代数方程专题复习 (2)
一元二次方程专题复习

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
中考数学——一元二次方程的综合压轴题专题复习含答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.【解析】【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,2.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥(2)4 【解析】试题分析: 根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论. 根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值.试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+, 因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得 ()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.3.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.【解析】【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.4.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.5.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到21344m?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.6.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?【答案】羊圈的边长AB ,BC 分别是20米、20米.【解析】试题分析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米;然后根据矩形的面积公式列出方程.试题解析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米. 根据题意得 (100﹣4x )x=400,解得 x 1=20,x 2=5. 则100﹣4x=20或100﹣4x=80. ∵80>25, ∴x 2=5舍去. 即AB=20,BC=20考点:一元二次方程的应用.7.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人. 设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得: x[100﹣2(x ﹣30)]=3150,整理得x 2﹣80x+1575=0,解得x 1=35,x 2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.8.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.9.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x +y )2+(y +1)2=0∴x +y =0 y +1=0解得:x =1,y =﹣1∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0∴(a ﹣3)2+(b ﹣4)2=0∴a ﹣3=0,b ﹣4=0解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.10.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式2b x a -=求解即可.试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x=,∴x1=2,x 2=2。
北师大版九年级数学上册第二章 一元二次方程 专题复习练习题

北师大版九年级数学上册第二章一元二次方程专题复习练习题专题一、一元二次方程的解法1、用直接开平方法解方程:(1)x2﹣=0;(2)2x2+3=﹣2x2+4;(3)(2x﹣1)2﹣121=0;(4)(2x+3)2 =(x﹣1)2.2、用配方法解方程:(1)x2﹣4x=7;(2)2x2﹣4x-1=0.(3)(4x﹣1)(3﹣x)=5x+1.3、用因式分解法解方程:(1)2x2﹣5x=0;(2)(x﹣2)2=3x﹣6;(3)4x2+1=-4x;(4)(x﹣1)(x+3)=12.4、用公式法解方程:(1)x2x﹣14=0;(2)3x2=4x+2.5、当x取何值时,代数式3x2+6x﹣8的值与1﹣2x2的值互为相反数?专题二、一元二次方程的应用:增长率及利润问题1、某旅游景区今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,求5月、6月游客人数的平均增长率.2、去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.3、某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有81个人被感染.(1)请你用学过的知识分析,每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?4、阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件300元出售,一个月可卖出100件,通过市场调查发现,单价每降低10元,月销售件数增加20件.