2019届高考数学大一轮复习第四章三角函数解三角形第4讲函数y=Asin(ωx+φ)的图像及应用练习理北师大版
高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。
高考数学一轮复习 第三章三角函数 解三角形第四节函数y=Asin(ωx+φ)的图象及三角函数模型

_
_______.
π 解析:函数 y=sin2x 的图象向右平移 个单位后得到 y=sin2(x 4 π π - )=sin(2x- )=-cos2x 的图象,再向上平移 1 个单位可以 4 2 得到 y=-cos2x+1 的图象,由二倍角公式知 y=2sin2x.
1 法二:将 y=sinx 的图象上每一点的横坐标 x 缩短为原来的 倍, 2 纵坐标不变,得到 y=sin2x 的图象; π π 再将 y= sin2x 的图象向左平移 个单位,得到 y= sin2(x+ )= 6 6 π π sin(2x+ )的图象;再将 y=sin(2x+ )的图象上每一点的横坐标保 3 3 π 持不变,纵坐标伸长为原来的 2 倍,得到 y=2sin(2x+ )的图象. 3
1 π 解:(1)y=3sin( x- )的周期 T=4π. 2 4 π 振幅为 3,初相为- . 4
(2)在x∈[0,4π]上确定关键点列表:
x 1 π x- 2 4 1 π 3sin( x- ) 2 4 0 - - π 4 π 2 0 0 3π 2 π 2 3 5π 2 π 0 7π 2 3π 2 4π
π (3)法一:把 y=sinx 的图象上所有的点向左平移 个单位,得到 y= 3 π π sin(x+ )的图象, 再把 y=sin(x+ )的图象上的点的横坐标缩短到原 3 3 1 π 来的 倍(纵坐标不变), 得到 y=sin(2x+ )的图象,最后把 y=sin(2x 2 3 π + )上所有点的纵坐标伸长到原来的 2 倍(横坐标不变),即可得到 y 3 π =2sin(2x+ )的图象. 3
答案:0
1. y=Asin(ωx+φ)的有关概念 y=Asin(ωx 振幅 +φ)(A>0, ω>0),
广东省珠海市高考数学一轮复习:19 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用

广东省珠海市高考数学一轮复习:19 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·鹤壁模拟) 要得到函数的图象,只需把函数的图象()A . 向左平移个单位B . 向左平移个单位C . 向右平移个单位D . 向右平移个单位2. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位3. (2分)(2018·台州模拟) 函数部分图象如图所示,且,对不同的,若,有,则()A . 在上是减函数B . 在上是增函数C . 在上是减函数D . 在上增减函数4. (2分) (2016高一下·福建期末) 把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向左平移个单位,这时对应于这个图象的解析式为()A . y=cos2xB . y=﹣sin2xC .D .5. (2分) (2016高一下·天水期末) 已知如图是函数y=2sin(ωx+φ)(|φ|<)的图象上的一段,则()A . ω= ,φ=B . ω= ,φ=﹣C . ω=2,φ=D . ω=2,φ=﹣6. (2分)如图所示,M,N是函数图像与轴的交点,点P在M,N之间的图像上运动,当△MPN面积最大时,则()A .B .C .D . 87. (2分) (2018高一下·深圳期中) 函数的图象如图所示,则的表达式是()A .B .C .D .8. (2分)(2018·安徽模拟) 若函数的部分图象如图所示,则的单调递减区间是()A .B .C .D .9. (2分) (2018高一下·龙岩期末) 将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到函数的图象,则函数的图象()A . 关于直线对称B . 关于直线对称C . 关于点对称D . 关于点对称10. (2分)如图,小明利用有一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE 为5m,AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是()A . (+)mB . (5+)mC . mD . 4m11. (2分)(2020·辽宁模拟) 已知函数的图象向右平移()个单位后,其图象关于轴对称,则()A .B .C .D .12. (2分) (2017高三上·西安开学考) 已知函数f(x)=cos(2x﹣)+2cos2x,将函数y=f(x)的图象向右平移个单位,得到函数y=g(x)的图象,则函数y=g(x)图象的一个对称中心是()A . (﹣,1)B . (﹣,1)C . (,1)D . (,0)二、填空题 (共5题;共7分)13. (2分)如图是y=Asin(wx+φ)(A>0,w>0,|φ|<)的一段图象,则函数解析式为________.14. (1分) (2015高一下·黑龙江开学考) y=sin2x+acos2x的图象关于对称,则a等于________.15. (1分) (2016高一下·龙岩期中) 给出下列命题:①把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣);②若α,β是第一象限角且α<β,则cosα>cosβ;③x=﹣是函数y=cos(2x+ π)的一条对称轴;④函数y=4sin(2x+ )与函数y=4cos(2x﹣)相同;⑤y=2sin(2x﹣)在[0, ]是增函数;则正确命题的序号________.16. (1分) (2019高一下·上海月考) 把函数的图像向右平移个单位,再将横坐标缩短到原来的,所得函数的解析式为________.17. (2分) (2017高一上·江苏月考) 将函数向右平移个单位后,所得函数解析式为________.三、解答题 (共5题;共40分)18. (5分)已知函数.用“五点法”画出函数f(x)在一个周期内的图象.19. (15分)(2018·丰台模拟) 已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在上的单调递增区间.20. (5分)如图:已知圆O的直径是2,点C在直径AB的延长线上,BC=1,点P是圆O上的一个动点,以PC为边作正三角形PCD,且点D与圆心分别在PC的两侧,求四边形OPDC面积的最大值.21. (10分) (2019高一上·广东月考) 已知函数(1)将函数化简成的形式,并指出的最小正周期、振幅、初相和单调递增区间;(2)求函数在区间上的最小值和最大值.22. (5分)已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,﹣<φ<),其部分图象如图所示.(1)求f(x)的解析式;(2)将f(x)图象上任意一点的横坐标缩短为原来的(纵坐标不变),再向右平移m(m>0)个单位,得到的函数g(x)的图象,若g(x)的图象关于y轴对称,求m的最小值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共7分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共40分) 18-1、19-1、20-1、21-1、21-2、22-1、22-2、。
2023年高考数学一轮复习第四章三角函数与解三角形6函数y=Asinωx φ练习含解析

函数y=A sin(ωx+φ)考试要求 1.结合具体实例,了解y=A sin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响.2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.知识梳理1.简谐运动的有关概念y =A sin(ωx +φ) (A>0,ω>0),x≥0振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用“五点法”画y=A sin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个特征点ωx+φ0π2π3π22πx 0-φωπ2-φωπ-φω3π2-φω2π-φωy=A sin(ωx+φ)0 A 0-A 0 3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的两种途径常用结论1.函数y=A sin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.3.函数y =A sin(ωx +φ)图象的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx+φ=k π,k ∈Z 确定其横坐标. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)把y =sin x 的图象上各点的横坐标缩短为原来的12,纵坐标不变,所得图象对应的函数解析式为y =sin 12x .( × )(2)将y =sin2x 的图象向右平移π6个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象.( √ ) (3)函数f (x )=A sin(ωx +φ)(A ≠0)的最大值为A ,最小值为-A .( × )(4)如果y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的相邻两个对称中心之间的距离为T2.( √ )教材改编题1.为了得到函数y =sin ⎝ ⎛⎭⎪⎫3x -π4的图象,只要把y =sin3x 的图象( ) A .向右平移π4个单位长度B .向左平移π4个单位长度C .向右平移π12个单位长度D .向左平移π12个单位长度答案 C2.为了得到y =3cos ⎝ ⎛⎭⎪⎫3x +π8的图象,只需把y =3cos ⎝ ⎛⎭⎪⎫x +π8图象上的所有点的( ) A .纵坐标伸长到原来的3倍,横坐标不变 B .横坐标伸长到原来的3倍,纵坐标不变 C .纵坐标缩短到原来的13,横坐标不变D .横坐标缩短到原来的13,纵坐标不变答案 D3.如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,A >0,0<φ<π,则这段曲线的函数解析式为__________________________.答案 y =10sin ⎝⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14]解析 从题图中可以看出,从6~14时的图象是函数y =A sin(ωx +φ)+b 的半个周期, 所以A =12×(30-10)=10,b =12×(30+10)=20,又12×2πω=14-6, 所以ω=π8.又π8×10+φ=2k π,k ∈Z ,0<φ<π, 所以φ=3π4,所以y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14].题型一 函数y =A sin(ωx +φ)的图象及变换例1 (1)(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x -π4的图象,则f (x )等于( )A .sin ⎝ ⎛⎭⎪⎫x 2-7π12B .sin ⎝ ⎛⎭⎪⎫x 2+π12C .sin ⎝ ⎛⎭⎪⎫2x -7π12D .sin ⎝⎛⎭⎪⎫2x +π12 答案 B解析 依题意,将y =sin ⎝ ⎛⎭⎪⎫x -π4的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin ⎝ ⎛⎭⎪⎫x -π4――――――――――――――――――――――――――――――――――――――――→将其图象向左平移π3个单位长度y =sin ⎝ ⎛⎭⎪⎫x +π12的图象―――――――――――――――――――――――――――――――――――――――――――――――→所有点的横坐标扩大到原来的2倍f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π12的图象.(2)(2022·天津二中模拟)将函数y =sin2x 的图象向左平移φ⎝ ⎛⎭⎪⎫0≤φ<π2个单位长度后,得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的图象,则φ等于( )A.π12 B.π6 C.π3 D.5π3答案 C解析 y =sin2x =cos ⎝⎛⎭⎪⎫2x -π2. 将函数y =sin2x 的图象向左平移φ个单位长度后, 得到函数y =cos ⎣⎢⎡⎦⎥⎤2x +φ-π2=cos ⎝ ⎛⎭⎪⎫2x +2φ-π2=cos ⎝⎛⎭⎪⎫2x +π6, 由题意知2φ-π2=π6+2k π(k ∈Z ),则φ=π3+k π(k ∈Z ),又0≤φ<π2,所以φ=π3.教师备选1.要得到函数y =cos ⎝ ⎛⎭⎪⎫2x -π6的图象,可以把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象( )A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度答案 D解析 函数y =cos ⎝ ⎛⎭⎪⎫2x -π6 =sin ⎝ ⎛⎭⎪⎫2x -π6+π2=sin ⎝⎛⎭⎪⎫2x +π6+π6 =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6, 所以只需将y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度就可以得到y =cos ⎝ ⎛⎭⎪⎫2x -π6的图象.2.(2020·江苏)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________. 答案 x =-5π24解析 将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度, 所得图象的函数解析式为y =3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π4=3sin ⎝⎛⎭⎪⎫2x -π12.令2x -π12=k π+π2,k ∈Z ,得对称轴的方程为x =k π2+7π24,k ∈Z ,分析知当k =-1时,对称轴为直线x =-5π24,与y 轴最近.思维升华 (1)由y =sin ωx 的图象到y =sin(ωx +φ)的图象的变换:向左平移φω(ω>0,φ>0)个单位长度而非φ个单位长度.(2)如果平移前后两个图象对应的函数的名称不一致,那么应先利用诱导公式化为同名函数,ω为负时应先变成正值.