;在B中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,“2个球中至少有1个红球”的概率为1-P ( )P ( )=1-23×12=23,C 正确;在D 中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .13.众数中位数[解析]对甲厂的数据进行分析:该组数据中8年出现的次数最多,故广告中采用了众数;对乙厂的数据进行分析:该组数据最中间的是7年与9年,故中位数是7+92=8(年),故广告中采用了中位数.14.80[解析]由题图知,样本数据落在区间[6,18)内的频数为100×0.8=80.15.0.009[解析]由相互独立事件的概率计算公式知,3人向目标各射击一次,目标没有被击中的概率P=(1-0.7)×(1-0.8)×(1-0.85)=0.3×0.2×0.15=0.009.16.725[解析]从{0,1,2,…,9}中任意取两个数(可重复),该试验共有100个样本点,事件“|a-b|≤1”包含的样本点为(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,1),(1,0),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,6),(7,8),(8,7),(8,9),(9,8),共有28个,所以所求概率P=28100=725.17.解:记事件“在竞赛中,有k 人获奖”为A k (k ∈N,k ≤5),则事件A k 彼此互斥.(1)∵获奖人数不超过2的概率为0.56,∴P (A 0)+P (A 1)+P (A 2)=0.1+0.16+x=0.56,解得x=0.3.(2)由获奖人数最多为4的概率为0.96,得P (A 5)=1-0.96=0.04,即z=0.04.由获奖人数最少为3的概率为0.44,得P (A 3)+P (A 4)+P (A 5)=0.44,即y+0.2+0.04=0.44,解得y=0.2.18.解:(1)由题中数据可得 甲=16×(99+100+98+100+100+103)=100(cm); 乙=16×(99+100+102+99+100+100)=100(cm).甲2=16×(1+0+4+0+0+9)=73, 乙2=16×(1+0+4+1+0+0)=1.(2)由(1)知两台机床所加工零件的直径的平均数相同,又 甲2> 乙2,所以乙机床加工零件的质量更稳定.19.解:(1)由题意可知,样本量n=80.016×10=50,y=250×10=0.004,x=0.1-0.016-0.04-0.01-0.004=0.03.(2)由频率分布直方图可估计,参加本次竞赛的学生成绩的众数为75分.设样本数据的中位数为m ,因为(0.016+0.03)×10<0.5<(0.016+0.03+0.04)×10,所以m ∈[70,80),所以(0.016+0.03)×10+(m-70)×0.04=0.5,解得m=71,故估计参加本次竞赛的学生成绩的中位数为71分.由频率分布直方图可估计,参加本次竞赛的学生成绩的平均数为55×0.16+65×0.3+75×0.4+85×0.1+95×0.04=70.6(分).20.解:记从甲、乙机床生产的产品中取1件是废品分别为事件A ,B ,则事件A ,B 相互独立,且P (A )=0.04,P (B )=0.05.(1)设“至少有1件废品”为事件C ,则P (C )=1-P ( )=1-P ( )P ( )=1-(1-0.04)×(1-0.05)=0.088.(2)设“恰有1件废品”为事件D ,则P (D )=P (A )+P ( B )=0.04×(1-0.05)+(1-0.04)×0.05=0.086.21.解:(1)试验的所有样本点为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),( 4,3),(4,4),共16个.事件“xy≤3”包含的样本点有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为516.(2)事件“xy≥8”包含的样本点有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为38,小亮获得饮料的概率为1-516-38=516,所以小亮获得水杯的概率大于获得饮料的概率.22.解:(1)由频率分布直方图知(0.002+0.004+0.014+0.02+0.035+a)×10=1,即10×(0.075+a)=1,解得a=0.025,设共有n人参与评分,则600 =(0.035+0.025)×10,解得n=1000,即参与评分的总人数为1000.(2)由频率分布直方图知各组的频率分别为0.02,0.04,0.14,0.2,0.35,0.25,所以η=45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25100=0.807>0.8,所以该区防疫工作不需要进行大调整.(3)因为0.002×10×1000=20,0.004×10×1000=40,所以评分在[40,50),[50,60)内的居民人数分别为20,40,所以所抽取的评分在[40,50)内的居民人数为20×660=2,将这2人分别记为a,b,所抽取的评分在[50,60)内的居民人数为40×660=4,将这4人分别记为A,B,C,D.从这6人中抽取2人,试验的样本点有ab,aA,aB,aC,aD,bA,bB,bC,bD,AB,AC,AD,BC,BD,CD,共15个.而“仅有1人对防疫工作的评分在[40,50)内”包含的样本点有aA,aB,aC,aD,bA,bB,bC,bD,共8个,则所求事件的概率为815.。

第十章 概率 单元测试卷(解析版)

第十章 概率 单元测试卷(解析版)