已知该农产品的成本是每件200元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元?5、适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出x的值;如果不能,请说明理由.6、某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y =kx+b的图象上,如图.(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?专题三、一元二次方程的应用:面积问题1、如图,有一块宽为16 m的矩形荒地,某公园计划将其分为A、B、C三部分,分别种植不同的植物.若已知A、B地块为正方形,C地块的面积比B地块的面积少40 m2,试求该矩形荒地的长.2、如图,幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周未铺地毯的条形区域的宽度是多少米.3、在某校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.4、如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.若花圃的面积刚好为45平方米,则此时花圃的AB段长为多少?5、如图①,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图②的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.图①图②6、如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发,沿AB 边以1cm/s的速度向点B移动;点Q从点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间的距离是cm?专题1参考答案1.解:(1)x1=,x2=﹣.(2)x1=,x2=﹣.(3)x1=6,x2=﹣5.(4)x1=﹣4,x2=﹣2.解:(1)x1=x2=2.(2)x1=1+,x2=1﹣.(3)x1=x2=1.3.解:(1)x1=0,x2=52.(2)x1=2,x2=5.(3)x1=x2=-.(4)x1=3,x2=﹣5.4.解:(1)x1=,x2=.(2)x1=,x2=.5.解:根据题意,得3x2+6x﹣8+1﹣2x2=0,整理,得x2+6x﹣7=0,则(x+7)(x﹣1)=0,∴x+7=0或x﹣1=0,解得x1=﹣7,x2=1.∴当x取﹣7或1时,代数式3x2+6x﹣8的值与1﹣2x2的值互为相反数.专题2答案:1.解:设5月、6月游客人数的平均增长率是x,依题意有(1+x)2=(1+44%)×(1+21%),解得:x1=32%,x2=﹣2.32(舍去).答:5月、6月游客人数的平均增长率是32%.2.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.3.解:(1)设每轮感染中平均一个人会感染x个人,依题意,得:1+x+x(1+x)=81,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮感染中平均一个人会感染8个人.(2)81×(1+8)=729(人),729>700.答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人.4.解:当售价为300元时月利润为(300﹣200)×100=10000(元).设售价应定为x元,则每件的利润为(x﹣200)元,月销售量为100+=(700﹣2x)件,依题意,得:(x﹣200)(700﹣2x)=10000,整理,得:x2﹣550x+75000=0,解得:x1=250,x2=300(舍去).答:售价应定为250元.5.解:(1)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得10x2﹣7x+2=0, =b2﹣4ac=(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B铅笔获取的利润不可以达到50元.6.解:(1)依题意有,解得.故y与x的函数关系式是y=﹣10x+80.(2)设该设备的销售单价为x万元/台,依题意有(x﹣2)(﹣10x+80)=80,整理方程,得x2﹣10x+24=0.解得x1=4,x2=6.∵此设备的销售单价不高于5万元,∴x2=6(舍去),∴x=4.答:该设备的销售单价是4万元.专题3答案:1.解:设B地块的边长为x m,根据题意得:x2﹣x(16﹣x)=40,解得:x1=10,x2=﹣2(不符题意,舍去),∴10+16=26 m.答:矩形荒地的长为26 m.2.解:设四周未铺地毯的条形区域的宽度是x m,依题意,得:(8﹣2x)(5﹣2x)=18,整理,得2x2﹣13x+11=0,解得x1=1,x2=.又∵5﹣2x>0,∴x<,∴x=1.答:四周未铺地毯的条形区域的宽度是1 m.3.解:设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=18×10×80%,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18.又∵18﹣2x>0,∴x<9,∴x=1.答:广场中间小路的宽为1米4.解:设AB=x米,则BC=(22﹣3x+2)米,依题意,得:x(22﹣3x+2)=45,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,22﹣3x+2=15>14,不合题意,舍去;当x=5时,22﹣3x+2=9,符合题意.