跟踪训练 1 (1)(多选)(2020·天津改编)已知函数f (x )=sin ⎝⎛⎭⎪⎫x +π3.下列结论正确的是( )A .f (x )的最小正周期为2πB .f ⎝ ⎛⎭⎪⎫π2是f (x )的最大值C .把函数y =sin x 的图象上所有点向左平移π3个单位长度,可得到函数y =f (x )的图象D .把函数y =f (x )图象上所有点的横坐标伸长到原来的3倍,纵坐标不变,得到g (x )=sin ⎝ ⎛⎭⎪⎫3x +π3的图象 答案 AC解析 T =2π1=2π,故A 正确.当x +π3=π2+2k π(k ∈Z ),即x =π6+2k π(k ∈Z )时,f (x )取得最大值,故B 错误.y =sin x 的图象―――――――――――――――――――――――――――――→向左平移π3个单位长度y =sin ⎝⎛⎭⎪⎫x +π3的图象,故C 正确.f (x )=sin ⎝ ⎛⎭⎪⎫x +π3图象上所有点的――――――――――――――――――――――――――――――――――→横坐标伸长到原来的3倍纵坐标不变g (x )=sin ⎝⎛⎭⎪⎫13x +π3的图象,故D错误.(2)(2022·开封模拟)设ω>0,将函数y =sin ⎝ ⎛⎭⎪⎫ωx +π6的图象向右平移π6个单位长度后,所得图象与原图象重合,则ω的最小值为( ) A .3B .6C .9D .12 答案 D解析 将函数y =sin ⎝ ⎛⎭⎪⎫ωx +π6的图象向右平移π6个单位长度后,所得图象与原图象重合,故π6为函数y =sin ⎝ ⎛⎭⎪⎫ωx +π6的周期, 即2k πω=π6(k ∈N *), 则ω=12k (k ∈N *),故当k =1时,ω取得最小值12.题型二 由图象确定y =A sin(ωx +φ)的解析式例2 (1)(2022·安徽芜湖一中模拟)已知函数f (x )=A cos(ωx +φ)+b ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的大致图象如图所示,将函数f (x )的图象上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数g (x )的图象,则函数g (x )的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-3π2+3k π,3k π(k ∈Z ) B.⎣⎢⎡⎦⎥⎤3k π,3k π+3π2(k ∈Z )C.⎣⎢⎡⎦⎥⎤-7π4+3k π,-π4+3k π(k ∈Z )D.⎣⎢⎡⎦⎥⎤-π4+3k π,5π4+3k π(k ∈Z ) 答案 C 解析 依题意,⎩⎪⎨⎪⎧A +b =1,-A +b =-3,解得⎩⎪⎨⎪⎧A =2,b =-1,故f (x )=2cos(ωx +φ)-1,而f ⎝ ⎛⎭⎪⎫π12=1,f ⎝ ⎛⎭⎪⎫π3=-1,∴T 4=π3-π12=π4, 故T =π=2πω,则ω=2;∴2cos ⎝⎛⎭⎪⎫π6+φ-1=1,故π6+φ=2k π(k ∈Z ), 又|φ|<π2,故φ=-π6,∴f (x )=2cos ⎝⎛⎭⎪⎫2x -π6-1;将函数f (x )的图象上点的横坐标拉伸为原来的3倍后,得到y =2cos ⎝ ⎛⎭⎪⎫23x -π6-1, 再向左平移π2个单位长度,得到g (x )=2cos ⎝ ⎛⎭⎪⎫23x +π3-π6-1=2cos ⎝ ⎛⎭⎪⎫23x +π6-1,令-π+2k π≤23x +π6≤2k π(k ∈Z ),故-7π4+3k π≤x ≤-π4+3k π(k ∈Z ),故函数g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-7π4+3k π,-π4+3k π(k ∈Z ).(2)(2021·全国甲卷)已知函数f (x )=2cos (ωx +φ)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π2=______.答案 - 3解析 由题意可得,34T =13π12-π3=3π4,∴T =π,ω=2πT=2,当x =13π12时,ωx +φ=2×13π12+φ=2k π,k ∈Z ,∴φ=2k π-136π(k ∈Z ).令k =1可得φ=-π6,据此有f (x )=2cos ⎝⎛⎭⎪⎫2x -π6,f ⎝ ⎛⎭⎪⎫π2=2cos ⎝⎛⎭⎪⎫2×π2-π6=2cos 5π6=- 3.教师备选1.(2022·天津中学月考)把函数f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π4个单位长度,得到函数g (x )的图象,已知函数g (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f (x )等于( )A .sin ⎝⎛⎭⎪⎫4x +π3 B .sin ⎝⎛⎭⎪⎫4x +π6C .sin ⎝⎛⎭⎪⎫x +π6D .sin ⎝⎛⎭⎪⎫x +π3答案 D解析 先根据函数图象求函数g (x )=A sin(ωx +φ)的解析式, 由振幅可得A =1,显然T 4=π3-π12=π4,所以T =π,所以2πω=π,所以ω=2,所以g (x )=sin(2x +φ),再由g ⎝ ⎛⎭⎪⎫π12=sin ⎝ ⎛⎭⎪⎫π6+φ=0, 由|φ|<π2可得φ=-π6,所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6,反向移动先向左平移π4个单位长度可得sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π6=sin ⎝ ⎛⎭⎪⎫2x +π3,再将横坐标伸长到原来的2倍可得f (x )=sin ⎝⎛⎭⎪⎫x +π3.2.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=________.答案 - 3解析 由题意得,A =3,T =4=2πω,ω=π2.又因为f (x )=A cos(ωx +φ)为奇函数, 所以φ=π2+k π,k ∈Z ,由0<φ<π,取k =0,则φ=π2,所以f (x )=3cos ⎝ ⎛⎭⎪⎫π2x +π2,所以f (1)=- 3.思维升华 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b .确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2.(2)求ω.确定函数的最小正周期T ,则ω=2πT.(3)求φ,常用方法如下:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.跟踪训练2 (1)(2020·全国Ⅰ改编)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π6在[-π,π]上的图象大致如图,则f (x )的解析式为( )A .f (x )=cos ⎝ ⎛⎭⎪⎫-32x +π6B .f (x )=cos ⎝ ⎛⎭⎪⎫32x +π6C .f (x )=cos ⎝ ⎛⎭⎪⎫34x -π6D .f (x )=cos ⎝ ⎛⎭⎪⎫34x +π6答案 B解析 由图象知π<T <2π,即π<2π|ω|<2π,所以1<|ω|<2.因为图象过点⎝ ⎛⎭⎪⎫-4π9,0, 所以cos ⎝ ⎛⎭⎪⎫-4π9ω+π6=0,所以-4π9ω+π6=k π+π2,k ∈Z ,所以ω=-94k -34,k ∈Z .因为1<|ω|<2, 故k =-1,得ω=32,所以f (x )=cos ⎝ ⎛⎭⎪⎫32x +π6.(2)(2022·张家口市第一中学模拟)已知函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则ω=________,为了得到偶函数y =g (x )的图象,至少要将函数y =f (x )的图象向右平移________个单位长度.答案π86 解析 由图象可知,函数f (x )的最小正周期为T =2×[6-(-2)]=16, ∴ω=2π16=π8,则f (x )=2sin ⎝⎛⎭⎪⎫πx 8+φ,由于函数f (x )的图象过点(-2,0)且在x =-2附近单调递增, ∴-2×π8+φ=2k π(k ∈Z ),可得φ=2k π+π4(k ∈Z ),∵-π2<φ<π2,∴φ=π4,∴f (x )=2sin ⎝⎛⎭⎪⎫πx 8+π4,假设将函数f (x )的图象向右平移t 个单位长度可得到偶函数g (x )的图象, 且g (x )=f (x -t )=2sin ⎣⎢⎡⎦⎥⎤π8x -t +π4=2sin ⎝⎛⎭⎪⎫π8x -πt 8+π4,∴-πt 8+π4=π2+k π(k ∈Z ),解得t =-2-8k (k ∈Z ),∵t >0,当k =-1时,t 取最小值6.题型三 三角函数图象、性质的综合应用 命题点1 图象与性质的综合应用例3 (2022·衡阳模拟)若函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且其图象向左平移π6个单位长度后所得图象对应的函数g (x )为偶函数,则f (x )的图象( )A .关于直线x =π3对称B .关于点⎝ ⎛⎭⎪⎫π6,0对称 C .关于直线x =-π6对称D .关于点⎝ ⎛⎭⎪⎫5π12,0对称答案 D解析 依题意可得ω=2ππ=2,所以f (x )=2sin(2x +φ),所以f (x )的图象向左平移π6个单位长度后所得图象对应的函数为g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,又函数g (x )为偶函数, 所以π3+φ=π2+k π,k ∈Z ,解得φ=π6+k π,k ∈Z ,又|φ|<π2,所以φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6, 由2x +π6=π2+k π,k ∈Z ,得x =π6+k π2,k ∈Z ,所以f (x )图象的对称轴为x =π6+k π2,k ∈Z ,排除A ,C ,由2x +π6=k π,k ∈Z ,得x =-π12+k π2,k ∈Z ,则f (x )图象的对称中心为⎝ ⎛⎭⎪⎫-π12+k π2,0,k ∈Z ,排除B ,当k =1时,-π12+π2=5π12,故D 正确.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin2x +m -1=0在⎝ ⎛⎭⎪⎫π2,π上有两个不同的实数根,则m 的取值范围是____________.答案 (-2,-1)解析 方程2sin 2x -3sin2x +m -1=0可转化为m =1-2sin 2x +3sin2x =cos2x +3sin2x=2sin ⎝ ⎛⎭⎪⎫2x +π6,x ∈⎝ ⎛⎭⎪⎫π2,π.设2x +π6=t ,则t ∈⎝ ⎛⎭⎪⎫7π6,13π6,∴题目条件可转化为m 2=sin t ,t ∈⎝ ⎛⎭⎪⎫7π6,13π6有两个不同的实数根.∴y =m 2和y =sin t ,t ∈⎝ ⎛⎭⎪⎫7π6,13π6的图象有两个不同交点,如图:由图象观察知,m 2的取值范围是⎝ ⎛⎭⎪⎫-1,-12,故m 的取值范围是(-2,-1).延伸探究 本例中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是_____. 答案 [-2,1)解析 同例题知,m 2的取值范围是⎣⎢⎡⎭⎪⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 三角函数模型例5 (多选)(2022·佛山一中月考)摩天轮常被当作一个城市的地标性建筑,如深圳前海的“湾区之光”摩天轮,如图所示,某摩天轮最高点离地面高度128米,转盘直径为120米,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针匀速旋转t 分钟,当t =15时,游客随舱旋转至距离地面最远处.以下关于摩天轮的说法中,正确的为( )A .摩天轮离地面最近的距离为4米B .若旋转t 分钟后,游客距离地面的高度为h 米,则h =-60cosπ15t +68 C .若在t 1,t 2时刻,游客距离地面的高度相等,则t 1+t 2的最小值为30 D .∃t 1,t 2∈[0,20],使得游客在该时刻距离地面的高度均为90米 答案 BC解析 由题意知,摩天轮离地面最近的距离为128-120=8(米),故A 不正确;t 分钟后,转过的角度为π15t ,则h =60-60cosπ15t +8=-60cos π15t +68,故B 正确; h =-60cosπ15t +68,周期为2ππ15=30,由余弦型函数的性质可知,若t 1+t 2取最小值,则t 1,t 2∈[0,30],又高度相等, 则t 1,t 2关于t =15对称, 则t 1+t 22=15,则t 1+t 2=30,故C 正确;令0≤π15t ≤π,解得0≤t ≤15,令π≤π15t ≤2π,解得15≤t ≤30,则h 在t ∈[0,15]上单调递增,在t ∈[15,20]上单调递减, 当t =15时,h max =128, 当t =20时,h =-60cosπ15×20+68=98>90, 所以h =90在t ∈[0,20]只有一个解, 故D 不正确. 教师备选(多选)(2022·福州模拟)如图所示,一半径为4米的水轮,水轮圆心O 距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计时,则( )A .点P 第一次到达最高点需要20秒B .当水轮转动155秒时,点P 距离水面2米C .当水轮转动50秒时,点P 在水面下方,距离水面2米D .点P 距离水面的高度h (米)与t (秒)的函数解析式为h =4cos ⎝ ⎛⎭⎪⎫π30t +π3+2答案 ABC解析 设点P 距离水面的高度h (米)和时间t (秒)的函数解析式为h =A sin(ωt +φ)+B ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2,由题意得⎩⎪⎨⎪⎧h max =A +B =6,h min=-A +B =-2,T =2πω=60,h 0=A sin ω·0+φ+B =0,解得⎩⎪⎨⎪⎧A =4,B =2,ω=2πT =π30,φ=-π6,故h =4sin ⎝⎛⎭⎪⎫π30t -π6+2.故D 错误;对于A ,令h =6,即h =4sin ⎝ ⎛⎭⎪⎫π30t -π6+2=6,解得t =20,故A 正确;对于B ,令t =155,代入h =4sin ⎝ ⎛⎭⎪⎫π30t -π6+2,解得h =2,故B 正确; 对于C ,令t =50,代入h =4sin ⎝ ⎛⎭⎪⎫π30t -π6+2, 解得h =-2,故C 正确.思维升华 (1)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.(2)方程根的个数可转化为两个函数图象的交点个数.(3)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题.