第十章概率单元测试卷一、单选题1.(2021·黑龙江·鹤岗一中高二阶段练习)将一枚骰子先后抛掷两次,若先后出现的点数分别为b,c,则方程20x bx c++=有实数根的样本点个数为()A.17B.18C.19D.20【答案】C【解析】【分析】直接列举即可得到.【详解】一枚骰子先后抛掷两次,样本点一共有36个;方程有实数根,需满足240b c-≥;样本点中满足240-≥的有(2,1)、(3,1)、(3,2)、(4,1)、(4,2)、(4,3)、(4,4)、(5,b c1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),共19个.故选:C2.(2021·全国·高一课时练习)某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则样本点共有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据基本事件的概念一一列举即可得出选项.【详解】解析:该生选报的所有可能情况是:数学和计算机、数学和航空模型、计算机和航空模型,所以样本点有3个.故选:C3.(2022·湖南·高一课时练习)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A=“两次都击中飞机”,B=“两次都没击中飞机”,C=“恰有一枚炮弹击中飞机”,D=“至少有一枚炮弹击中飞机”,下列关系不正确的是( )A .A ⊆DB .B ∩D =∅C .A ∪C =DD .A ∪B =B ∪D【答案】D【解析】【分析】按照事件间的互斥关系和包含关系分析求解即可.【详解】“恰有一枚炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一枚炮弹击中”包含两种情况:恰有一枚炮弹击中,两枚炮弹都击中.故A ⊆D ,A ∪C =DB ,D 为互斥事件,B ∩D =∅;A ∪B =“两个飞机都击中或者都没击中”,B ∪D 为必然事件,这两者不相等故选:D4.(2021·全国·高一单元测试)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为( ). A .112 B .16 C .14 D .13【答案】B【解析】【分析】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,列举所有比赛的情况,利用古典概型的概率公式计算即可得出结果.【详解】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,所有比赛的情况::11()a b ,、22(,)a b 、33(,)a b ,齐王获胜三局;11()a b ,、23(,)a b 、32(,)a b ,齐王获胜两局;12(,)a b 、21(,)a b 、33(,)a b ,齐王获胜两局;12(,)a b 、23(,)a b 、31(,)a b ,齐王获胜两局;13(,)a b 、21(,)a b 、32(,)a b ,田忌获胜两局;13(,)a b 、22(,)a b 、31(,)a b ,齐王获胜两局,共6种情况,则田忌胜1种情况,故概率为16P = 故选:B【点睛】本题考查了古典概型的概率计算问题,考查了理解辨析和数学运算能力,属于中档题目.5.(2021·全国·高一课时练习)10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( ) A .35B .23C .34D .415【答案】B【解析】【分析】 根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.【详解】根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券,则在甲中奖条件下,乙没有中奖的概率6293P ==. 故选:B.6.(2021·吉林·长春市第二十中学高一期末)从数字1,2,3,4中任取三个不同的数字,则所抽取的三个数字之和能被6整除的概率为( ) A .12 B .15 C .14 D .25【答案】C【解析】【分析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从数字1,2,3,4中任取三个不同的数字,方法有:123,124,134,234++++++++共4种,其中所抽取的三个数字之和能被6整除的有:1236++=共1种,故所求概率为1 4 .故选:C7.(2021·黑龙江实验中学高二阶段练习)在新冠疫情的冲击下,全球经济受到重创,右图是各国公布的2020年第二季度国内生产值(GDP)同比增长率,现从这5个国家中任取2个国家,则这2个国家中第二季度GDP同比增长率至少有1个低于15%-的概率为()A.310B.12C.35D.710【答案】D【解析】【分析】利用列举法求解即可【详解】解:令中国、澳大利亚、印度、英国、美国的2020年第二季度国内生产值(GDP)同比增长率分别为A,B,C,D,E,其中C,D都低于15%-,则从这5个国家中任取2个国家有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中至少有1个低于15%-有AC,AD,BC,BD,CD,CE,DE共7种,所以所求概率为7 10.8.(2022·全国·高三专题练习(理))抛掷一颗质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( )A .A 与B 互斥B .A 与B 对立C .()23P A B +=D .()56P A B += 【答案】C【解析】根据互斥事件和对立事件的定义判断.求出事件A B +,然后计算概率.【详解】A 与B 不互斥,当向上点数为1时,两者同时发生,也不对立, 事件A B +表示向上点数为1,3,4,5之一,∴42()63P A B +==. 故选:C .【点睛】 关键点点睛:本题考查互斥事件和对立事件,考查事件的和,掌握互斥事件和对立事件的定义是解题关键.判断互斥事件,就看在一次试验中两个事件能不能同时发生,只有互斥事件才可能是对立事件,如果一次试验中两个事件不能同时发生,但非此即彼,即必有一个发生,则它们为对立事件.而不互斥的事件的概率不能用概率相加,本题()()()P A B P A P B +≠+.二、多选题9.(2021·重庆·高三开学考试)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12 【答案】ACD【解析】【分析】 根据题意可知,则从甲袋中摸出一个不是红球的概率是23,从乙袋中摸出一个不是红球的概率是12,根据对立事件和相互独立事件的概率计算公式,分别求出各选项中的概率,从而可判断得出答案.解:由题可知,从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,则从甲袋中摸出一个不是红球的概率是23,从乙袋中摸出一个不是红球的概率是12,对于A选项,2个球都是红球的概率为111326⨯=,A选项正确;对于B选项,2个球不都是红球的概率为1151326-⨯=,B选项错误;对于C选项,至少有1个红球的概率为2121323-⨯=,C选项正确;对于D选项,2个球中恰有1个红球的概率1211232132⨯+⨯=,D选项正确.故选:ACD.10.(2021·广东佛山·高二阶段练习)袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球【答案】BD【解析】【分析】根据互斥事件的定义和性质判断.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.【点睛】本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题.11.(2022·全国·高二单元测试)抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P ,则下列结论中正确的是( )A .1234P P P P ===B .312P P =C .12341P P P P +++=D .423P P =【答案】CD【解析】【分析】利用n 次的独立重复试验中事件A 恰好发生k 次的概率计算公式,分别求得1234,,,P P P P 的值,即可求解.【详解】由题意,抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P , 根据独立重复试验的概率计算公式, 可得:3322121233431111113113(),(),()(1),(1)2828228228P P P C P C =====-==⋅-=, 由1234P P P P =<=,故A 是错误的;由313P P =,故B 是错误的;由12341P P P P +++=,故C 是正确的;由423P P =,故D 是正确的.故选:CD【点睛】本题主要考查概率的计算及其应用,其中解答中熟练应用n 次独立重复试验中事件A 恰好发生k 次的概率计算公式求得相应的概率是解答的关键,着重考查了运算与求解能力.12.(2021·河北·石家庄市第二十二中学高二阶段练习)甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .()()()P A PB PC ==B .()()()P BC P AC P AB == C .1()8P ABC =D .1()()()8P A P B P C ⋅⋅= 【答案】ABD【解析】【分析】根据题意,分别求得(),(),()P A P B P C 可判断A ,由独立事件概率乘法公式,可判断BCD.【详解】由已知22221()44442P A =⨯+⨯=,21()()42P B P C ===, 由已知有1()()()4P AB P A P B ==,1()4P AC =,1()4P BC =, 所以()()()P A P B P C ==,则A 正确;()()()P BC P AC P AB ==,则B 正确;事件A 、B 、C 不相互独立,故1()8P ABC =错误,即C 错误 1()()()8P A P B P C ⋅⋅=,则D 正确; 综上可知正确的为ABD.故选:ABD .【点睛】本题考查了古典概型概率计算公式的应用,概率乘法公式的应用,属于基础题.三、填空题13.(2022·全国·高三专题练习)某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.【答案】0.21##21100【解析】【分析】设抽到一等品,二等品,三等品的事件分别为,,A B C ,利用互斥事件加法列出方程组即可求解.【详解】设抽到一等品,二等品,三等品分别为事件A ,B ,C 则()()0.86()()0.35()()()1P A P B P B P C P A P B P C +=⎧⎪+=⎨⎪++=⎩,则()0.21P B =故答案为:0.2114.(2021·全国·高一课时练习)从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________.【答案】4【解析】【分析】直接列举基本事件即可.【详解】从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数,共有4种.故答案为:4.15.(2021·黑龙江·哈师大附中高二开学考试)若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为______【答案】0.686【解析】【分析】根据题意,先求得B与C至少有一个正常工作的概率,再结合独立事件概率的乘法公式,即可求解.【详解】由题意,系统正常工作的情况分成两个步骤,A正常工作且B,C至少有一个正常工作的情况,其中A正常工作的概率为0.7;B正常工作的概率为0.8,C正常工作的概率为0.9,---=,则B与C至少有一个正常工作的概率为1(10.8)(10.9)0.98所以这个系统正常工作的概率为:0.7×0.98=0.686;故答案为:0.686;【点睛】本题主要考查了对立事件和相互独立事件的概率的计算,其中解答中熟记相互独立事件的概率的计算公式,结合对立事件的概率计算公式求解是的关键,着重考查分析问题和解答问题的能力,属于基础题. 16.(2021·全国·高一课时练习)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.