答:若花圃的面积刚好为45平方米,则此时花圃的AB段长为5米.5.解:(1)纸盒底面长方形的长为(40﹣2×3)÷2=17(cm),纸盒底面长方形的宽为20﹣2×3=14(cm).答:纸盒底面长方形的长为17cm,宽为14cm.(2)设当纸盒的高为x cm时,纸盒的底面积是150cm2,依题意,得×(20﹣2x)=150,化简,得:x2﹣30x+125=0,解得x1=5,x2=25.当x=5时,20﹣2x=10>0,符合题意;当x=25时,20﹣2x=﹣30<0,不符合题意,舍去.答:若纸盒的底面积是150 cm2,则纸盒的高为5 cm.6.解:(1)设经过x秒后,△PBQ的面积等于8 cm2,则BP=(6﹣x)cm,BQ=2x cm,依题意,得(6﹣x)×2x=8,化简,得x2﹣6x+8=0,解得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8 cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2y cm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间的距离是cm.。
中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。
(完整版)八年级上册数学数与代数专题期末复习讲义

期末复习复习(二)—代数学生/课程年级学科授课教师日期时段核心内容整式的乘除,分式课型教学目标1.会运用法则、乘法公式进行整式的乘除运算.2.通过对提公因式法和公式法的教学,让学生灵活地解决因式分解的题目/.3.掌握分式的基本运算,熟练解决分式的应用。
重、难点整式的乘法运算;因式分解;分式知识导图导学一整式的乘除知识点讲解 1:幂的运算例 1. 下列算式中:① (a3)3=a6;②[(x2)2]3=x12;③y·(y2)2=y5;④[(-x)3]4=-x12,其中正确的有.例 2. 计算:(1)-ab2(3a2b-abc-1) (2)(-5ab2x)·(-a2bx3y)例 3. 已知3x+5y=8,求8x·32y的值.我爱展示1. 计算:(1)(2)2. 已知一个多项式与单项式的积为,求这个多项式。
3. 当时,= .4. 已知,则的值为.5. 阅读材料:求1+2+22+23+24+…+22015的值.解:设S=1+2+22+23+24+…+22012+22015,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22016将下式减去上式得2S﹣S=22016﹣1即S=22016﹣1即1+2+22+23+24+…+22015=22016﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).知识点讲解 2:乘法公式例 1. [单选题] 下列计算正确的是()A. B.C. D.例 2. 计算:(1) (2)(3) (4)例 3. 化简求值:,其中.我爱展示1. [单选题] 计算的结果正确的是()A. B. C. D.2. [单选题] 若,,则的值为()A. B. C.1 D.23. [单选题] 有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的长方形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.a+2b D.3a+b4. ,则.5. [单选题] 已知(m-n)2=8,(m+n)2=2,则m2+n2= ( )A.10B.6C.5D.36. 已知,则= .7. 先化简,再求值:(1)其中.(2) ,其中.知识点讲解 3:因式分解例 1. [单选题] 下列因式分解正确的是()A. B.C. D.例 2. [单选题] 把多项式分解因式的结果是()A. B. C. D.例 3. 已知长方形的周长为20,相邻两边长分别为(均为整数),且满足,求的值.我爱展示1.若,,则代数式的值是.2.分解因式:(1)(2)(3) 3. 先化简,然后对式子中a、b分别选择一个自己最喜欢的数代入求值.4. [单选题] 下列等式从左到右的变形,属于因式分解的是 ( )A.a(x-y)=ax-ayB.x2-1=(x+1)(x-1)C.(x+1)(x+3)=x2+4x+3D.x2+2x+1=x(x+2)+15. [单选题] 可利用x2+(p+q)x+pq=(x+p)(x+q)分解因式的是 ( )A.x2-3x+2B.3x2-2x+1C.x2+x+1D.3x2+5x+7导学二分式知识点讲解 1:分式的基本概念例 1. [单选题] 分式的值等于0时,x的值为()A.±2B.2 C.-2 D.我爱展示1.[单选题] 要使的值为0,则m的值为()A.3 B.-3 C.±3D.不存在2.当时,分式有意义.3. [单选题] 下列式子:,,,,,b,其中是分式的个数有() A. 2个 B. 3个 C. 4个 D. 5个知识点讲解 2:分式的运算例 1. [单选题] 下列运算正确的是()A. B. C. D.例 2. 计算:(1)(2)例 3. 计算:(1)我爱展示1. [单选题] 如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变2. 先化简,再求值:(1-)÷-,其中x满足x2-x-1=0.3.先化简:÷(- ),再从-2<x<3的范围内选取一个你喜欢的x值代入求值.4.先化简,在求值:,其中.5.[单选题] 已知为实数,且,设,则M、N的大小关系是().A.M=NB.M>NC.M<ND.不确定知识点讲解 3:分式方程的解及解法例 1. [单选题] 把方程去分母正确的是( )A. B.C. D.