跟踪训练3 (1)(多选)(2022·青岛模拟)已知函数f (x )=cos2x cos φ-sin2x sin φ⎝ ⎛⎭⎪⎫0<φ<π2的图象的一个对称中心为⎝ ⎛⎭⎪⎫π6,0,则下列说法正确的是( )A .直线x =512π是函数f (x )的图象的一条对称轴B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π6上单调递减C .函数f (x )的图象向右平移π6个单位长度可得到y =cos2x 的图象D .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为-1答案 ABD解析 ∵f (x )=cos2x cos φ-sin2x sin φ=cos(2x +φ)的图象的一个对称中心为⎝ ⎛⎭⎪⎫π6,0,∴2×π6+φ=π2+k π,k ∈Z ,∴φ=π6+k π,k ∈Z .∵0<φ<π2,∴φ=π6.则f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6.∵f ⎝⎛⎭⎪⎫5π12=cos ⎝⎛⎭⎪⎫2×5π12+π6=cosπ=-1,∴直线x =512π是函数f (x )的图象的一条对称轴,故A 正确;当x ∈⎣⎢⎡⎦⎥⎤0,π6时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,π2,∴函数f (x )在⎣⎢⎡⎦⎥⎤0,π6上单调递减,故B 正确;函数f (x )的图象向右平移π6个单位长度,得到y =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π6=cos ⎝ ⎛⎭⎪⎫2x -π6的图象,故C 错误;当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为cosπ=-1,故D 正确.(2)(多选)(2022·西南大学附中模拟)水车在古代是进行灌溉引水的工具,亦称“水转筒车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A (3,-33)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足y =f (t )=R sin(ωt +φ)⎝⎛⎭⎪⎫t ≥0,ω>0,|φ|<π2,则下列叙述正确的是( )A .水斗作周期运动的初相为-π3B .在水斗开始旋转的60秒(含)中,其高度不断增加C .在水斗开始旋转的60秒(含)中,其最高点离平衡位置的纵向距离是3 3D .当水斗旋转100秒时,其和初始点A 的距离为6 答案 AD解析 对于A ,由A (3,-33), 知R =32+-332=6,T =120,所以ω=2πT =π60;当t =0时,点P 在点A 位置,有-33=6sin φ, 解得sin φ=-32,又|φ|<π2, 所以φ=-π3,故A 正确;对于B ,可知f (t )=6sin ⎝⎛⎭⎪⎫π60t -π3,当t ∈(0,60],π60t -π3∈⎝ ⎛⎦⎥⎤-π3,2π3,所以函数f (t )先增后减,故B 错误; 对于C ,当t ∈(0,60], π60t -π3∈⎝ ⎛⎦⎥⎤-π3,2π3,sin ⎝ ⎛⎭⎪⎫π60t -π3∈⎝ ⎛⎦⎥⎤-32,1,所以点P 到x 轴的距离的最大值为6,故C 错误; 对于D ,当t =100时,π60t -π3=4π3,P 的纵坐标为y =-33,横坐标为x =-3,所以|PA |=|-3-3|=6,故D 正确.课时精练1.函数f (x )=-2cos ⎝ ⎛⎭⎪⎫12x +π4的振幅、初相分别是( )A .-2,π4B .-2,-π4C .2,π4D .2,-π4答案 C解析 振幅为2,当x =0时,φ=π4,即初相为π4.2.将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象,向右平移π4个单位长度后得到函数g (x )的解析式为( ) A .g (x )=sin2x B .g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4C .g (x )=sin ⎝ ⎛⎭⎪⎫2x -π4D .g (x )=sin ⎝ ⎛⎭⎪⎫2x +3π4 答案 C解析 向右平移π4个单位长度后得,g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π4=sin ⎝ ⎛⎭⎪⎫2x -π4.3.(2022·苏州模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,将其图象向左平移π3个单位长度后对应的函数为偶函数,则f⎝ ⎛⎭⎪⎫π6等于( ) A .-12B.32C .1 D.12答案 D解析 因为函数f (x )=sin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,所以f (x )=sin(2x +φ),图象向左平移π3个单位长度后所得函数为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+φ=sin ⎝ ⎛⎭⎪⎫2x +2π3+φ,因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3+φ是偶函数,所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),因为|φ|<π2,所以k =0,φ=-π6,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝⎛⎭⎪⎫2×π6-π6=sin π6=12. 4.(2022·天津五十七中月考)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将f (x )的图象上所有点的横坐标扩大到原来的4倍(纵坐标不变),再把所得的图象沿x 轴向左平移π3个单位长度,得到函数g (x )的图象,则函数g (x )的一个单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-5π3,π3B.⎣⎢⎡⎦⎥⎤π3,7π3C.⎣⎢⎡⎦⎥⎤π4,3π8D.⎣⎢⎡⎦⎥⎤3π8,π2答案 A解析 根据函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象,可得A =1, 12·2πω=2π3-π6, ∴ω=2.结合“五点法”作图可得2×π6+φ=π2,∴φ=π6,f (x )=sin ⎝⎛⎭⎪⎫2x +π6. 将f (x )的图象上所有点的横坐标扩大到原来的4倍(纵坐标不变),可得y =sin ⎝ ⎛⎭⎪⎫12x +π6的图象.再把所得的图象沿x 轴向左平移π3个单位长度,得到函数g (x )=sin ⎝ ⎛⎭⎪⎫12x +π6+π6=sin ⎝ ⎛⎭⎪⎫12x +π3的图象.令2k π-π2≤12x +π3≤2k π+π2,k ∈Z ,解得4k π-5π3≤x ≤4k π+π3,k ∈Z ,可得函数g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤4k π-5π3,4k π+π3,k ∈Z ,令k =0,可得一个单调递增区间为⎣⎢⎡⎦⎥⎤-5π3,π3. 5.(多选)如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成”函数,给出下列函数中是“互为生成”函数的是( ) A .f (x )=sin x +cos x B .f (x )=2(sin x +cos x ) C .f (x )=sin x D .f (x )=2sin x + 2 答案 AD解析 f (x )=sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4与f (x )=2sin x +2经过平移后能够重合. 6.(多选)(2022·深圳模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象为曲线E ,则下列结论中正确的是( )A.⎝ ⎛⎭⎪⎫-π12,0是曲线E 的一个对称中心 B .若x 1≠x 2,且f (x 1)=f (x 2)=0,则|x 1-x 2|的最小值为π2C .将曲线y =sin2x 向右平移π3个单位长度,与曲线E 重合D .将曲线y =sin ⎝ ⎛⎭⎪⎫x -π3上各点的横坐标缩短到原来的12,纵坐标不变,与曲线E 重合答案 BD解析 函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象为曲线E ,令x =-π12,求得f (x )=-1,为最小值,故f (x )的图象关于直线x =-π12对称,故A 错误;若x 1≠x 2,且f (x 1)=f (x 2)=0,则|x 1-x 2|的最小值为T 2=12×2π2=π2,故B 正确;将曲线y =sin2x 向右平移π3个单位长度,可得y =sin ⎝⎛⎭⎪⎫2x -2π3的图象,故C 错误; 将曲线y =sin ⎝ ⎛⎭⎪⎫x -π3上各点的横坐标缩短到原来的12,纵坐标不变,可得y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,与曲线E 重合,故D 正确.7.(2022·北京丰台区模拟)将函数f (x )=cos2x 的图象向左平移φ(φ>0)个单位长度,得到函数g (x )的图象.若函数g (x )的图象关于原点对称,则φ的一个取值为________.(答案不唯一) 答案π4解析 将函数f (x )=cos2x 的图象向左平移φ(φ>0)个单位长度, 可得g (x )=cos(2x +2φ),由函数g (x )的图象关于原点对称, 可得g (0)=cos2φ=0, 所以2φ=π2+k π,k ∈Z ,φ=π4+k π2,k ∈Z ,当k =0时,φ=π4.8.(2022·济南模拟)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则为了得到曲线C 1,首先要把C 2上各点的横坐标变为原来的________倍,纵坐标不变,再把得到的曲线向右至少平移______个单位长度.(本题所填数字要求为正数) 答案 2π6解析 ∵曲线C 1:y =cos x =sin ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫2·12x +2π3-π6,∴先将曲线C 2上各点的横坐标变为原来的2倍,纵坐标不变, 再把得到的曲线y =sin ⎝ ⎛⎭⎪⎫2·12x +2π3向右至少平移π6个单位长度.9.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,-π2<φ<π2的最小正周期是π,且当x =π6时,f (x )取得最大值2. (1)求f (x )的解析式;(2)作出f (x )在[0,π]上的图象(要列表);(3)函数y =f (x )的图象可由函数y =sin x 的图象经过怎样的变换得到? 解 (1)因为函数f (x )的最小正周期是π, 所以ω=2. 又因为当x =π6时,f (x )取得最大值2,所以A =2,同时2×π6+φ=2k π+π2,k ∈Z ,φ=2k π+π6,k ∈Z ,因为-π2<φ<π2,所以φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)因为x ∈[0,π],所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,13π6.列表如下,2x +π6π6 π2 π 3π2 2π 13π6 x 0 π6 5π12 2π3 11π12 π f (x )12-21描点、连线得图象.(3)将y =sin x 的图象上的所有点向左平移π6个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π6的图象,再将y =sin ⎝ ⎛⎭⎪⎫x +π6的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象,再将y =sin ⎝ ⎛⎭⎪⎫2x +π6上所有点的纵坐标伸长2倍(横坐标不变), 得到f (x )=2sin ⎝⎛⎭⎪⎫2x +π6的图象.10.已知向量m =⎝ ⎛⎭⎪⎫sin x ,-12,n =(3cos x ,cos2x ),函数f (x )=m ·n .(1)求函数f (x )的最大值及最小正周期; (2)将函数y =f (x )的图象向左平移π6个单位长度,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域. 解 (1) f (x )=m ·n =3sin x cos x -12cos 2x=32sin 2x -12cos 2x =sin ⎝⎛⎭⎪⎫2x -π6.所以函数的最大值为1,最小正周期为T =2π|ω|=2π2=π. (2)由(1)得f (x )=sin ⎝⎛⎭⎪⎫2x -π6. 将函数y =f (x )的图象向左平移π6个单位长度后得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=sin ⎝ ⎛⎭⎪⎫2x +π6的图象.因此g (x )=sin ⎝⎛⎭⎪⎫2x +π6,又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1.故g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-12,1.11.函数f (x )=A sin(ωx +φ)+b 的图象如图,则f (x )的解析式和S =f (0)+f (1)+f (2)+…+f (2020)+f (2021)+f (2022)+f (2023)的值分别为( )A .f (x )=12sin2πx +1,S =2023B .f (x )=12sin2πx +1,S =202312C .f (x )=12sin π2x +1,S =202412D .f (x )=12sin π2x +1,S =2024答案 D解析 由图象知⎩⎪⎨⎪⎧A +b =32,-A +b =12,又T =4,∴ω=π2,b =1,A =12,∴f (x )=12sin ⎝ ⎛⎭⎪⎫π2x +φ+1. 由f (x )的图象过点⎝ ⎛⎭⎪⎫1,32得12sin ⎝ ⎛⎭⎪⎫π2+φ+1=32, ∴cos φ=1.∴φ=2k π,k ∈Z ,取k =0得φ=0. ∴f (x )=12sin π2x +1,∴f (0)+f (1)+f (2)+f (3)=⎝ ⎛⎭⎪⎫12sin0+1+⎝ ⎛⎭⎪⎫12sin π2+1+⎝ ⎛⎭⎪⎫12sinπ+1+⎝ ⎛⎭⎪⎫12sin3π2+1=4. 又2024=4×506, ∴S =4×506=2024.12.(多选)关于函数f (x )=2cos 2x -cos ⎝ ⎛⎭⎪⎫2x +π2-1的描述正确的是( )A .