【答案】34【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为153204=. 故答案为:34【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.四、解答题17.(2022·全国·高三专题练习(文))从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,,第八组[]190195,,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校的800名男生的身高的平均数和中位数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x ,y ,事件{}5E x y =-≤,求()P E .【答案】(1)0.06;(2)平均数为174.1,中位数为1745.;(3)()715P E =. 【解析】 【分析】(1)由频率分布直方图的性质求第七组的频率;(2)根据平均数和中位数的定义利用频率分布直方图求平均数和中位数; (3)确定样本空间,利用古典概型概率公式求概率. 【详解】解:(1)第六组的频率为400850.=, ∴第七组的频率为()100850008200160042006006......--⨯⨯++⨯+=. (2)由直方图得,身高在第一组[)155160,的频率为00085004..⨯=, 身高在第二组[)160165,的频率为00165008..⨯=, 身高在第三组[)165170,的频率为004502..⨯=, 身高在第四组[)170175,的频率为004502..⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=>,设这所学校的800名男生的身高中位数为m ,则170175m <<, 由()0040080217000405...m ..+++-⨯=得1745m .=,所以这所学校的800名男生的身高的中位数为174.5cm ,平均数为157.50.04162.50.08167.50.2172.50.2177.50.065182.50.08187.50.06⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+192.50.0085174.1⨯⨯=.(3)第六组[)180185,的抽取人数为4,设所抽取的人为a ,b ,c ,d , 第八组[]190195,的抽取人数为0.0085502⨯⨯=,设所抽取的人为A ,B ,则从中随机抽取两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,aB ,bA ,bB ,cA ,cB ,dA ,dB ,AB 共15种情况,因事件{}5E x y =-≤发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB 共7种情况.所以()715P E =. 18.(2021·江苏·高邮市临泽中学高一期末)袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求:(1)从中任取一球,得到黑球、黄球、绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少? 【答案】(1)黑球、黄球、绿球的概率分别是13,29,49;(2)1318.【解析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C ,由已知列出()()()P A P B P C 、、的方程组可得答案;(2)求出从9个球中取出2个球的样本空间中共有的样本点,再求出两个球同色的样本点可得答案. 【详解】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C , 由于A ,B ,C 为互斥事件,根据已知,得()()()()()()()()()()59231P A B P A P B P B C P B P C P A B C P A P B P C ⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩,解得()()()132949P A P B P C ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49.(2)由(1)知黑球、黄球、绿球个数分别为3,2,4, 从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个, 于是,两个球同色的概率为31653618++=, 则两个球颜色不相同的概率是51311818-=. 【点睛】本题考查互斥事件和对立事件的概率,一般地,如果事件A 1、A 2、…、A n 彼此互斥,那么事件A 1+A 2+…+A n 发生(即A 1、A 2、…、A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).19.(2021·全国·高一课时练习)进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益,是关乎生态文明建设全局的大事.为了普及垃圾分类知识,某学校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p ,乙同学答对每题的概率都为()q p q >,且在考试中每人各题答题结果互不影响.已知每题甲,乙同时答对的概率为12,恰有一人答对的概率为512. (1)求p 和q 的值;(2)试求两人共答对3道题的概率. 【答案】(1)34p =,23q =;(2)512.【解析】(1)由互斥事件和对立事件的概率公式列方程组可解得,p q ;(2)分别求出两人答对1道的概率,答对两道题的概率,两人共答对3道题,则是一人答对2道题另一人答对1道题,由互斥事件和独立事件概率公式可得结论. 【详解】解:(1)设A ={甲同学答对第一题},B ={乙同学答对第一题},则()P A p =,()P B q =. 设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.由于二人答题互不影响,且每人各题答题结果互不影响,所以A 与B 相互独立,AB 与AB 相互互斥,所以()()()()P C P AB P A P B ==,()()P D P AB AB =+()()()()()()()()()()()()11P AB P AB P A P B P A P B P A P B P A P B =+=+=-+-.由题意可得()()1,2511,12pq p q q p ⎧=⎪⎪⎨⎪-+-=⎪⎩即1,217.12pq p q ⎧=⎪⎪⎨⎪+=⎪⎩解得3,42,3p q ⎧=⎪⎪⎨⎪=⎪⎩或2,33.4p q ⎧=⎪⎪⎨⎪=⎪⎩由于p q >,所以34p =,23q =.(2)设=i A {甲同学答对了i 道题},i B ={乙同学答对了i 道题},0i =,1,2.由题意得,()11331344448P A =⨯+⨯=,()23394416P A =⨯=,()12112433339P B =⨯+⨯=,()2224339P B =⨯=.设E ={甲乙二人共答对3道题},则1221E A B A B =+. 由于i A 和i B 相互独立,12A B 与21A B 相互互斥,所以()()()()()()()12211221349458916912P E P A B P A B P A P B P A P B =+=+=⨯+⨯=. 所以,甲乙二人共答对3道题的概率为512. 【点睛】关键点点睛:本题考查互斥事件与独立事件的概率公式,解题关键是把所求概率事件用互斥事件表示,然后求概率,如设A={甲同学答对第一题},B={乙同学答对第一题},设C={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB=,D AB AB=+.同样两人共答对3题分拆成甲答对2题乙答对1题与甲答对1题乙答对2题两个互斥事件.20.(2021·海南·海口市灵山中学高二期中)某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.(单位:人次)满意度老年人中年人青年人自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)22634120分(不满意)116232(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐?(2)为了和顾客进行深人沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式?【答案】(1)中年人更倾向于选择自助餐;(2)110P=;(3)建议其选择自助餐.【解析】(1)分别求出三种年龄层次的人群中,选择自助餐的概率,进行比较从而得出结论.(2)点餐不满意的人群中,老年人1人(设为a),中年人2人(设为b,c),青年人2人(设为d,e),列出选2人的基本事件,得出基本事件数和两人都是中年人所包含的事件数,由古典概率公式可得答案. (3)分别求出自助餐和点餐满意的均值,建议选择满意度平均值大.【详解】(1)由题知,老年人选择自助餐的频率115 19P=,中年人选择自助餐的频率23239P =, 青年人选择自助餐的频率32742P =, 则213P P P >>,即中年人更倾向于选择自助餐.(2)点餐不满意的人群中,老年人1人(设为a ),中年人2人(设为b ,c ),青年人2人(设为d ,e ). 从中选取2人,其基本事件有(,)a b ,(,)a c ,(,)a d ,(,)a e ,(,)b c ,(,)b d ,(,)b e ,(,)c d ,(,)c e ,(,)d e ,共10个基本事件,其中2人都是中年人仅有一个(,)b c 符合题意; 故两人都是中年人的概率为110P =. (3)由表可知,自助餐满意的均值为:1521012510058052121074x ⨯+⨯+⨯==++.点餐满意的均值为:241017550125417526x ⨯+⨯+⨯==++12x x >,故建议其选择自助餐.21.(2021·新疆·乌市八中高二阶段练习)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.(1)利用所有组频率和为1即可求得第七组的频率,然后利用81i i i x x p ==∑(其中i x 表示第i 组的中间值,ip 表示该组的频率)求出平均值;(2)利用古典概率模型概率的计算方法求解即可. 【详解】解:(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名, 基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个 他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 【点睛】本题考查利用频率分布直方图求解样本数据的平均值,考查古典模型概率的计算,难度一般. (1)计算样本数据的平均值时,只需利用每组中间值乘以本组频率求和即可得到答案; (2)古典概型的解答注意分析清楚基本事件总数及某事件成立时所包含的基本事件数.22.(2021·全国·高二课时练习)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率. 【答案】(1)49;(2)604729.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率. (2)根据对立事件的概率公式计算可得; 【详解】解:(1)设i A 表示事件:一个试验组中,服用A 有效的小鼠有i 只,0i =,1,2,i B 表示事件“一个试验组中,服用B 有效的小鼠有i 只“,0i =,1,2, 依题意有:1124()2339P A =⨯⨯=,2224()339P A =⨯=.0111()224P B =⨯=,1111()2222P B =⨯⨯=,所求概率为:010212()()()P P B A P B A P B A =++14141444949299=⨯+⨯+⨯= (2)依题意这3个试验组中至少有一个甲类组的对立事件为这3个试验组中没有一个甲类组的.所以概率34604119729P ⎛⎫=--= ⎪⎝⎭;【点睛】本题考查相互独立事件的概率公式的应用,以及对立事件的概率计算,属于中档题.。