例 2. [单选题] 解分式方程分以下四步,其中错误的一步是( )A. 方程两边分式的最简公分母是B. 方程两边都乘以,得整式方程C. 解这个整式方程,得D. 原方程的解为例 3. [单选题] 若关于x的分式方程-1=无解,则m的值为()A.-B.1 C.-或2 D.-或-例 4. 已知关于x的分式方程=1的解为负数,求a的取值范围.我爱展示1.[单选题] 关于x的方程的解为,则a的值为()A.1B.3C.-1D.-32.[单选题] 若关于x的分式方程=2-的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,33.已知关于x的分式方程-=0无解,求a的值.4.若有增根,则增根是,k= .5.若分式无意义,当时,则m= .知识点讲解 4:分式方程的实际应用例 1. 某文化用品商店用2000元购进一批小学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果第二批用了2600元.若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?例 2. 王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?我爱展示1.[单选题] 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x满足的方程是()A. B. C. D.2.某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件? (2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?3.[单选题] 完成某项工作,甲独做需a小时,乙独做需b小时,则两人合作完成这项工作的80%,所需要的时间是( ).A. 小时B. 小时C. 小时D. 小时4.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v千米/时,则它以最大航速顺流航行s 千米所需的时间是.5.甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.导学三专题培优知识点讲解 1:乘法公式的灵活运用例 1. 用简便方法计算:1002-992+982-972+962-952+…+22-1.例 2. 如果a+b+c=0,a2+b2+c2=1,求ab+bc+ca的值.例 3. 已知(m-53)(m-47)=24,求(m-53)2+(m-47)2的值例 4. 对于任意一个正整数n,整式A=(4n+1)(4n-1)-(n+1)(n-1)能被15整除吗?请说明理由.我爱展示1. 计算:(1)(a+b)3 (2)(x-y-m+n)(x-y+m-n)2. 已知(x+y)2=25,(x-y)2=16,求xy的值.3.已知求的值.4.如果一个正整数能表示为两个连续偶数的和与差的乘积,那么我们就称这个正整数为“和谐数”,如4=(2+0)(2-0),12=(4+2)(4-2),20=(6+4)(6-4),因此4,12,20这三个数都是“和谐数”.(1)当28=(m+n)(m-n)时,m+n= ;(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?知识点讲解 2:因式分解的应用例 1. [单选题] 计算:.例 2. △ABC的三边长分别为,且,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.例 3. 如果是整数,且,求的值.我爱展示1.已知可因式分解成,其中均为整数,求的值.2.不解方程组,求的值.3.已知为△ABC的三角边的长,试判断代数式的值的符号,并说明理由4.如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)观察图2,请你写出式子(m+n) 2,(m-n) 2,mn之间的等量关系:; (3)若x+y=-6,xy=2.75,则x-y=; (4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式:.5.某商业大楼共有四层,第一层有商品种,第二层有商品种,第三层有商品种,第四层有商品种,若,则这座商业大楼共有商品多少种?知识点讲解 3:分式的条件求值例 1. 已知+=3,求的值.【学有所获】归一代入法:将条件式和所求分式作适当的恒等变形,然后整体代入,使分子、分母化归为同一个只含相同字母积的分式,便可约分求值.例 2. 已知a2-a+1=2,求+a-a2的值.【学有所获】整体代入法:将条件式和所求分式作适当的恒等变形,然后整体代入求值.例 3. 已知==,求的值.【学有所获】设辅助元代入法:在已知条件中有连比或等比时,一般可设参数k,往往立即可解.例 4. 已知m2+=4,求m+和m-的值.【学有所获】构造互倒式代入法:构造x2+=(x± )2∓2迅速求解,收到事半功倍之效.例 5. 已知3x-4y-z=0,2x+y-8z=0,求的值.【学有所获】主元法:若两个方程有三个未知数,故将其中两个看作未知数,剩下的第三个看作常数,联立解方程组,思路清晰、解法简洁.例 6. 已知x+=3,求的值.【学有所获】倒数法:已知条件和待求式同时取倒数后,再逆用分式加减法法则对分式进行拆分,然后将三个已知式相加,这样解非常简捷.我爱展示1.已知-=5,求的值.2. 已知a+b+c=0,求c( + )+b( + )+a( + )的值.3. 已知==≠0,则的值为.4. 已知三个数x、y、z满足=-2,=,=- .求的值.5. 若4x-3y-6z=0,x+2y-7z=0(xyz≠0),求代数式的值.6. 已知,求式子的值.6.已知,求的值.限时考场模拟______ 分钟完成1. [单选题] 若9x2-kxy+4y2是一个完全平方式,则k的值()A.6 B.±6C.12 D.±122.在横线填上“+”或“-”,使等式成立:(1)(y-x)2= (x-y)2; (2)(1-x)(2-x)= (x-1)(x-2)3.[单选题] 下列关于x的方程中,是分式方程的是( )A. B. C. D.3x-2y=14. 已知关于x的分式方程的解为负数,则k的取值范围是.5.[单选题] 每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为() A.元B.元C.元D.元6.已知a、b、c是△ABC的三边,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状,并说明理由。