其图象可由y =2sin2x 的图象向左平移π8个单位长度得到B .f (x )在⎝⎛⎭⎪⎫0,π2上单调递增C .f (x )在[0,π]上有3个零点D .f (x )在⎣⎢⎡⎦⎥⎤-π2,0上的最小值为- 2 答案 AD解析 f (x )=2cos 2x -cos ⎝ ⎛⎭⎪⎫2x +π2-1=sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4, 对于A ,由y =2sin2x 的图象向左平移π8个单位长度,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8=2sin ⎝ ⎛⎭⎪⎫2x +π4,故选项A 正确;对于B ,令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z ,所以f (x )在⎝ ⎛⎭⎪⎫0,π8上单调递增,在⎝ ⎛⎭⎪⎫π8,π2上单调递减,故选项B 不正确;对于C ,令f (x )=0,得2x +π4=k π,k ∈Z ,解得x =k π2-π8,k ∈Z ,因为x ∈[]0,π, 所以k =1,x =38π;k =2,x =78π,所以f (x )在[0,π]上有2个零点,故选项C 不正确;对于D ,因为x ∈⎣⎢⎡⎦⎥⎤-π2,0, 所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,π4,所以sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-1,22,所以f (x )∈[]-2,1,所以f (x )在⎣⎢⎡⎦⎥⎤-π2,0上的最小值为-2, 故选项D 正确.13.(2022·上海市吴淞中学月考)定义运算⎪⎪⎪⎪a 1a 3 a 2a 4=a 1a 4-a 2a 3,将函数f (x )=⎪⎪⎪⎪31 sin ωx cos ωx (ω>0)的图象向左平移2π3个单位长度,所得图象对应的函数为奇函数,则ω的最小值是________. 答案 12解析 f (x )=3cos ωx -sin ωx=-2sin ⎝⎛⎭⎪⎫ωx -π3, 图象向左平移2π3个单位长度得,g (x )=-2sin ⎝⎛⎭⎪⎫ωx +2πω3-π3, g (x )为奇函数,则2πω3-π3=k π,k ∈Z , 解得ω=12+32k ,k ∈Z ,所以ω的最小值为12.14.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价9000元,9月份价格最低,为5000元,则7月份的出厂价格为________元. 答案 6000解析 作出函数简图如图.三角函数模型为y =A sin(ωx +φ)+B , 由题意知A =12×(9000-5000)=2000,B =12×(9000+5000)=7000, T =2×(9-3)=12,∴ω=2πT =π6.将(3,9000)看成函数图象的第二个特殊点, 则有π6×3+φ=π2,∴φ=0,故f (x )=2000sinπ6x +7000(1≤x ≤12,x ∈N *). ∴f (7)=2000×sin7π6+7000=6000(元).故7月份的出厂价格为6000元.15.(多选)将函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π2(ω>0)的图象向右平移π2个单位长度后得到函数g (x )的图象,且g (0)=-1,则下列说法正确的是( ) A .g (x )为奇函数B .g ⎝ ⎛⎭⎪⎫-π2=0C .当ω=5时,g (x )在(0,π)上有4个极值点D .若g (x )在⎣⎢⎡⎦⎥⎤0,π5上单调递增,则ω的最大值为5答案 BCD解析 由题意得g (x )=cos ⎝⎛⎭⎪⎫ωx -ωπ2-π2 =sin ⎝⎛⎭⎪⎫ωx -ωπ2.因为g (0)=-1,所以sin ⎝⎛⎭⎪⎫-ωπ2=-1,所以ωπ2=2k π+π2,ω=4k +1,k ∈N , 从而g (x )=sin ⎝ ⎛⎭⎪⎫ωx -2k π-π2=-cos ωx ,显然为偶函数,故A 错误;g ⎝ ⎛⎭⎪⎫-π2=-cos4k +1π2=0,故B 正确; 当ω=5时,g (x )=-cos5x , 令g (x )=-cos5x =±1得 5x =k π,x =k π5,k ∈Z .因为0<x <π,所以x 的值为π5,2π5,3π5,4π5,即函数g (x )在(0,π)上有4个极值点,故C 正确;若函数g (x )=-cos ωx 在⎣⎢⎡⎦⎥⎤0,π5上单调递增,则πω5≤π,即0<ω≤5,故D 正确.16.(2022·深圳模拟)已知函数f (x )=A sin(ωx +φ),其中A >0,ω>0,0<φ<π,函数f (x )图象上相邻的两个对称中心之间的距离为π4,且在x =π3处取到最小值-2.(1)求函数f (x )的解析式;(2)若将函数f (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度,得到函数g (x )的图象,求函数g (x )的单调递增区间;(3)若关于x 的方程g (x )=m +2在x ∈⎣⎢⎡⎭⎪⎫0,9π8上有两个不同的实根,求实数m 的取值范围.解 (1)函数f (x )=A sin(ωx +φ), 其中A >0,ω>0,0<φ<π,由题知函数f (x )的最小正周期为π2=2πω,解得ω=4,又函数f (x )在x =π3处取到最小值-2,则A =2,且f ⎝ ⎛⎭⎪⎫π3=-2, 即4π3+φ=2k π+3π2,k ∈Z , 令k =0可得φ=π6,∴f (x )=2sin ⎝⎛⎭⎪⎫4x +π6. (2)函数f (x )=2sin ⎝ ⎛⎭⎪⎫4x +π6图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得y =2sin ⎝ ⎛⎭⎪⎫2x +π6,再向左平移π6个单位长度可得g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6+π6=2cos 2x ,令-π+2k π≤2x ≤2k π,k ∈Z , 解得-π2+k π≤x ≤k π,k ∈Z ,∴g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+k π,k π(k ∈Z ). (3)∵方程g (x )=m +2在x ∈⎣⎢⎡⎭⎪⎫0,9π8上有两个不同的实根,作出函数g (x )=2cos 2x ,x ∈⎣⎢⎡⎭⎪⎫0,9π8的图象,由图可知-2<m+2≤2或m+2=2,解得-4<m≤2-2或m=0.∴m的取值范围为-4<m≤2-2或m=0.31。
函数y=Asin(ωx+φ)的图象及应用讲义

函数y =A sin(ωx +φ)的图象及应用一、知识梳理1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈R振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )一个周期内的简图时,要找五个特征点 如下表所示:x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径注意:1.函数y =A sin(ωx +φ)+k 图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.3.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin )4(π-x 的图象是由y =sin )4(π+x 的图象向右平移π2个单位长度得到的.( ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( ) (3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求函数解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( ) 题组二:教材改编2.为了得到函数y =2sin )32(π-x 的图象,可以将函数y =2sin 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度3.]函数y =2sin )321(π-x 的振幅、频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π34.如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为__________________________.题组三:易错自纠 5.要得到函数y =sin )34(π-x 的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位长度B .向右平移π12个单位长度C .向左平移π3个单位长度D .向右平移π3个单位长度6.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.三、典型例题题型一:函数y =A sin(ωx +φ)的图象及变换 典例 已知函数y =2sin )32(π+x .(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象; (3)说明y =2sin )32(π+x 的图象可由y =sin x 的图象经过怎样的变换而得到.思维升华:(1)y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标. (2)由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.跟踪训练:(1)若把函数y =sin )6(πω-x 的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( )A .2 B.32 C.23 D.12(2)把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位长度,得到的函数图象的解析式是________.题型二:由图象确定y =A sin(ωx +φ)的解析式典例 (1)函数y =A sin(ωx +φ)的部分图象如图所示,则y =________________.(2)已知函数f (x )=sin(ωx +φ))2,0(πϕω<>的部分图象如图所示,则y =f )6(π+x 取得最小值时x 的集合为________.思维升华:y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口. 跟踪训练 已知函数f (x )=A sin(ωx +φ)+B )2,0,0(πϕω<>>A 的部分图象如图所示,将函数f (x )的图象向左平移m (m >0)个单位长度后,得到函数g (x )的图象关于点)23,3(π对称,则m 的值可能为( )A.π6B.π2C.7π6D.7π12 题型三:三角函数图象性质的应用 命题点1:三角函数模型典例 如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin )6(ϕπ+x +k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10 命题点2:函数零点(方程根)问题典例 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在),2(ππ上有两个不同的实数根,则m 的取值范围是____________.引申探究:本例中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 命题点3:三角函数图象性质的综合 典例 已知函数f (x )=3sin )32(πω+x (ω>0)的图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )的图象恰好经过点)0,3(π-,求当m 取得最小值时,g (x )在]127,6[ππ-上的单调递增区间.思维升华:(1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.跟踪训练 (1)已知函数f (x )=sin(ωx +φ))2,0(πϕω≤>的图象上的两个相邻的最高点和最低点的距离为22,且过点)21,2(-,则函数f (x )的解析式为__________.四、反馈练习1.已知曲线C 1:y =cos x ,C 2:y =sin )322(π+x ,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8D.5π43.若函数y =sin(ωx -φ))2,0(πϕω<>在区间],2[ππ-上的图象如图所示,则ω,φ的值分别是( )A .ω=2,φ=π3B .ω=2,φ=-2π3C .ω=12,φ=π3D .ω=12,φ=-2π34.函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移的单位长度是( ) A.π2 B.2π3 C.π3D.π45.将函数f (x )=3sin x -cos x 的图象沿着x 轴向右平移a (a >0)个单位长度,所得函数图象关于y 轴对称,则a 的最小值是( )A.π6B.π3C.π2D.2π3 6.函数f (x )=sin(2x +φ))2(πϕ<的图象向左平移π6个单位长度后所得函数图象的解析式是奇函数,则函数f (x )在]2,0[π上的最小值为( )A .-32B .-12C.12D.327.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是______________. 8.函数f (x )=2sin(ωx +φ))20,0(πϕω<<>的部分图象如图所示,已知图象经过点A (0,1),B )1,3(-π,则f (x )=________.9.已知函数f (x )=cos )33(π+x ,其中x ∈],6[m π,若f (x )的值域是]23,1[--,则m 的取值范围是________. 10.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 11.已知函数y =A sin(ωx +φ))2,0,0(πϕω<>>A 的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式;(2)求函数f (x )的单调递增区间. 12.将函数f (x )=sin(2x +θ))2(πϕ<的图象向右平移φ(0<φ<π)个单位长度后,得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P )23,0(,则φ的值为________. 13.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为________.14.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f )61(的值为________..15.设函数f (x )=sin )6(πω-x +sin )2(πω-x ,其中0<ω<3.已知f )6(π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度,得到函数y =g (x )的图象,求g (x )在]43,4[ππ-上的最小值.。