第十章 二元一次方程组单元测试(含答案)

第十章 二元一次方程组单元测试(含答案)

第十章 二元一次方程组 单元测试第Ⅰ卷(选择题,共16分)一、选择题(每题2分 ,共16分)1.下列方程中,属于二元一次方程的是( ) A .3-5x=2x+2 B .8-x=1y+1 C .m -3n=5s D .3s+11=5t 2.原创题若x 、y 都是质数,则二元一次方程2005x y += 的解有( ) A.1组; B.2组; C.3组; D.无数组. 3.自编题 设x ay b=⎧⎨=⎩是方程3x -y=0的一个解,那么 ( )A. a,b 一定为正数;B. a,b 一定是负数;C. a,b 必同为0;D. a,b 不可能异号.4. 自编题 若二元一次方程组22x y k k x y +=⎧⎪⎨-=⎪⎩的解也是二元一次方程3x -4y=6的解,则k 的值为 ( )A. -6B. 6C. 4D. 8 5. 原创题若|3523+-y x |+(6x+5y -8)2=0,则x 2-xy+y 2的值为 ( A)A.943 B. -943 C. 957D. 957-6.一列快车和一列慢车的长度分别为180米和225米,若同向行驶,从快车追及慢车到全部超过81秒,如果快、慢车速分别为x 米/秒和y 米/秒,那么表示其等量关系的方程是 ( ) A. 81(x -y)=225; B. 81(x -y)=180; C. 81(x -y)=225-180; D. 81(x -y)=225+1807. 原创题一张试卷一共只有25道选择题,做对一题得4分,做错一题倒扣2分,李明同学做了全部试题,得了88分,那么他做对了( )A 、21题B 、22题C 、23题D 、24题8.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )住院医疗费(元) 报销率(%) 不超过500元的部分 0 超过500~1000元的部分 60 超过1000~3000元的部分 80 ……A 、1000元B 、1250元C 、1500元D 、2000元第Ⅱ卷(非选择题,共84分)二、填空题(每题2分 ,共16分) 9. 自编题如果方程6123=+y x 变形为用y 的代数式表示x,那么____________. 10. 自编题方程3x+4y=10正整数解是_______________. 11.若x :y =3:2,且1323=+y x ,则=x ,y = . 12.若100,2x x y y =-=⎧⎧⎨⎨==⎩⎩是二元一次方程mx -ny -10=0的解,则m+n=______. 13.自编题方程组20,x y x y a+=⎧⎨-=⎩的解是15,,x y b =⎧⎨=⎩,则a=_______,b=________.14.自编题方程组200,2_____x y x y +=⎧⎨-=⎩的解是150,_____.x y =⎧⎨=⎩15.原创题某种商品的市场需求量E (千件)和单价F (元/件)服从需求关系13E+F -173=0,•则当单价为4元时,市场需求量为________;若出售一件商品要在原单价4元的基础上征收税金1元,市场需求变化情况是__________.16.甲、乙两种糖果,售价分别为20元/千克和24元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现在糖果的售价有了调整:甲种糖果的售价上涨了8%,乙种糖果的售价下跌了10%.若这种混合糖果的售价恰好保持不变,则甲、乙两种糖果的混合比例应为甲︰乙= .三、解答题(第17题每题4分 ,第18、19题每题6分,其余每题8分共68分) 17. 用适当的方法解下列二元一次方程组: (1)解方程组7,28.x y x y +=⎧⎨-=⎩①②(2)00000042,0.8 1.1421.x y x y +=⎧⎨+=⨯⎩18.原创题若方程组4322,(3) 3.x ymx m y+=⎧⎨+-=⎩①②的解满足x=2y,求m的值.19.原创题用一根长60cm的铁丝围成一个长方形,且使长方形的宽是长的57,•求长方形的长与宽.20.用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身、多少张制盒底,可以正好制成整套罐头盒?21.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?22.甲、乙两人环绕长为400米的环形跑道散步.如果两人从同一点背道而行,•那么经过2分钟相遇;如从同一点同向而行,那么经过20分钟两人相遇,如甲的速度比乙快,求两人散步速度各是多少?23.商场销售A、B两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B 种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?24. 原创题有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?25.原创题 阅读理解.解方程组⎪⎪⎩⎪⎪⎨⎧=-=+1412723yxy x 时,如果设n y m x ==1,1,则原方程组可变形为关于m 、n 的方程组⎩⎨⎧=-=+142723n m n m 。