湘教版备考2021年中考数学二轮复习代数式专题(附答案)

湘教版备考2021年中考数学二轮复习代数式专题(附答案)一、单选题1.某服装店举办促销活动,促销的方法是将原价x元的衣服以(0.7x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A. 原价减去10元后再打7折B. 原价打7折后再减去10元C. 原价减去10元后再打3折D. 原价打3折后再减去10元2.下列式子,符合代数式书写格式的是()A. a÷3B. 2xC. a×3D.3.一个数是x的8倍与2的和,这个数的是()A. 4x+1B. x+C. 2x+4D. 4x+24.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A. (a-10%)(a+15%)万元B. (1-10%)(1+15%)a万元C. (a-10%+15%)万元D. (1-10%+15%)a万元5.下列式子符合代数式书写格式的是()A. B. C. D.6.如果,那么下面各式计算结果最大的是()A. B. C. D.7.已知4n-m=4,则(m-4n)2-3(m-4n)-10的值是( )A. -6B. 6C. 18D. -388.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A. 159B. 209C. 170D. 2529.如图:直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行去,点A2016的坐标为()A. (﹣22016,0)B. (﹣22017,0)C. (﹣21008,0)D. (﹣21007,0)10.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”()A. 32个B. 56个C. 60个D. 64个11.对于实数、,定义一种新运算“ ”为:,这里等式右边是实数运算.例如:.则方程的解是()A. B. C. D.12.对于任意的实数m,n,定义运算“⊕”,规定,例如:3⊕2= ,2⊕3= ,计算(1⊕2) ⊕(2⊕1)的结果为()A. -4B. 0C. 6D. 12二、填空题13.果商品的原价是每件元,在销售时每件加价元,再降价,则现在每件的售价是________元.14.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为________.15.若|x+2|+|y﹣3|=0,则x﹣y的值为 ________16.按一定规律排列的一列数依次为:…(a≠0),按此规律排列下去,这列数中的第n 个数是________.(n为正整数)17.如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2019的坐标是________.18.下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△5=2×3+5=11,2△(﹣1)=2×3+(﹣1)=5,6△3=6×3+3=21,4△(﹣3)=4×3+(﹣3)=9……根据这个定义,计算(﹣2018)△2018的结果为________三、计算题19.当a= 时,求代数式15a2-[-4a2+(6a-a2)-3a]的值20.观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律求出图④中的数y和图⑤中的数x.21. (1)因式分解(2)对于任何实数,规定一种新运算,如.当时,按照这个运算求的值.四、解答题22.有一个长方体游泳池,它的长为4a2b,宽为ab2,高为ab若要在该游泳池的四周及底面贴上边长为b的正方形防渗漏瓷砖,共需用这样的瓷砖多少块?(用含a、b的代数式表示)23.观察下列等式:9-1=2×4,16-4=3×4,25-9=4×4,36-16=5×4,…,这些等式反映出自然数间的某种规律,设n表示自然数,请你猜想出这个规律,用含n的等式表示出来.并加以证明.24.将4个数a,b,c,d排成2行2列,两边各加一条竖线,记成,定义=ad-bc,上述记法叫做二阶行列式.那么=22表示的方程是一元二次方程吗?若是,请写出它的一般形式.五、综合题25.某商店一种水果第一天以2元/斤的价格卖出a斤,第二天以1.5元/斤的价格卖出b斤,第三天以1.2元/斤的价格卖出c斤,求:(1)这三天共卖出水果多少斤?(2)这三天共卖得多少元?(3)这三天平均售价是多少元/斤?(4)计算当,,时,平均售价是多少?26.求值(1)先化简再求值:5x2-(x-2)(3x+1)-2(x+1)(x-5),其中x=-1.(2)已知a+b=4,ab=2,求a3b+2a2b2+ab3的值.27.阅读下列一段话,并解决后面的问题观察下面一列数:1,2,4,8,我们发现,这一列数从第2项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比.