高考数学一轮复习 第3章 三角函数、解三角形 第4节 函数y=Asin(ωx+φ)的图像及三角函数的

第四节 函数y =A sin(ωx +φ)的图像及三角函数的简单应用[考纲传真] 1.了解函数y =A sin F (ωx +φ)的物理意义;能画出函数的图像,了解参数A ,ω,φ对函数图像变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.(对应学生用书第45页)[基础知识填充]1.函数y =A sin (ωx +φ)中各量的物理意义y =A sin(ωx +φ)(A >0,ω>0,x ≥0),表示一个振动量时振幅 周期 频率 相位 初相AT =2πω f =1T =ω2πωx +φ φx-φωπ2-φω π-φω32π-φω 2π-φωωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A先平移后伸缩 先伸缩后平移⇓ ⇓[知识拓展]1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换中,应向左平移φω个单位长度,而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)利用图像变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的单位长度一致.( )(2)将y =3sin 2x 的图像左移π4个单位后所得图像的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( ) (3)函数f (x )=A sin(ωx +φ)的图像的两个相邻对称轴间的距离为一个周期.( ) (4)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图像的两个相邻对称中心之间的距离为T2.( )[答案] (1)× (2)× (3)× (4)√2.(2016·四川高考)为了得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度A [把函数y =sin x 的图像上所有的点向左平行移动π3个单位长度就得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图像.]3.(2017·山东高考)函数y =3sin 2x +cos 2x 的最小正周期为( ) A .π2B .2π3C .πD .2πC [y =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,T =2π2=π. 故选C .]4.将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π4B [把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ的一个可能取值是π4.]5.(教材改编)电流I (单位:A)随时间t (单位:s)变化的函数关系式是I =5sin ⎝⎛⎭⎪⎫100πt +π3,t ∈[0,+∞),则电流I 变化的初相、周期分别是________.【导学号:00090097】π3,150 [由初相和周期的定义,得电流I 变化的初相是π3,周期T =2π100π=150.](对应学生用书第46页)函数y =A sin(ωx +φ)的图像及变换(1)(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线 向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线 向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2D [因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +2π3-π2=cos ⎝ ⎛⎭⎪⎫2x +π6,所以曲线C 1:y =cos x 上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线y =cos 2x ,再把得到的曲线y=cos 2x 向左平移π12个单位长度,得到曲线y =cos 2⎝ ⎛⎭⎪⎫x +π12=cos ⎝ ⎛⎭⎪⎫2x +π6. 故选D .](2)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x -π4,x ∈R .①画出函数f (x )在一个周期的闭区间上的简图;②将函数y =sin x 的图像作怎样的变换可得到f (x )的图像? [解] ①列表取值:xπ2 32π 52π 72π 92π 12x -π40 π2 π 32π 2π f (x )3-3描出五个关键点并用光滑曲线连接,得到一个周期的简图.②先把y =sin x 的图像向右平移π4个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图像.[规律方法] 1.变换法作图像的关键是看x 轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用ωx +φ=ω⎝⎛⎭⎪⎫x +φω确定平移单位.2.用“五点法”作图,关键是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,描点得出图像.如果在限定的区间内作图像,还应注意端点的确定.[变式训练1] (1)(2016·全国卷Ⅰ)将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图像向右平移14个周期后,所得图像对应的函数为( ) A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3C .y =2sin ⎝⎛⎭⎪⎫2x -π4 D .y =2sin ⎝⎛⎭⎪⎫2x -π3(2)(2018·长春模拟)要得到函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3的图像,只需将函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的图像( )【导学号:00090098】A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(1)D (2)C [(1)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图像向右平移14个周期即π4个单位长度,所得图像对应的函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝⎛⎭⎪⎫2x -π3,故选D .(2)f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3=sin ⎝⎛⎭⎪⎫2x +5π6,故把g (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的图像向左平移π4个单位,即得函数f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4+π3的图像,即得到函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3的图像,故选C .]求函数y =A sin(ωx +φ)的解析式(1)(2016·全国卷Ⅱ)函数y =A sin(ωx +φ)的部分图像如图341所示,则( )图341A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3C .y =2sin ⎝ ⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3 (2)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图像的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2 (1)A (2)D [(1)由图像知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图像的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝⎛⎭⎪⎫2x -π6.故选A .(2)由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图像的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.][规律方法] 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图像上的一个已知点代入(此时A ,ω,b 已知)或代入图像与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.“第一点”(即图像上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图像的“峰点”)时ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图像的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[变式训练2] (2017·石家庄一模)函数f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图像如图342所示,则f ⎝⎛⎭⎪⎫11π24的值为( )图342A .-62 B .-32C .-22D .-1D [由图像可得A =2,最小正周期T =4⎝ ⎛⎭⎪⎫7π12-π3=π,则ω=2πT =2.又f ⎝ ⎛⎭⎪⎫7π12=2sin ⎝⎛⎭⎪⎫7π6+φ=-2,解得φ=-5π3+2k π(k ∈Z ),即k =1,φ=π3,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,f ⎝ ⎛⎭⎪⎫11π24=2sin ⎝ ⎛⎭⎪⎫11π12+π3=2sin 5π4=-1,故选D .]函数y =A sin(ωx +φ)图像与性质的应用(2016·天津高考)已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.【导学号:00090099】[解] (1)f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z. 2分f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π.6分(2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z .8分设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上是增加的,在⎣⎢⎡⎦⎥⎤-π4,-π12上是减少的.12分[规律方法] 讨论函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数. [变式训练3] 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图像的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. [解] (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎪⎫2ωx -π3.3分因为图像的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4,因此ω=1.5分 (2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.6分当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎪⎫2x -π3≤1,则-1≤f (x )≤32. 10分故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.12分三角函数模型的简单应用某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? [解] (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,2分又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.4分当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.6分 (2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.9分又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.12分[规律方法] 1.三角函数模型在实际中的应用体现在两个方面:一是用已知的模型去分析解决实际问题,二是把实际问题抽象转化成数学问题,建立三角函数模型解决问题,其关键是合理建模.2.建模的方法是认真审题,把问题提供的“条件”逐条地“翻译”成“数学语言”,这个过程就是数学建模的过程.[变式训练4] (2015·陕西高考)如图343,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )图343A .5B .6C .8D .10C [根据图像得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.]。
第4讲 三角函数的图象与性质
2.正弦、余弦、正切函数的图象与性质
函数
y=sin x
图象
y=cos x
定义域 值域
R [_-__1_,__1_]__
R _[_-__1_,__1_] _
5
y=tan x
{x|x∈R,且 x≠kπ+ π2,k∈Z} _R________
上一页
返回导航
下一页
第四章 三角函数、解三角形
6
函数 奇偶性
y=sin x ___奇__函__数__
返回导航
下一页
第四章 三角函数、解三角形
8
常用结论
1.函数 y=Asin(ωx+φ)和 y=Acos(ωx+φ)的最小正周期 T=|2ωπ|,函数 y=tan(ωx+φ)
的最小正周期 T=|ωπ|.