精品试卷沪科版八年级物理第十章 机械与人综合测试试题(含详解)

精品试卷沪科版八年级物理第十章 机械与人综合测试试题(含详解)

沪科版八年级物理第十章机械与人综合测试考试时间:90分钟;命题人:物理教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面把车轮推上台阶的四种方法,推力的作用点相同,推力的方向不同,如图所示,则哪一种推法最省力()A.B.C.D.2、如图所示,将同一物体分别沿光滑的斜面AB、AC以相同的速度从底部匀速拉到顶点A,已知AB>AC,施加的力分别为F1、F2,拉力做的功为W1、W2,拉力做功的功率分别为P1、P2,则它们的关系正确的是()A .12F F =,12W W >,12P P >B .12F F =,12W W >,12P P =C .12F <F ,12W W =,12P P =D .12F <F ,12W W =,12P P <3、如图所示,有一质量不计的长木板,左端装有与墙相连的轴在它的左端放一重为G 的物块,并用一竖直向上的力F 拉着右端。

当物块向右匀速滑动时,木板始终在水平位置保持静止,在此过程中,拉力F ( )A .变小B .变大C .不变D .先变大后变小4、跳绳是体育中考项目之一,小明的质量为50千克,每次跳起高度约为6厘米(人视作整体上升,如图所示),一分钟跳80次,下列说法正确的是( )A .向上起跳过程中小明的动能持续增大B .小明在这一分钟内跳绳的功率约为40WC .小明跳一次克服重力做功约2JD.下落过程中小明的重力势能不变5、下列关于动能的说法,正确的是()A.运动的物体具有的能,叫动能B.物体由于运动具有的能,叫动能C.速度大的物体甲具有的动能一定大于速度小的物体乙具有的动能D.运动物体质量越大,所具有的动能一定越多6、小明用一竖直向上的力把物体A匀速提到了一定的高度,所做的功为100J。

第十章 从粒子到宇宙 达标测试卷(含答案)

第十章 从粒子到宇宙  达标测试卷(含答案)

第十章从粒子到宇宙达标测试卷时间:40分钟满分:100分班级:________姓名:________得分:________一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2022西藏)一切物质的分子都在不停地做无规则运动,下列生活现象能体现分子热运动的是() A.酥油茶飘香B.赛马尘土飞扬C.歌声余音绕梁D.冬天大雪纷飞2.关于宇宙,下列说法正确的是() A.太阳系是最大的恒星系B.万有引力定律解释了行星围绕恒星旋转的原因C.光年是时间单位D.恒星静止不动,永恒不灭3.下列关于原子结构的说法错误的是() A.原子由原子核和核外电子组成B.原子核由质子和中子组成C.质子和中子是由更小的微粒组成D.原子不带电是因为中子不带电4.下列关于分子动理论的说法中不正确的是() A.加盐时,炒菜比腌菜咸得快,说明分子热运动与温度有关B.0 ℃的冰块中的分子也在做无规则运动C.将黄豆和芝麻混合,混合后的总体积小于混合前的总体积,说明分子间有间隙D.手中的笔杆不易被压缩和拉伸,说明分子间既有斥力又有引力5.如图1所示,荷叶上的水珠如颗颗珍珠一般,摇一摇荷叶,水珠会很快滑落,荷叶上竟然滴水不沾。

下列关于荷叶上水珠的一些说法正确的是()A.当水珠静止不动时,水珠中的水分子也静止不动B.很小的水珠就是一个水分子C.荷叶不沾水,是因为水珠与荷叶的分子之间只有斥力没有引力D.当太阳照射水珠时,水珠中水分子的无规则运动变剧烈图16.如图2-甲,小彤用注射器抽取一小段水,用手指封闭注射器的口,推压注射器的活塞,发现水很难被压缩;如图2-乙,小彤把注射器中的水排掉,吸了同样体积的空气后,用手指封闭注射器的口并推压活塞,发现空气更容易被压缩。

关于这个实验,下列说法不正确的是()A.水分子之间不存在间隙B.水分子间存在斥力C.空气分子间的间隙比水分子大D.空气分子间相互作用力很小7.李老师在引导学生们理解固态、液态和气态物质的微观结构时,带领学生们做游戏。

2022年最新粤沪版八年级物理下册第十章从粒子到宇宙综合测试试题(含答案解析)

粤沪版八年级物理下册第十章从粒子到宇宙综合测试考试时间:90分钟;命题人:物理教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一杯热水变凉了,下列说法正确的是()A.水的内能增加B.水的温度不变C.水含有的热量减少D.水分子的无规则运动减慢2、关于粒子和宇宙,下列说法正确的是()A.在水分子、氢原子和电子中,尺度最小的是电子B.原子的核式结构模型认为原子是由质子和中子构成的C.铅块相互紧压后会粘在一起,说明分子间有斥力D.“地心说”认为太阳是宇宙的中心3、下列现象中属于扩散现象的是()A.打开一盒香皂,很快就会闻到香味B.擦黑板时,粉笔灰在空中飞舞C.粉笔蹭到衣服上,在衣服上留下粉笔痕迹D.冬天,雪花漫天飞舞4、如图所示,将两个表面光滑的铅块相互挤压后会粘在一起,以下现象与该实验原理相同的是()A.墨汁滴在热水中很快散开B.两个吸盘挤压后吸在一起C.折断一根铁丝需要很大力D.毛皮和橡胶棒吸引在一起5、通过可直接感知的现象,推测无法直接感知的物理规律,这是物理学常用的探究方法,小明观察到以下的现象,并进行了初步推测,其中不符合事实的是()A.破镜难圆---分子之间存在斥力B.两滴水银靠近时,能自动结合成摘较大的水银---分子间有引力C.酒精和水混合后总体积变小---分子间存在空隙D.施制鸭蛋,盐分子能进入蛋中---盐分子在不停地做无规则运动6、对甲乙丙丁四幅图片的解释不正确的是()A.甲图中A集气瓶中应该装空气,这样做的目的是避免重力对实验造成影响B.乙图中,红墨水在热水中比在冷水中扩散的快,说明温度越高,分子运动越剧烈C.丙图中将两个铅柱压在一起,下面能够悬挂一个钩码,说明分子之间存在引力D.丁图中在注射器里装入一些空气,用手可以推动活塞将空气压缩,说明分子之间不存在斥力7、关于粒子和宇宙,下列认识中正确的是()A.太阳是宇宙的中心,恒星是绝对不动的B.水和酒精混合后总体积变小,说明分子间存在引力C.原子是由核内质子和中子、核外电子组成D.在水分子、氢原子和电子中,尺度最小的是氢原子8、对下列现象及其说明正确的是()A.柳絮的飞舞杂乱无章,说明柳絮分子在不停的做无规则运动B.用扇子扇玻璃泡上涂有酒精的温度计,温度计示数减小,说明做功可以改变物体的内能C.雨滴下落越来越快,内能转化为动能D.水的汽化快慢与温度有关,温度越高水分子运动越剧烈,“外逃”到空气中就越快9、关于粒子和宇宙,下列说法正确的是()A.分子是不可再分的最小粒子B.气体容易被压缩是因为分子间空隙大C.磁铁能吸引铁是因为分子间有引力D.太阳是太阳系中心,也是宇宙的中心10、为控制烟花爆竹的危害,德州市公布了烟花爆竹燃放管理条例。

人教版数学七年级下册第十章检测卷(含解析)