(1)、等比数列5,-15,45,的第4项是________.(2)如果一列数是等比数列,且公比为,那么根据上述的规定,有,,,所以,,,________(用q和a1的代数式表示).(3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.28.对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是________,A=________.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.答案一、单选题1. B2. D3. A4. B5. B6. D7. C8. B9. C 10. C 11. B 12. A二、填空题13. 0.85x+17 14. (a+b)2-(a-b)2=4ab 15.-5 16. 17. (1010,1) 18. ﹣4036三、计算题19. 解:原式=15a2-(-5a2+3a)=20a2-3a当a= 时,原式=20. (1)观察图形与表格算法可得如下规律:三个角上三个数的积除以三个角上三个数的和等于三角形中的数,由此易得结论.(2)图④:5×(-8)×(-9)=360,5+(-8)+(-9)=-12,y=360÷(-12)=-30,图⑤:=-3,解得:x=-2.21. (1)解:(2)解:由已知得:=2()-1.四、解答题22. 解:由题意,得(4a2b-ab2+2×4a2b·ab+2×ab2·ab) ÷b2=(4a3b3+8a3b2+2a2b3) ÷b2=4a2b+8a3+2a2b答一共需用这样的瓷砖(4a3b+8a3+2a2b)块23. 解:将等式进行整理得:32−12=4(1+1);42−22=4(2+1);52−32=4(3+1);…所以规律为:(n+2)2−n2=4(n+1).证明:左边=n2+4n+4−n2=4n+4,右边=4n+4,左边=右边,所以规律为:(n+2)2−n2=4(n+1)。
2020年中考复习——代数类传统文化题专题训练(二)(有答案)

2020 中考复习——代数类传统文化题专题训练(二)
班级:___________姓名:___________ 得分:___________
一、选择题
1. 我国古代数学巨著《孙子算经》中的“鸡兔同笼” 题为:“今有雉(鸡)兔同笼,上有三十五头,下有 九十四足.问雉兔各几何”.正确答案是( )
− = 4.5
− = 4.5
− = 4.5
− = 4.5
A.
−
1 2
=1
B.
−
1 2
=1
C.
1 2
−
=1
D.
1 2
−
=1
2 / 13
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
10. 据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺,
人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如 图,今有山 AB 位于树的西面.山高 AB 为未知数,山与树相距 53 里,树高 9 丈 5 尺人站在离树 3 里的地方,观察到树梢 C 恰好与山峰 A 处在同一斜线上,人眼离 地 7 尺,则山 AB 的高为(保留到整数,1 丈= 10 尺)( )
22. 我国古代数学名著《算法统宗》中,有一道“以碗知僧”问题,题目大意是:
山上有一古寺叫都来寺.在这座寺庙里,3 个和尚合吃一碗饭,4 个和尚合分一 碗汤,一共享了 364 只碗.问都来寺里有多少个和尚? 请解答上述问题.
23. 《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,
A.
2+
=
1
−
1 2
+2
【免费阅读】(教师版)中考数学专题复习第一轮第二讲代数式

中考数学专题复习第一轮第二讲代数式★重点★代数式的有关概念及性质,代数式的运算一、重要概念分类:1.代数式、有理式、无理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母。
没有根号的代数式叫有理式。
如:a、。
22a b+2.整式和分式分母中含有字母的代数式叫做分式。
如:。
分母中不含有字母的代数式叫做整式。
1a整式和分式统称有理式,或含有加、减、乘、除、乘方运算的代数式叫做有理式。
3.单项式与多项式数字和字母之间,字母和字母之间只有乘除运算的代数式叫单项式。
如:,23a bc 。
单独的一个数或字母也是单项式。
如:、0、-3。
几个单项式的和或差,叫213a bc a做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如为分式。
xx4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同。
合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式,是无理数。
377.各种方根的概念1.平方根:如果一个数的平方等于另一个数,那么这个数叫另一个数的平方根.即:2,a aχχχ==叫的平方根记作2.算术平方根:一个正数的平方等于另一个数,这个正数叫另个一数的算术平方根。
a单项式多项式整式分有理式无理式代数式配还发兄弟体活⑴正数a 的正的平方根([a≥0—与“平方根”的区别]);a ⑵算术平方根与绝对值①联系:都是非负数,=│a│2a ②区别:│a│中,a 为一切实数;中,a 为非负数。
a 3.立方根:一个数的立方等于另一个数,这个数叫另个一数的立方根。
如:3,a a χχχ==叫的立方根 记作 8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数方程专题复习
例题分析:
例1.解方程组
例2.
例3.