2.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的
对称中心与对称轴之间的距离是14周期.正切曲线相邻两对称中心之间的距离是半周期. 3.三角函数中奇函数一般可化为 y=Asin ωx 或 y=Atan ωx 的形式,偶函数一般可化为
第四章 三角函数、解三角形
第4讲 三角函数的图象与性质
数学
第四章 三角函数、解三角形
1
01
基础知识 自主回顾
02
核心考点 深度剖析
03
方法素养 助学培优
04
高效演练 分层突破
上一页
返回导航
下一页
第四章 三角函数、解三角形
2
上一页
返回导航
下一页
第四章 三角函数、解三角形
3
一、知识梳理 1.用五点法作正弦函数和余弦函数的简图 在正弦函数 y=sin x,x∈[0,2π]的图象上,五个关键点是:(0,0),(π2,1),(π,0), _(_3_2π_,__-__1_),(2π,0).
高考数学(理)新精准大一轮课标通用课件:第四章 6 第5讲 函数y=Asin(ωx+φ)的图象及三角函数模型的
函数 y=Asin(ωx+φ)的图象及变换(师生共研)
(1)(2019·福州模拟)将函数 y=2sin x+cos x 的图象向右 平移12个周期后,所得图象对应的函数为( ) A.y=sin x-2cos x B.y=2sin x-cos x C.y=-sin x+2cos x D.y=-2sin x-cos x
2.记住两组关系 (1)周期与对称性之间的关系 ①正弦曲线或余弦曲线相邻两对称中心、相邻两对称轴之间的 距离是12周期,相邻的对称中心与对称轴之间的距离是14周期; ②正切曲线相邻两对称中心之间的距离是12周期. (2)对称轴(对称中心)与函数值的关系 在判断对称轴或对称中心时,用以下结论可快速解题:设 y=f(x) =Asin(ωx+φ),g(x)=Acos(ωx+φ),x=x0 是对称轴方程⇔f(x0) =±A,g(x0)=±A;(x0,0)是对称中心⇔f(x0)=0,g(x0)=0.
第四章 三角函数、解三角形
第 5 讲 函数 y=Asin(ωx+φ)的图象及 三角函数模型的简单应用
1.函数 y=Asin(ωx+φ)的有关概念
y= 振幅 周期
频率
Asin( ωx+
φ) A (A>0,
2π T=__ω___
f=T1 =2ωπ
ω>0)
相位 ω__x_+__φ
初相 φ
2. 用五点法画 y=Asin(ωx+φ)一个周期内的简图
(3)由函数的图象可得 A=
2,14×2ωπ=71π2-π3,可得
ω=2,则
π 2×3
+φ=π+2kπ(k∈Z),又 0<φ<π2,所以 φ=π3,故 f(x)= 2sin(2x
+π3),所以
f(-π3)=-
2019年领军高考数学(理)必刷题 考点19 函数y=asin(ωx+φ)的图像
考点19 函数y=Asin(ωx+φ)的图像1.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中,则函数g(x)=cos(2x-φ)的图象()A.关于点对称 B.关于轴对称C.可由函数f(x)的图象向右平移个单位得到 D.可由函数f(x)的图象向左平移个单位得到【答案】A2.设,函数的图像向左平移个单位后与原图重合,则的最小值是()A. B. C. D. 3【答案】D【解析】∵图象向左平移个单位后与原图象重合∴是一个周期∴ω≥3 所以最小是3故选:D.3.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度【答案】B【解析】,故应向右平移个单位长度.故选B.4.为了得到函数的图像,只需把函数的图像上所有点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【答案】B5.将函数y=3sin(2x+)的图象经过怎样的平移后所得的图象关于点(,0)中心对称A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位【答案】B6.把的图像向左平移个单位,再把所得图像上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,所得的图像的解析式为()A. B.C. D.【答案】B【解析】把函数y=sin2x的图象向左平移个单位长度,得y=sin(2x+),即y=cos2x的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故选:B.7.将函数的图像向右平移个单位得到函数的图像,则a的值可以为()A. B. C. D.【答案】C8.如图,己知函数的图象关于点M(2,0)对称,且f(x)的图象上相邻的最高点与最低点之间的距离为4,将f(x)的图象向右平移个单位长度,得到函数g(x)的图象;则下列是g(x)的单调递增区间的为( )A. B. C. D.【答案】D【解析】由图象可知,因为的图象上相邻的最高点与最低点之间的距离为4,9.已知函数,的部分图象如图所示,下列说法正确的是()A.的图象关于直线对称B.的图象关于点对称C.将函数的图象向左平移个单位得到函数的图象D.若方程在上有两个不相等的实数根,则m的取值范围是【答案】D10.函数的图象向右平移个单位后,与函数的图象重合,则的值为A. B. C. D.【答案】B【解析】把函数的图象向右平移哥单位后,得到的图象,根据所得图象与函数的图象重合,可得,令时,,故选B.11.函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称【答案】C12.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度【答案】C13.函数其中()的图象如图所示,为了得到的图象,则只需将的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平衡个长度单位【答案】A14.已知函数的周期为,若将其图象沿x轴向右平移a个单位,所得图象关于原点对称,则实数a的最小值为A. B. C. D.【答案】D【解析】15.为了得函数的图象,只需把函数的图象()A.向左平移个单位 B.向左平移单位C.向右平移个单位 D.向右平移个单位【答案】A不妨设函数的图象沿横轴所在直线平移个单位后得到函数的图象。
2021高考数学一轮复习第4章第4节函数y=Asin(ωx+φ)的图像及三角函数模型的简单应用教学案文北师大版
第四节 函数y =A sin(ωx +φ)的图像及三角函数模型的简单应用[最新考纲] 1.了解函数y =A sin(ωx +φ)的物理意义;能画出函数的图像,了解参数A ,ω,φ对函数图像变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.(对应学生用书第67页)1.y =A sin(ωx +φ)的有关概念y=A sin(ωx +φ)(A >0,ω>0,x ≥0)表示一个简谐运动振幅 周期 频率 相位 初相AT =2πωf =1T =ω2πωx +φφx-φωπ2-φωπ-φω32π-φω2π-φωωx +φ 0π2π3π2 2πy =A sin(ωx +φ)0 A 0 -A[常用结论]1.函数y =A sin(ωx +φ)+k 图像平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.一、思考辨析(正确的打“√”,错误的打“×”)(1)利用图像变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的单位长度一致.( )(2)将y =3sin 2x 的图像左移π4个单位后所得图像的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( )(3)y =sin ⎝ ⎛⎭⎪⎫x -π4的图像是由y =sin ⎝ ⎛⎭⎪⎫x +π4的图像向右平移π2个单位得到的.( )(4)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图像的两个相邻对称中心之间的距离为T2.( )[答案](1)× (2)× (3)√ (4)√ 二、教材改编1.y =2sin ⎝ ⎛⎭⎪⎫12x -π3的振幅、频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3C [由题意知A =2,f =1T =ω2π=14π,初相为-π3.]2.为了得到函数y =2sin ⎝ ⎛⎭⎪⎫2x -π3的图像,可以将函数y =2sin 2x 的图像( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度A [y =2sin ⎝ ⎛⎭⎪⎫2x -π3=2sin 2⎝⎛⎭⎪⎫x -π6.] 3.如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为________.y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14] [从图中可以看出,从6~14时的是函数y =A sin(ωx +φ)+b 的半个周期所以A =12×(30-10)=10,b =12×(30+10)=20,又12×2πω=14-6,所以ω=π8. 又π8×10+φ=2π+2k π,k ∈Z ,取φ=3π4, 所以y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14].]4.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:月份x 1 2 3 4 收购价格y (元/斤)6765.y =6-cos π2x [设y =A sin(ωx +φ)+B (A >0,ω>0),由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝ ⎛⎭⎪⎫π2x +φ+6.因为当x =1时,y =6,所以6=sin ⎝ ⎛⎭⎪⎫π2+φ+6,结合表中数据得π2+φ=2k π,k ∈Z ,可取φ=-π2,所以y =sin ⎝ ⎛⎭⎪⎫π2x -π2+6=6-cosπ2x .](对应学生用书第68页)⊙考点1 函数y =A sin(ωx +φ)的图像及变换(1)y =A sin(ωx +φ)的图像可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标.(2)由函数y =sin x 的图像通过变换得到y =A sin(ωx +φ)图像有两条途径:“先平移后伸缩”与“先伸缩后平移”.已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3. (1)用“五点法”作出它在一个周期内的图像;(2)[一题多解]说明y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图像可由y =sin x 的图像经过怎样的变换而得到.[解](1)描点画出图像,如图所示:(2)法一:把y =sin x 的图像上所有的点向左平移π3个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图像;再把y =sin ⎝⎛⎭⎪⎫x +π3的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎪⎫2x +π3的图像;最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图像.