人教版数学七年级下册第十章检测卷一.选择题. 1.(3分)下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命 D .对甲型H1N1流感患者的同一车厢乘客进行医学检查 2.(3分)你认为以下几个抽样调查选取样本的方法合适的是( ) A .为了解全班同学单元测试后的平均成绩,老师抽查前5名同学的平均成绩 B .为调查我市居民的收入情况,对我市银行职工进行抽查 C .为调查我市董奉山主要植物种类,对山顶的部分植物进行抽查 D .为调查某洗衣机厂产品质量情况,在其生产流水线上每隔10台产品抽取一台 3.(3分)为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是( ) A .总体 B .个体 C .样本 D .样本容量 4.(3分)要反映长沙市一周内每天的最高气温的变化情况,宜采用( ) A .条形统计图 B .扇形统计图C .折线统计图D .频数分布直方图5.(3分)一个班有40名学生,在期末体育考核中,优秀的有18人,在扇形统学校: 班级: 姓名: 考号:计图中,代表体育优秀扇形的圆心角是()A.144°B.162°C.216°D.250°6.(3分)一组数据的最大值是97,最小值76,若组距为4,则可分为几组()A.4 B.5 C.6 D.77.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是()A.0.12 B.0.38 C.0.32 D.328.(3分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°9.(3分)小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于110.(3分)超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示>或等于6分钟而<7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为()A.5 B.7 C.16 D.3311.(3分)某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间和数据,结果如图,根据此条形图估计这一天该校学生平均课外阅读时间为()A.0.96小时B.1.07小时C.1.15小时D.1.50小时11题图12题图12.(3分)如图是某校初一学生到校方式的条形统计图,下面说法正确的是()A.步行人数只有30人B.步行人数占初一总人数的60%C.坐公共汽车的人数占总数的50%D.步行与骑自行车的人数和比坐公共汽车的人要少二.填空题.13.(3分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,于是妈妈取了一点品尝,这应该属于.(填:普查或抽样调查)14.(3分)已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.15.(3分)如图示,是某校四个年级男女生人数的条形统计图,则学生最多的年级是年级.16.(3分)某中学对200名学生进行了关于“造成学生睡眠少的主要原因”的抽样调查,将调查结果制成扇形统计图(如图所示),由图中的信息可知认为“造成学生睡眠少的主要原因是作业太多”的人数有名.三.解答题.17.随机抽取某城市30天的空气质量状况统计如下:污染指数(w)45 60 7080 95 110125天数(d)2439642其中,W≤50时,空气质量为优;50<W≤100时,空气质量为良;100<W≤150时,空气质量为轻微污染,请你用所学知识估计该城市一年(365天计)中,有多少天空气质量达到良以上(包括良).18.(80分)某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析;(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22 000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?19.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?20.(100分)铜仁市某中学在一次健康知识测试中,抽取部分学生成绩(分数为整数,满分100分)为样本,绘制成绩统计图,如图所示,请结合统计图回答下列问题:(1)本次测试中抽样的学生有多少人?(2)分数在90.5~100.5这一组的人数是多少?(3)估计这次考试出现次数最多的那个分数落在哪一组内?参考答案与试题解析一.选择题.1.(3分)下列调查适合作普查的是()A.了解在校大学生的主要娱乐方式B.了解宁波市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢乘客进行医学检查【考点】V2:全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、B项因为数目太大,而不适合进行普查,只能用抽查,C、因具有破坏性,也只能采用抽查的方式.D、了解某甲型H1N1确诊病人同机乘客的健康状况,精确度要求高、事关重大,必须选用普查.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.2.(3分)你认为以下几个抽样调查选取样本的方法合适的是()A.为了解全班同学单元测试后的平均成绩,老师抽查前5名同学的平均成绩B.为调查我市居民的收入情况,对我市银行职工进行抽查C.为调查我市董奉山主要植物种类,对山顶的部分植物进行抽查D.为调查某洗衣机厂产品质量情况,在其生产流水线上每隔10台产品抽取一台【考点】V4:抽样调查的可靠性.【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A,B,C各个选项不具有普遍性.选项D中,选取样本的方法属于简单随机抽样,具有对总体的代表性.故选D 【点评】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.3.(3分)为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量【考点】V3:总体、个体、样本、样本容量.【专题】12 :应用题.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.在这个问题中,这1 000人的身体状况是样本.【解答】解:A、总体是全市1 600多万民众的身体健康状况的全体,错误;B、个体是所抽取的1 000人中每一个人的身体状况,错误;C、样本是所抽取的这1 000人的身体状况,正确;D、样本容量是1 000,错误.故选C.【点评】正确理解总体,个体,样本的含义是解决本题的关键.4.(3分)要反映长沙市一周内每天的最高气温的变化情况,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【考点】V8:频数(率)分布直方图;VE:统计图的选择.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:C.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.5.(3分)一个班有40名学生,在期末体育考核中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是()A.144°B.162° C.216° D.250°【考点】VB:扇形统计图.【分析】先求出体育优秀的占总体的百分比,再乘以360°即可.【解答】解:圆心角的度数是:×360°=162°,故选B.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.6.(3分)一组数据的最大值是97,最小值76,若组距为4,则可分为几组()A.4 B.5 C.6 D.7【考点】V7:频数(率)分布表.【分析】根据题意,计算可得最大值与最小值的差,除以组距即可求得组数,可得答案.【解答】解:根据题意,一组数据的最大值是97,最小值76,最大值与最小值的差为21;若组距为4,有=5.25;则可分为6组;故选C.【点评】本题考查组数的确定方法,注意极差的计算与最后组数的确定.7.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是()A.0.12 B.0.38 C.0.32 D.32【考点】V6:频数与频率.【专题】11 :计算题.【分析】根据频率=频数÷总数,求解即可.【解答】解:∵总人数为100人,在40~42(岁)组内有职工32名,∴这个小组的频率为32÷100=0.32.故选C.【点评】考查了频率的计算方法:频率=频数÷总数.8.(3分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°【考点】VB:扇形统计图.【专题】16 :压轴题;27 :图表型.【分析】根据被抽查的学生中骑车的人数及所占比例,即可求得被调查的学生总人数,根据扇形统计表中的比例关系即可求得每种方式各自有多少人,即可作出判断.【解答】解:A、21÷35%=60人,所以A正确;B、60×(1﹣0.35﹣0.15﹣0.05)=27人,所以B正确;C、2560×0.35=896人,所以C错误;D、360°×15%=54°,所以D正确;综上,故选C.【点评】本题考查了学生会不会从图表中获取信息,认真审题,明白题意再计算,因为四个选项都要计算,所以选择时花费的时间较多.9.(3分)小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于1【考点】V6:频数与频率.【分析】根据频率=,即可解答.【解答】解:频率=,当全班人数变化时,所有选票中选小明的选票频率也随着变化;根据各小组频数之和等于数据总和,各小组频率之和等于1;可得B,C,D,都正确,A错误.故选A.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=.10.(3分)超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示>或等于6分钟而<7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为()A.5 B.7 C.16 D.33【考点】V8:频数(率)分布直方图.【专题】16 :压轴题;27 :图表型.【分析】分析频数直方图,找等待时间不少于6分钟的小组,读出人数再相加可得答案.【解答】解:由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选B.【点评】本题考查同学们通过频数直方图获取信息的能力.11.(3分)某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间和数据,结果如图,根据此条形图估计这一天该校学生平均课外阅读时间为()A.0.96小时B.1.07小时C.1.15小时D.1.50小时【考点】W2:加权平均数;VC:条形统计图.【专题】27 :图表型.【分析】先从直方图中读出数据,再根据平均数的公式计算即可.【解答】解:50名学生平均的阅读时间为=1.07,由此可估计该校学生平均课外阅读时间也是1.07小时.故选:B.【点评】本题考查的是通过样本去估计总体,即用样本平均数估计总体平均数.同时要会读统计图.12.(3分)如图是某校初一学生到校方式的条形统计图,下面说法正确的是()A.步行人数只有30人B.步行人数占初一总人数的60%C.坐公共汽车的人数占总数的50%D.步行与骑自行车的人数和比坐公共汽车的人要少【考点】VC:条形统计图.【专题】27 :图表型.【分析】从图中可获取步行人数、骑自行车的人数、做公共汽车的人数,进而求得初一学生的总人数,以及步行人数、坐公共汽车的人数占总数的比值.再进行判断.【解答】解:A、从图中可以发现:步行人数是60人;B、步行人数占初一总人数的60÷(60+90+150)=20%;C、坐公共汽车的人数占总数的150÷(60+90+150)=50%;D、步行与骑自行车的人数和与坐公共汽车的人相等,都是150人.故选C.【点评】条形统计图能清楚地表示各个项目的具体数目.能够读懂统计图,根据图中的数据进行正确计算.二.填空题.13.(3分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,于是妈妈取了一点品尝,这应该属于抽样调查.(填:普查或抽样调查)【考点】V2:全面调查与抽样调查.【专题】12 :应用题.【分析】根据普查和抽样调查的定义,显然此题属于抽样调查.【解答】解:由于只是取了一点品尝,所以应该是抽样调查.故答案为:抽样调查.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.14.(3分)已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是5.【考点】V7:频数(率)分布表.【分析】根据组距=(最大值﹣最小值)÷组数计算,注意小数部分要进位.【解答】解:在样本数据中最大值与最小值的差为44,则一共有44+1=45个数,若把这组数据分成9个小组,那么由于=5,则组距是5.故本题答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.15.(3分)如图示,是某校四个年级男女生人数的条形统计图,则学生最多的年级是7年级.【考点】VC:条形统计图.【专题】27 :图表型.【分析】根据统计图中的数据,要说学生最多的年级,根据统计图的高低,显然人数最多的是7年级.【解答】解:根据统计图的高低,显然人数最多的是7年级.【点评】从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,这里根据统计图的高低即可看出人数的多少.16.(3分)某中学对200名学生进行了关于“造成学生睡眠少的主要原因”的抽样调查,将调查结果制成扇形统计图(如图所示),由图中的信息可知认为“造成学生睡眠少的主要原因是作业太多”的人数有88名.【考点】VB:扇形统计图.【专题】16 :压轴题;27 :图表型.【分析】把全部看作1,先求出作业太多所占的百分比,乘以总人数即可求得“造成学生睡眠少的主要原因是作业太多”的人数.【解答】解:∵作业太多所占的百分比是1﹣26%﹣10%﹣12%﹣8%=44%,∴“造成学生睡眠少的主要原因是作业太多”的人数有44%×200=88人.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°比.三.解答题.17.随机抽取某城市30天的空气质量状况统计如下:污染指数(w)45 60 7080 95 110125天数(d)2439642其中,W≤50时,空气质量为优;50<W≤100时,空气质量为良;100<W≤150时,空气质量为轻微污染,请你用所学知识估计该城市一年(365天计)中,有多少天空气质量达到良以上(包括良).【考点】V5:用样本估计总体.【专题】27 :图表型.【分析】根据题意,随机抽取的30天中,空气质量达到良以上的天数即可求出,随机抽取的30天中,空气质量达到良以上的概率也就随之求得,最后乘以365即可.【解答】解:根据题意:随机抽取的30天中,空气质量达到良以上的天数为:2+4+3+9+6=24(天),随机抽取的30天中,空气质量达到良以上的概率为=0.8,估计全年365天中空气质量达到良以上的天数为365×0.8=292(天).【点评】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.18.(80分)某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析;(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22 000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?【考点】V8:频数(率)分布直方图;V5:用样本估计总体.【专题】27 :图表型.【分析】(1)从表中读出学生数,相加可得学生总数;(2)从表中成绩这一坐标中先找到80分以上(包括80分)的人数,再除以总数,得出优生率.(3)先从表中查出及格率,再计算全市共有22000人的及格人数.【解答】解:(1)根据题意有30+35+45+60×2+70=300;答:共抽取了300(名)(2)从表中可以看出80分以上(包括80分)的人数有35+70=105,共300人;所以优生率是105÷300=35%;答:该年的优生率为35%.(3)从表中可以看出及格人数为300﹣30﹣60=210,则及格率=210÷300=70%,所以22000人中的及格人数是22000×70%=15400(名);答:全市及格的人数有15400人.【点评】本题是一道利用统计知识解答实际问题的重点考题,计算量略大,难度中等.主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.19.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图.【专题】27 :图表型.【分析】(1)用10吨~15吨的用户除以所占的百分比,计算即可得解;(2)用总户数减去其它四组的户数,计算求出15吨~20吨的用户数,然后补全直方图即可;用“25吨~30吨”所占的百分比乘以360°计算即可得解;(3)用享受基本价格的用户数所占的百分比乘以20万,计算即可.【解答】解:(1)10÷10%=100(户);答:此次调查抽取了100户的用水量数据;(2)100﹣10﹣36﹣25﹣9=100﹣80=20户,画直方图如图,×360°=90°;(3)×20=13.2(万户).答:该地20万用户中约有13.2万户居民的用水全部享受基本价格.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(10分)铜仁市某中学在一次健康知识测试中,抽取部分学生成绩(分数为整数,满分100分)为样本,绘制成绩统计图,如图所示,请结合统计图回答下列问题:(1)本次测试中抽样的学生有多少人?(2)分数在90.5~100.5这一组的人数是多少?(3)估计这次考试出现次数最多的那个分数落在哪一组内?【考点】V8:频数(率)分布直方图.【专题】12 :应用题.【分析】(1)抽样的学生等于各范围频数的和;(2)根据频数分布直方图即可直接得出;(3)观察找出频数最大的那个范围即是考试出现次数最多的那个分数落在的组.【解答】解:(1)样本容量=4+6+10+30=50人;(2)由图可得:90.5~100.5这一组的人数是10人;(3)80.5~90.5这一范围的频数最大,故考试出现次数最多的那个分数落在这一组.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,比较基础,注意掌握解答此类题目的基本方法.。