例4. k为何值时,方程组。
(1)有两组相等的实数解;
(2)有两组不相等的实数解;
(3)没有实数解。
例5.解方程组
例6.解方程组。
例7.解方程组
例8.解方程组
例9.解方程组
例10:
【代数方程应用题分类】
行程问题:路程=速度×时间
顺流逆流航行问题中:顺流速度=船速+水速,逆流速度=船速-水速;
1、货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少设货车的速度为x 千米/小时,依题意列方程正确的是( ) (A )
203525-=x x ; (A )x x 352025=-; (A )203525+=x x ; (A )x
x 35
2025=+. 2、A 、B 两地相距900千米,甲、乙两车分别由A 、B 两地同时出发相向而行,经过8小时它们在途中C 处相遇,相遇后甲再过4小时到达B 地,乙再过16小时到达A 地,求两车速度.
3、一轮船顺流下行120千米,然后逆流返航,已知水速1千米/小时,逆流比顺流多化3小时,求顺流速度.
4、甲、乙两地之间一部分是上坡路,其余是下坡路.某人骑自行车从甲地到乙地共需2小时40分,从乙地返回甲地少用20分钟,已知在他骑自行车走下坡路比上坡路每小时多走6千米,甲、乙两地相距36千米,求从甲地到乙地上、下坡的长度.
5、一段高速公路全程限速110千米/时(即任一时刻的车速都不能超过110千米/时.以下是张师傅和李师傅行驶完这段全程为400千米的高速公路时的对话片断.张:“你的车速太快了,平均每小时比我多跑20千米,少用我一个小时就跑完了全程,还是慢点.”李:“虽然我的时速快,但最大时速不超过我平均时速的10%,可没有超速违法啊.”李师傅超速违法吗?为什么?
6、如图1,x 轴表示一条东西方向的道路,y 轴表示一条南北方向的道路.小丽和小明分别从十字路口O 点处同时出发,小丽沿着x 轴以4千米/时的速度由西向东前进,小明沿着y 轴以5千米/时的速度由南向北前进.有一颗百年古树位于图中的P 点处,古树与x 轴、y 轴的距离分别是3千米和2千米.
问:(1)离开路口后经过多少时间,两人与这棵古树的距离恰好相等?
(2)离开路口后经过多少时间,两人与这颗古树所处的位置恰好在一条直线上? 工程问题:工作总量=工作效率×工作时间 1、某项工程,若甲单独做2天后,剩下部分由乙去做,则乙还需要做的天数等于甲单独做完此项工程的天数;若乙单独做2天后,剩余的工程由甲去做,则甲还需3天完
成.问甲、乙单独完成此工程各需多少天? 2.装配车间原计划在若干天内装配出44
台机床,最初3
图1
x y O
P
西
南 东
北
小A
B
小
3.解方程或方程组:(1) (2)
4.解下列方程:?(1) ;?(2)
;
5.解下列方程组:?
(1)??⎩⎨⎧=+-023x ,12=2y + x 22y xy ? (2)?? ⎪⎩⎪⎨⎧=++=-1
20
92
22
2y xy x y x 【应用】 1)一般行程问题
某人驾车从A 地到B 地,出发2小时后,车子出了点毛病,耽搁半小时修好了车,为了弥补耽搁的时间,他将车速增加到原来的1.6倍,结果按时到达。
已知A 、B 两点的距离为100千米,求某人原来驾车的速度。
2)航行问题
已知两城市之间的距离为2080千米,一架飞机飞行于这两城市之间,顺风飞行需要的时间比逆风飞行需要的时间少20分钟,已知飞机无风时的飞行速度为500千米/小时。
若风速为某一确定值,求出风的速度。
3)工程问题
甲、乙两人共同打印文件,甲共打1800个字,乙共打2000个字,已知乙的工作效率比甲高25%,完成任务的时间比甲少5分钟,问甲、乙二人各花了多少时间完成任务? 4)分配问题
将总长为400米的铁丝截成A 、B 两种长度的铁丝段,A 种比B 种每根长0.5米,如果先截40根A 种的,剩余的部分截成B 种的,则两种根数之和比把铁丝全部截成A 种的多30根(以上截法恰好用完这400米铁丝),求A 、B 两种铁丝段每根的长度。
5)数字问题
一个分数,如果分母加1,则分数等于111,如果分子加1,则分数等于7
1,求这个分数。
6)工程进度问题
某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两
队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全
部工程的,厂家需付甲、丙两队共5500元。
(1)求甲、乙、丙各队单独完成全部工程各需多少天?
(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由。