法二:将y =sin x 的图像上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin2x 的图像;再将y =sin 2x 的图像向左平移π6个单位长度,得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图像;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y=2sin ⎝⎛⎭⎪⎫2x +π3的图像.三角函数图像变换中的三个注意点(1)变换前后,函数的名称要一致,若不一致,应先利用诱导公式转化为同名函数; (2)要弄清变换的方向,即变换的是哪个函数的图像,得到的是哪个函数的图像,切不可弄错方向;(3)要弄准变换量的大小,特别是平移变换中,函数y =A sin x 到y =A sin(x +φ)的变换量是|φ|个单位,而函数y =A sin ωx 到y =A sin(ωx +φ)时,变换量是⎪⎪⎪⎪⎪⎪φω个单位.1.要得到函数y =sin ⎝⎛⎭⎪⎫5x -π4的图像,只需将函数y =cos 5x 的图像( )A .向左平移3π20个单位B .向右平移3π20个单位C .向左平移3π4个单位D .向右平移3π4个单位B [函数y =cos 5x =sin ⎝ ⎛⎭⎪⎫5x +π2=sin 5⎝ ⎛⎭⎪⎫x +π10, y =sin ⎝⎛⎭⎪⎫5x -π4=sin 5⎝⎛⎭⎪⎫x -π20,设平移φ个单位,则π10+φ=-π20, 解得φ=-3π20,故把函数y =cos 5x 的图像向右平移3π20个单位,可得函数y =sin ⎝⎛⎭⎪⎫5x -π4的图像.]2.若把函数y =sin ⎝⎛⎭⎪⎫ωx -π6的图像向左平移π3个单位长度,所得到的图像与函数y =cosωx 的图像重合,则ω的一个可能取值是( )A .2 B.32 C.23D.12A [y =sin ⎝⎛⎭⎪⎫ωx +ω3π-π6和函数y =cos ωx 的图像重合,可得ω3π-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z .∴2是ω的一个可能值.]3.将函数f (x )=sin ⎝⎛⎭⎪⎫4x +π3的图像向左平移φ(φ>0)个单位后,得到的图像关于直线x =π12对称,则φ的最小值为________.524π [把函数f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3的图像向左平移φ(φ>0)个单位后,可得y =sin ⎣⎢⎡⎦⎥⎤4x +φ+π3=sin ⎝ ⎛⎭⎪⎫4x +4φ+π3的图像, ∵所得图像关于直线x =π12对称,∴4×π12+4φ+π3=π2+k π(k ∈Z ),∴φ=k π4-π24(k ∈Z ),∵φ>0,∴φmin =5π24.]⊙考点2 由图像确定y =A sin(ωx +φ)的解析式确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.(2)求ω,确定函数的周期T ,则ω=2πT.(3)求φ,常用方法有:①代入法:把图像上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图像的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图像上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图像的“峰点”)为ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图像的“谷点”)为ωx +φ=3π2;“第五点”(即图像上升时与x 轴的交点)为ωx +φ=2π.(1)函数f (x )=A sin(ωx +φ)的部分图像如图所示,则f (x )=________.(2)(2019·重庆六校联考)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A ,ω,φ是常数,A >0,ω>0,0<φ<π2的部分图像如图所示,则f ⎝ ⎛⎭⎪⎫-π3=________.(1)2sin ⎝ ⎛⎭⎪⎫2x -π6 (2)-62 [(1)由题图可知,A =2,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法可知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6.(2)由函数的图像可得A =2,14×2πω=7π12-π3,可得ω=2,则2×π3+φ=π+2k π(k ∈Z ),又0<φ<π2,所以φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以f ⎝ ⎛⎭⎪⎫-π3=-62.]一般情况下,ω的值是唯一确定的,但φ的值是不确定的,如果求出的φ的值不在指定范围内,可以通过加减2πω的整数倍达到目的.在用“零点”求φ时,务必关注三角函数在该点附近的图像变化趋势.1. (2019·开封模拟)如果存在正整数ω和实数φ使得函数f (x )=sin 2(ωx+φ)的图像如图所示(图像经过点(1,0)),那么ω的值为( )A .1B .2C .3D .4B [因为f (x )=sin 2(ωx +φ)=12-12cos 2(ωx +φ),所以函数f (x )的最小正周期T =2π2ω=πω,由题图知T 2<1,且3T 4>1,即43<T <2,又ω为正整数,所以ω的值为2,故选B.] 2. (2019·合肥模拟)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2的图像如图所示,则下列说法正确的是( )A .在区间⎣⎢⎡⎦⎥⎤7π6,13π6上单调递减B .在区间⎣⎢⎡⎦⎥⎤7π12,13π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤7π12,13π12上单调递减 D .在区间⎣⎢⎡⎦⎥⎤7π6,13π6上单调递增 B [由题意得,A =2,T =4×⎝ ⎛⎭⎪⎫π3-π12=π,故ω=2ππ=2.当x =π12时取得最大值2,所以2=2sin ⎝ ⎛⎭⎪⎫2×π12+φ,且|φ|<π2,所以φ=π3,所以函数的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.当x ∈⎣⎢⎡⎦⎥⎤7π12,13π12时,2x +π3∈⎣⎢⎡⎦⎥⎤3π2,5π2,又由正弦函数y =sin x 的图像与性质可知,函数y =sin x 在⎣⎢⎡⎦⎥⎤3π2,5π2上单调递增,故函数f (x )在⎣⎢⎡⎦⎥⎤7π12,13π12上单调递增.当x ∈⎣⎢⎡⎦⎥⎤7π6,13π6时,2x +π3∈⎣⎢⎡⎦⎥⎤8π3,14π3,由函数y =sin x 的图像与性质知此区间上不单调,故选B.]3.已知函数f (x )=sin(πx +θ)⎝⎛⎭⎪⎫|θ|<π2的部分图像如图所示,且f (0)=-12,则图中m 的值为________.43 [因为f (0)=sin θ=-12,且|θ|<π2,所以θ=-π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫πx -π6,所以f (m )=sin ⎝ ⎛⎭⎪⎫m π-π6=-12,所以m π-π6=2k π+7π6,k ∈Z ,所以m =2k +43,k ∈Z .又周期T=2,所以0<m <2,所以m =43.]⊙考点3 三角函数图像与性质的综合应用已知函数f (x )=3sin ⎝⎛⎭⎪⎫2ωx +π3(ω>0)的图像与x 轴相邻两个交点的距离为π2. (1)求函数f (x )的解析式;(2)若将f (x )的图像向左平移m (m >0)个单位长度得到函数g (x )的图像恰好经过点⎝ ⎛⎭⎪⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间. [解](1)函数f (x )的图像与x 轴相邻两个交点的距离为π2,得函数f (x )的最小正周期为T =2×π2=2π2ω,得ω=1,故函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎪⎫2x +π3. (2)将f (x )的图像向左平移m (m >0)个单位长度得到函数g (x )=3sin ⎣⎢⎡⎦⎥⎤2x +m +π3=3sin ⎝ ⎛⎭⎪⎫2x +2m +π3的图像,根据g (x )的图像恰好经过点⎝ ⎛⎭⎪⎫-π3,0,可得3sin ⎝ ⎛⎭⎪⎫-2π3+2m +π3=0,即sin ⎝ ⎛⎭⎪⎫2m -π3=0,所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ),因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎪⎫2x +2π3. 因为x ∈⎣⎢⎡⎦⎥⎤-π6,7π12,所以2x +2π3∈⎣⎢⎡⎦⎥⎤π3,11π6.当2x +2π3∈⎣⎢⎡⎦⎥⎤π3,π2,即x ∈⎣⎢⎡⎦⎥⎤-π6,-π12时,g (x )单调递增,当2x +2π3∈⎣⎢⎡⎦⎥⎤3π2,11π6,即x ∈⎣⎢⎡⎦⎥⎤5π12,7π12时,g (x )单调递增. 综上,g (x )在区间⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间是⎣⎢⎡⎦⎥⎤-π6,-π12和⎣⎢⎡⎦⎥⎤5π12,7π12.研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.1.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2 B.32 C .1 D.12A [由题意及函数y =sin ωx 的图像与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A.]2.(2019·天津高考)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A .-2B .- 2 C. 2D .2C [∵f (x )=A sin(ωx +φ)为奇函数, ∴φ=k π,k ∈Z ,又|φ|<π,∴φ=0,∴f (x )=A sin ωx ,则g (x )=A sin ⎝ ⎛⎭⎪⎫ω2x .由g (x )的最小正周期T =2π,得ω2=2πT =1,∴ω=2.又g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,∴A =2, ∴f (x )=2sin 2x ,∴f ⎝⎛⎭⎪⎫3π8=2sin 3π4=2,故选C.]课外素养提升⑤ 逻辑推理与数学运算——三角函数中ω的确定方法(对应学生用书第70页)数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.三角函数的周期T 与ω的关系最小值为( )A .98π B.1972π C.1992π D .100πB [由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.] [评析] 解决此类问题的关键在于结合条件弄清周期T =2πω与所给区间的关系,从而建立不等关系.