初中数学人教七下第十章测试卷(2)及答案

单元测试卷一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人2.(3分)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2 B.2.8 C.3 D.3.33.(3分)已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的人数占全体的()A.10% B.15% C.20% D.25%4.(3分)下列调查中:①为了了解七年级学生每天做作业的时间,对某区七年级(1)班的学生进行调查;②爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查;③为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,其中属于抽样调查的有()A.3个 B.2个 C.1个 D.0个5.(3分)将100个数据分成8个组,如下表:则第六组的频数为()组号1 2 3 4 5 6 7 8频数1114 12 13 13 x 12 10A.12 B.13 C.14 D.156.(3分)某校为了了解九年级500名学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请你根据图示计算,估计仰卧起座次数在15~20之间的学生有()A.50 B.85 C.165 D.2007.(3分)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况8.(3分)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.409.(3分)以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额10.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上)11.(3分)某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有人.12.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.13.(3分)某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于,若某一小组的人数为4人,则该小组的百分比为%.14.(3分)某校八年级(1)班60名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是度;表示良好的扇形圆心角是120°,则良好的学生有.15.(3分)为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带记号的鱼20条,则可判断鱼池里大约有条鱼.16.(3分)在如图扇形统计图中,根据所给的已知数据,若要画成条形统计图,甲、乙、丙三个条形对应的三个小长方形的高度比为.17.(3分)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.18.(3分)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.19.(3分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是杭州市某一天收到的厨余垃圾的统计图,则m的值为.20.(3分)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.则本次抽样调查的书籍有本.三、解答题(共10题,每题10分,满分100分)21.(10分)某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C (一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为;(2)条形统计图中存在错误的是(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.(10分)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表876543进球数(个)人数214782请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.23.(10分)某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是;(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.24.(10分)某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图:(1)此次调查抽取的学生人数m=名,其中选择“书法”的学生占抽样人数的百分比n=;(2)若该校有3000名学生,请根据以上数据估计该校对“书法”最感兴趣的学生人数.25.(10分)某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?26.(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了如图两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.27.(10分)如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人数.(1)请你求出图中的x值;(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?28.(10分)某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):分数段61~7071~8081~9091~100人数(人)2864根据表中提供的信息,回答下列问题:①参加这次演讲比赛的同学共人;②成绩在91~100分的为优胜者,优胜率为.29.(10分)七年级下学期数学教材第157页的问题3:某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,抽取一个容量为1000的样本进行调查.小丽同学根据各年龄段实际人口比例分配抽取的人数制成如下条形图:请你帮助小丽再制作一个反映该地区实际人口比例情况的扇形图,并写出每一部分扇形角的度数:度度度.30.(10分)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?雾霾天气的主要成因百分比组别A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n参考答案与试题解析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人【考点】VB:扇形统计图.【专题】11 :计算题.【分析】根据扇形统计图中乒乓球的人数除以占的百分比得到学生的总人数,进而求出喜欢羽毛球与喜欢篮球的人数,求出喜欢足球与网球的总人数,即可做出判断.【解答】解:根据题意得:320÷32%=1000(人),喜欢羽毛球的人数为1000×15%=150(人),喜欢篮球的人数为1000×25%=250(人),∴喜欢足球、网球的总人数为1000﹣320﹣250﹣150=280(人),这批被抽样调查的学生最喜欢足球的人数不可能是400人.故选D.【点评】此题考查了扇形统计图,熟练识别统计图中的数据是解本题的关键.2.(3分)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2 B.2.8 C.3 D.3.3【考点】W2:加权平均数;VC:条形统计图.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.注意本题不是求3,5,11,11这四个数的平均数.【解答】解:(3×1+5×2+11×3+11×4)÷30=(3+10+33+44)÷30=90÷30=3.故30名学生参加活动的平均次数是3.故选:C.【点评】本题考查加权平均数,条形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(3分)已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的人数占全体的()A.10% B.15% C.20% D.25%【考点】1D:有理数的除法.【专题】12 :应用题.【分析】用这个小组的人数除以全班人数即可.【解答】解:根据题意得:8÷40=20%.故选C.【点评】本题主要考查了有理数除法的应用.4.(3分)下列调查中:①为了了解七年级学生每天做作业的时间,对某区七年级(1)班的学生进行调查;②爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查;③为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,其中属于抽样调查的有()A.3个 B.2个 C.1个 D.0个【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①为了了解七年级学生每天做作业的时间,对某区七年级(1)班的学生进行调查,故①是抽样调查;②爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查,故②是全面调查;③为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,故③是抽样调查;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(3分)将100个数据分成8个组,如下表:则第六组的频数为()组号1 2 3 4 5 6 7 8频数1114 12 13 13 x 12 10A.12 B.13 C.14 D.15【考点】V6:频数与频率.【专题】27 :图表型.【分析】根据各组频数的和是100,即可求得x的值.【解答】解:根据表格,得第六组的频数x=100﹣(11+14+12+13+13+12+10)=15.故选D.【点评】本题是对频率、频数灵活运用的综合考查.各小组频数之和等于数据总和;各小组频率之和等于1.6.(3分)某校为了了解九年级500名学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请你根据图示计算,估计仰卧起座次数在15~20之间的学生有()A.50 B.85 C.165 D.200【考点】V8:频数(率)分布直方图;V5:用样本估计总体.【专题】27 :图表型.【分析】用被抽查的30名学生中15~20之间的学生所占的百分数乘以九年级学生总人数,计算即可得解.【解答】解:500×=50.故选A.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.(3分)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况【考点】V3:总体、个体、样本、样本容量.【分析】首先判断出这次调查的总体是什么,然后根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况,据此解答即可.【解答】解:根据总体、样本的含义,可得在这次调查中,总体是:2400名学生对“民族英雄范筑先”的知晓情况,样本是:所抽取的100名学生对“民族英雄范筑先”的知晓情况.故选:C.【点评】此题主要考查了总体、个体、样本、样本容量的含义和应用,要熟练掌握,解答此题的关键是要明确:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.8.(3分)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.40【考点】VC:条形统计图;VB:扇形统计图.【分析】根据A项的人数是80,所占的百分比是40%即可求得调查的总人数,然后李用总人数减去其它组的人数即可求解.【解答】解:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.9.(3分)以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额【考点】VC:条形统计图;VD:折线统计图.【分析】根据销售总额乘以三星所占的百分比,可得三星的销售额,根据有理数的大小比较,可得答案.【解答】解:A、4月份三星手机销售额为65×17%=11.05万元,故A错误;B、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故B正确;C、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故C错误;D、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故D错误;故选:B.【点评】本题考查了条形统计图,利用销售总额乘以三星所占的百分比得出三星的销售额是解题关键.10.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【考点】V2:全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上)11.(3分)某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有800人.【考点】V5:用样本估计总体;VC:条形统计图.【分析】根据样本的数据,可得样本中选修A课程的学生所占的比例,利用样本估计总体,用总人数乘以选修A课程的学生所占的比例,可得答案.【解答】解:选修A课程的学生所占的比例:=,选修A课程的学生有:2000×=800(人),故答案为:800.【点评】本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.也考查了条形统计图,条形统计图能清楚地表示出每个项目的数据.12.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【考点】V6:频数与频率.【分析】一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.【点评】此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.13.(3分)某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于1,若某一小组的人数为4人,则该小组的百分比为20%.【考点】VC:条形统计图.【分析】根据各组的百分比=各组的人数÷总人数,即人数为4人时,则该小组的百分比是4÷20=20%.因为各小组的人数之和等于总人数,则各小组的百分比之和等于1.【解答】解:各小组的百分比之和等于1,该小组的百分比为:4÷20=20%.【点评】注意这里样本容量是20,计算各组百分比的时候注意应除以20.14.(3分)某校八年级(1)班60名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是162度;表示良好的扇形圆心角是120°,则良好的学生有20.【考点】VB:扇形统计图.【分析】利用360度乘以所占的百分比即可求得扇形圆心角的度数,利用60乘以120度占360度的比例即可求得良好的人数.【解答】解:圆心角的度数是:360×45%=162°,良好的学生有60×=20(名).故答案是:162,20.【点评】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.形统计图直接反映部分占总体的百分比大小.15.(3分)为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带记号的鱼20条,则可判断鱼池里大约有1000条鱼.【考点】V5:用样本估计总体.【分析】根据200条鱼,发现带有记号的鱼只有20条,则可求出带记号的鱼所占的百分比,再根据带记号的总计有100条,即可求得湖里鱼的总条数.【解答】解:根据题意得:100÷(20÷200×100%)=1000(条).答:鱼池里大约有1000条鱼;故答案为:1000.【点评】此题考查了用样本估计总体.掌握总体中带记号的鱼所占的百分比约等于样本中带记号的鱼所占的百分比是本题的关键.16.(3分)在如图扇形统计图中,根据所给的已知数据,若要画成条形统计图,甲、乙、丙三个条形对应的三个小长方形的高度比为3:4:5.【考点】VC:条形统计图;V6:频数与频率;VB:扇形统计图.【专题】27 :图表型.【分析】在扇形统计图中甲、乙、丙的频数比是::=3:4:5,则对应的条形统。

八年级下册物理第十章 浮力 单元测试题人教版(含答案)

人教版八年级下物理第十章浮力综合测试卷及答案姓名:__________ 班级:__________考号:__________1.在学习和生活中,我们要善于发现,善于思考。

下列对身边物理量估测的数据,你认为符合实线际的是()A.血压计测正常人的血压约为760mmHgB.一个人成年人站立时对地面的压强大约1200PaC.大拇指的表面大约需要承100N的大气压力D.一个篮球漂浮在水面上时受到浮力大约是6N2.浸没在湖水中的物体,随着浸没深度的增加,下列说法中正确的是()A.物体受到的压强不变B.物体上、下表面受到的压力不变C.物体受到的浮力增大D.物体上、下表面受到的压力差不变3.“生活处处有物理,留心观察皆学问”,下面对生活中有关现象的解释正确的是()A.菜刀手柄上凸凹不平的花纹是为了减小摩擦B.煮熟的饺子浮在水面上,是因为饺子所受浮力大于其重力C.排油烟机能把油烟吸走利用气体流速大压强小的原理D.塑料吸盘能贴在光滑墙上是因为吸盘有吸引力4.将重为80N的物体浸没在盛有水的烧杯中,从烧杯中溢出了30N的水,则物体所受的浮力为()A.一定为30N B.一定为80N C.可能大于30N D.可能小于30N 5.甲、乙两个完全相同的烧杯,盛有同种液体,放在水平桌面上。

如图所示,将体积相同的A、B 两个实心小球分别放入甲、乙烧杯中,当小球静止时液面刚好相平。

则下列判断正确的是()A.A,B两小球排开液体的质量相等B.小球B的密度可能大于小球A的密度C.甲杯对桌面的压强等于乙杯对桌面的压强D.甲杯底受到的液体压强大于乙杯底所受液体压强6.学校进行火灾逃生演练时,老师要求同学们采取弯腰甚至匍匐的姿势撤离,以尽量减少吸入有毒有害气体,这是因为含有毒有害的空气()A.密度较大,大量集聚在房间的上方B.密度较小,大量集聚在房间的上方C.密度较大,大量集聚在房间的下方D.密度较小,大量集聚在房间的下方7.如图甲所示,用弹簧测力计将一长方体物体从装有水的杯子中匀速拉出,物体的底面积为20cm2,杯子的底面积为100cm2,拉力随时间的变化关系如图乙所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 综合测试卷 一、选择题(本大题共11小题,每小题4分,共44分。在每小题给出的四个选项中,只有一项是符合题目要求的) 读深圳和长沙两地某单位产品成本构成和市场价格表(单位:元),完成第1题。

1.该类工业由沿海向内地转移的主要目的是( ) A.接近原料产地,降低生产成本 B.接近消费市场,降低交易费用 C.接近廉价劳动力丰富的地方,降低生产成本 D.接近高等院校和科研院校,获得技术支持 【答案】C 【解析】从表中可以看出,生产该产品的各项成本中,劳动力成本所占比重最大,故这类工厂属于劳动力导向型企业。目前,该类工业由沿海经济发达地区向内地经济落后地区转移,主要是为了利用内地丰富而廉价的劳动力资源,从而有效地降低生产成本。 2.(2012广州调研)读“苹果iPad产业链示意图”,中国大陆企业在产业链中最具优势的区位因素是( )

A.技术 B.原料 C.市场 D.劳动力 【答案】D 【解析】读图可看出中国大陆企业主要是负责“代工组装”这一环节,说明在产业链中最具优势的区位因素是劳动力。 下图为美国铜矿资源开发布局指向示意图,读图回答第3~4题。 3.粗炼厂和精炼厂分别属于( ) A.原料指向型工业和市场指向型工业 B.动力指向型工业和原料指向型工业 C.动力指向型工业和廉价劳动力指向型工业 D.原料指向型工业和技术指向型工业 4.大量铜材加工厂布局在精炼厂附近,有利于( ) A.加强加工厂之间的联系 B.加强与精炼厂的协作 C.扩大总体生产能力 D.降低劳动力成本 【答案】3.A 4.B 【解析】粗炼厂主要集中于采矿地点,而精炼厂主要分布于东部铜材消费区。铜材加工厂的原料来源于精炼厂,因而大量铜材加工厂向精炼厂集聚,有利于加强彼此之间的协作,降低运费成本。A选项错在仅仅强调了加工厂之间的联系,忽略了精炼厂与加工厂之间的联系;D选项错在成本类型上;C选项是从区域总体角度分析的,脱离试题设问的主题。 5.(2011广州一模)我国“十二五”国民经济发展规划报告指出:“钢铁工业加快从内地向沿海布局”。引起这次钢铁工业布局变化的最主要区位因素是 ( ) A.劳力和技术 B.原料和市场 C.交通和环境 D.燃料和水资源 【答案】B 【解析】本题考查影响钢铁工业区位因素的发展变化。近些年,我国钢铁工业对国外铁矿石的依存度越来越大。沿海地区对于钢铁工业的发展可以说具有得天独厚的优势,优良的港口不仅大大减少了运输成本,而且沿海地区相对内陆发达,对钢铁需求量较大。 (2012盐城调研)下图为某工业收益随空间变化曲线图,据此完成第6~8题。 6.该工业可能是( ) A.家具厂 B.炼铝厂 C.电子元件厂 D.制糖厂 7.图中显示该工业布局的理想区域是 ( ) A.甲 B.乙 C.丙 D.丁 8.图中空间费用曲线先减后增的主导因素是( ) A.地租费用、市场近便 B.市场近便、工人工资 C.工人工资、政策影响 D.地租费用、交通费用 【答案】6.A 7.B 8.D 【解析】第6题,从图中可以看出该工业随着离城市中心距离越远,收入急剧下降,表明该工业对市场要求较高,在题中所给选项中,只有家具厂属于市场导向型。第7题,该工业应布局在空间收入曲线大于空间费用曲线且两线直接相距最远的地方,即乙地。第8题,初始时随着离城市中心逐渐变远,地租费用下降导致空间费用减少,而后随着距离城市中心越来越遥远,离市场越来越远,交通费用又使得空间费用曲线增加。 (2011全国文综)读“美国五大湖地区煤铁产地和钢铁工业分布示意图”,回答第9~11题。

美国五大湖地区煤、铁产地和钢铁工业分布 9.匹兹堡曾经被称为“钢铁之城”,是美国最大的钢铁基地,其发展的有利社会条件主要是( ) A.劳动力资源丰富 B.丰富的煤铁资源 C.发达的科学技术 D.便利的水陆运输条件 10.底特律、布法罗、匹兹堡等城市为美国著名的钢铁工业基地,当地发展钢铁工业的资源条件不包括( ) A.水资源丰富 B.铁矿资源丰富 C.煤炭资源丰富 D.石油资源丰富 11.以匹兹堡、底特律为代表的美国五大著名的工业区,与其特征相同的工业区是( ) A.印度的德干高原东北部工业区 B.意大利中部和北部工业区 C.日本的九州岛工业区 D.印度的班加罗尔工业区 【答案】9.D 10.D 11.A 【解析】本题考查了传统工业区发展的条件及分布。匹兹堡附近地区的煤、铁矿石蕴藏量丰富,水源丰富,加上内河港口的运输便利,具有大规模发展钢铁工业的良好区位条件;印度的德干高原东北部工业区是在丰富的煤铁资源基础上建立起来的钢铁基地。 二、非选择题(本大题分为2小题,共56分) 12.(2012广东执信中学质检)阅读下面材料,回答下列问题。 材料一 大珠三角地区示意图。

材料二 花都汽车城位置示意图。 (1)在图中广东省城市等级体系中级别最高的城市是____(名称)。 (2)广州南沙区北部规划为汽车和重型装备工业、中部为高新科技产业、南部为港口物流和临港工业;如果在南沙布局钢铁、石化工业,对”大珠三角地区”的大气环境、水环境有何不利影响? ______________________________________________________ ______________________________________________________ ______________________________________________________ ______________________________________________________ (3)花都汽车城的形成,体现了工业的________现象。这种现象可以充分利用________,加强彼此之间的信息交流与协作,降低运输费用和能源消耗,最终降低生产成本,以获得________效益。 (4)越来越多的国际跨国集团在中国投资兴建汽车和零部件生产企业,主要是看中我国____________和______________优势。 【答案】(1)广州 (2)“大珠三角地区”冬季盛行西北季风,钢铁厂、石化厂排放的废气会加重深圳、香港地区的大气污染程度;夏季盛行东南季风,加重广州市区的大气污染程度。钢铁厂、石化厂排放的废水对珠江口的水体造成污染。 (3)集聚 基础设施 规模 (4)土地和劳动力廉价 消费市场广大 【解析】第(1)题,一个省而言,城市等级体系中级别最高的城市是省级行政中心。第(2)题,对大气环境、水环境的影响要分别从当地的风向和河流方面加以分析。第(3)题,考查集聚现象及其成因和效益。第(4)题,外商在中国投资兴建汽车和零部件生产企业,主要是看中我国土地和劳动力廉价及消费市场广大。 13.(2011黄冈检测)东方网消息:第三轮中美战略与经济对话当地时间2011年5月9日上午在美国首都华盛顿开幕。对话期间,双方就共同关心的战略性、全局性、长期性问题进行了深入探讨,以加深了解、增进互信、促进合作。读美国东半部工业分布图和我国东北地区工业分布图,回答下列问题。

(1)美国东北部工业区和我国东北地区都有钢铁工业布局,影响两个地区钢铁工业区位选择的主导因素是_____________________________。 (2)图中大庆是我国的________工业基地;美国南部工业区中的________也有该工业布局。 (3)图中美国的汽车工业基地是________;我国东北汽车工业基地是________;这两个地区布局汽车工业的优势是___________________________。 (4)比较美国东北部工业区和我国东北工业区,简述两大工业区共同的区位优势。 ______________________________________________________ ______________________________________________________ ______________________________________________________ (5)与美国东北部工业区相同,我国东北工业区也面临传统工业衰落的问题。试分析两工业区传统工业衰落的共同原因。 ______________________________________________________ ______________________________________________________ ______________________________________________________ 【答案】 (1)靠近原料、燃料产区 (2)石油加工 休斯敦 (3)底特律 长春 钢铁工业发达,制造业基础好,市场需求量大,协作条件好 (4)工业起步较早,技术力量雄厚;有丰富的煤炭和铁矿资源;周围地区的农业基础好;水陆交通便利。 (5)煤、铁等矿产资源逐渐枯竭;生产结构单一;环境污染严重;不能适应市场变化;新技术的冲击。 【解析】第(1)题,两者都接近煤炭、铁矿基地。第(2)题,大庆和休斯敦都是在丰富的石油资源基础上发展起来的石油加工工业中心。第(3)题,长春和底特律所在地区工业发展迅速,协作条件优越。第(4)题,两者共同的区位优势可以从经济基础、市场、交通、资源等方面考虑。第(5)题,竞争力下降、产业结构老化、资源枯竭往往是传统工业区衰落的重要原因。

相关文档
最新文档