三角函数的单调性与ω的关系【例2】 [一题多解]若f (x )=2sin ωx (ω>0)在区间⎣⎢⎦⎥⎤-2,3上是增函数,则ω的取值范围是________.⎝ ⎛⎦⎥⎤0,34 [法一:因为x ∈⎣⎢⎡⎦⎥⎤-π2,2π3(ω>0),所以ωx ∈⎣⎢⎡⎦⎥⎤-ωπ2,2πω3,因为f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,所以⎩⎪⎨⎪⎧-π2ω≥-π2,2π3ω≤π2,ω>0,故0<ω≤34.法二:画出函数f (x )=2sin ωx (ω>0)的图像如图所示.要使f (x )在⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,需⎩⎪⎨⎪⎧ -π2ω≤-π2,2π3≤π2ω(ω>0),即0<ω≤34. 法三:由-π2+2k π≤ωx ≤π2+2k π(k ∈Z )得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ), 故f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ), 由题意⎣⎢⎡⎦⎥⎤-π2,2π3⊆⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ,ω>0), 从而有⎩⎪⎨⎪⎧ -π2ω≤-π2,π2ω≥2π3,即0<ω≤34.] [评析] 根据正弦函数的单调递增区间,确定函数f (x )的单调递增区间,根据函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π2,2π3上单调递增,建立不等式,即可求ω的取值范围. 【例3】(1)已知f (x )=sin ωx -cos ωx ⎝⎛⎭⎪⎫ω>23,若函数f (x )图像的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.(1)⎣⎢⎡⎦⎥⎤34,78 (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ω⎪⎪⎪ ω≤-2或ω≥32 [(1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎪⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z ),解得x =3π4ω+k πω(k ∈Z ). 当k =0时,3π4ω≤π,即34≤ω,当k =1时,3π4ω+πω≥2π,即ω≤78. 综上,34≤ω≤78. (2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32.若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2.综上所述,符合条件的实数ω≤-2或ω≥32.] [评析] 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 函数y=Asin(ωx+φ)的图像及应用 一、选择题 1.(2016·全国Ⅱ卷)若将函数y=2sin 2x的图像向左平移π12个单位长度,则平移后图像的对称轴为( ) A.x=kπ2-π6(k∈Z) B.x=kπ2+π6(k∈Z)
C.x=kπ2-π12(k∈Z) D.x=kπ2+π12(k∈Z) 解析 由题意将函数y=2sin 2x的图像向左平移π12个单位长度后得到函数的解析式为y=2sin2x+π6,由2x+π6=kπ+π2得函数的对称轴为x=kπ2+π6(k∈Z),故选B. 答案 B A.ω=2,φ=π3 B.ω=2,φ=-2π3
C.ω=12,φ=π3 D.ω=12,φ=-2π3 解析 由图可知,T=2π6--π3=π,所以ω=2πT=2,又sin2×π6-φ=0,所以π3-φ=kπ(k∈Z),即φ=π3-kπ(k∈Z),而|φ|答案 A 3.(2017·西安模拟)将函数f(x)=3sin x-cos x的图像沿着x轴向右平移a(a>0)个单位后的图像关于y轴对称,则a的最小值是( )
A.π6 B.π3
C.π2 D.2π3 解析 依题意得f(x)=2sinx-π6,因为函数f(x-a)=2sinx-a-π6的图像关于y轴对称,所以sin-a-π6=±1,a+π6=kπ+π2,k∈Z,即a=kπ+π3,k∈Z, 因此正数a的最小值是π3,选B. 答案 B 4.(2016·长沙模拟)函数f(x)=3sinπ2x-log12x的零点的个数是( ) A.2 B.3 C.4 D.5 解析 函数y=3sinπ2x的周期T=2ππ2=4,由log12x=3,可得x=18.由log12x=-3,可
得x=8.在同一平面直角坐标系中,作出函数y=3sinπ2x和y=log12x的图像(如图所示),易知有5个交点,故函数f(x)有5个零点. 答案 D 5.(2017·宜春调研)如图是函数f(x)=sin 2x和函数g(x)的部分图像,则g(x)的图像可能是由f(x)的图像( )
A.向右平移2π3个单位得到的
B.向右平移π3个单位得到的 C.向右平移7π12个单位得到的 D.向右平移π6个单位得到的 解析 由函数f(x)=sin 2x和函数g(x)的部分图像,可得g(x)的图像位于y轴右侧的第一个最高点的横坐标为m,则有17π24-m=π4-π8,解得m=7π12,故把函数f(x)=sin 2x
的图像向右平移7π12-π4=π3个单位,即可得到函数g(x)的图像,故选B. 答案 B 二、填空题 6.(2016·龙岩模拟)某城市一年中12个月的平均气温与月份的关系可近似地用函数y=a
+Acosπ6(x-6)(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 解析 因为当x=6时,y=a+A=28; 当x=12时,y=a-A=18,所以a=23,A=5,
所以y=f(x)=23+5cosπ6(x-6), 所以当x=10时,f(10)=23+5cosπ6×4 =23-5×12=20.5. 答案 20.5 7.(2016·全国Ⅲ卷)函数y=sin x-3cos x的图像可由函数y=sin x+3cos x的图像至少向右平移________个单位长度得到.
解析 y=sin x-3cos x=2sinx-π3,y=sin x+3cos x=2sinx+π3,因此至
少向右平移2π3个单位长度得到. 答案 2π3 8.已知函数f(x)=sin(ωx+φ)ω>0,-π2≤φ≤π2的图像上的两个相邻的最高点和最低点的距离为22,且过点2,-12,则函数f(x)的解析式为________. 解析 据已知两个相邻最高和最低点距离为22,可得T22+(1+1)2=22,解得T=4,故ω=2πT=π2,
即f(x)=sinπx2+φ.又函数图像过点2,-12, 故f(2)=sinπ2×2+φ=-sin φ=-12, 又-π2≤φ≤π2, 解得φ=π6,故f(x)=sinπx2+π6. 答案 f(x)=sinπx2+π6 三、解答题 9.已知函数f(x)=sin ωx+cosωx+π6,其中x∈R,ω>0.
(1)当ω=1时,求fπ3的值; (2)当f(x)的最小正周期为π时,求f(x)在0,π4上取得最大值时x的值. 解 (1)当ω=1时,fπ3=sin π3+cos π2 =32+0=32. (2)f(x)=sin ωx+cosωx+π6 =sin ωx+32cos ωx-12sin ωx =12sin ωx+32cos ωx=sinωx+π3. ∵2π|ω|=π,且ω>0,得ω=2,∴f(x)=sin2x+π3. 由x∈0,π4,得2x+π3∈π3,5π6, ∴当2x+π3=π2,即x=π12时,f(x)max=1. 10.已知函数f(x)=3sin(ωx+φ)ω>0,-π2≤φ<π2的图像关于直线x=π3对称,且图像上相邻最高点的距离为π. (1)求fπ4的值;
(2)将函数y=f(x)的图像向右平移π12个单位后,得到y=g(x)的图像,求g(x)的单调递减区间. 解 (1)因为f(x)的图像上相邻最高点的距离为π,所以f(x)的最小正周期T=π,从而
ω=2πT=2.
又f(x)的图像关于直线x=π3对称,所以2×π3+φ=kπ+π2(k∈Z),因为-π2≤φ<π2,所以k=0, 所以φ=π2-2π3=-π6,所以f(x)=3sin2x-π6,
则fπ4=3sin2×π4-π6=3sin π3=32. (2)将f(x)的图像向右平移π12个单位后,得到 f
x-
π
12的图像, 所以g(x)=fx-π12=3sin2x-π12-π6 =3sin2x-π3. 当2kπ+π2≤2x-π3≤2kπ+3π2(k∈Z), 即kπ+5π12≤x≤kπ+11π12(k∈Z)时,g(x)单调递减. 因此g(x)的单调递减区间为kπ+5π12,kπ+11π12(k∈Z). 11.(2017·西安调研)设函数f(x)=sin2x+π6,则下列结论正确的是( ) A.f(x)的图像关于直线x=π3对称 B.f(x)的图像关于点π6,0对称 C.f(x)的最小正周期为π,且在0,π12上为增函数 D.把f(x)的图像向右平移π12个单位,得到一个偶函数的图像 解析 对于函数f(x)=sin2x+π6,当x=π3时, fπ3=sin 5π6=12,故A错;当x=π6时,
fπ6=sin π2=1,故π6,0不是函数的对称点,故B错;函数的最小正周期为T=
2π
2
=π,当x∈0,π12时, 2x+π6∈π6,π3,此时函数为增函数,故C正确; 把f(x)的图像向右平移π12个单位,得到g(x)=sin2x-π12+π6=sin 2x,函数是奇函数,故D错. 答案 C
12.(2017·南昌一模)已知函数f(x)=2sin ωx在区间-π3,π4上的最小值为 -2,则ω的取值范围是( ) A.-∞,-92∪[6,+∞) B.-∞,-92∪32,+∞ C.(-∞,-2]∪[6,+∞) D.(-∞,-2]∪32,+∞ 解析 当ω>0时,-π3ω≤ωx≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.
综上可知,ω的取值范围是(-∞,-2]∪32,+∞. 答案 D 13.已知函数f(x)=3sin ωx+cos ωx(ω>0),x∈R.在曲线y=f(x)与直线y=1的交
点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为________.
解析 f(x)=3sin ωx+cos ωx=2sinωx+π6. 由2sinωx+π6=1得sinωx+π6=12, ∴ωx+π6=2kπ+π6或ωx+π6=2kπ+56π(k∈Z). 令k=0,得ωx1+π6=π6,ωx2+π6=56π, ∴x1=0,x2=2π3ω. 由|x1-x2|=π3,得2π3ω=π3,∴ω=2. 故f(x)的最小正周期T=2π2=π. 答案 π ωx+φ 0 π2 π 3π2 2π
x π3 5π6
Asin(ωx+φ) 0 5 -5 0
(1)请将上表数据补充完整,并求出函数f(x)的解析式;
(2)将y=f(x)的图像向左平移π6个单位,得到函数y=g(x)的图像.若关于x的方程g(x)
-(2m+1)=0在区间0,π2上有两个不同的解,求实数m的取值范围. 解 (1)根据表中已知数据,