立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结
立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结

一、知识归纳

1.平面

平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.

(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.

(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.

(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.

2. 空间直线

(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点

(2)平行公理:平行于同一条直线的两条直线互相平行.

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).

(直线与直线所成角]90,0[??∈θ)

(向量与向量所成角])180,0[ο

ο∈θ

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.

(3)两异面直线的距离:公垂线段的长度.

空间两条直线垂直的情况:相交(共面)垂直和异面垂直.

[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

3. 直线与平面平行、直线与平面垂直

(1)空间直线与平面位置分三种:相交、平行、在平面内.

(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”)

(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线平行”)

(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA

⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),

三垂线定理的逆定理亦成立.

直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相

P

O

A

a

交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直?线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.

性质:如果两条直线同垂直于一个平面,那么这两条直线平行.

(5)a.垂线段和斜线段长定理:从平面外一点

..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;

②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.

b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.

4. 平面平行与平面垂直

(1)空间两个平面的位置关系:相交、平行.

(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行?面面平行”)

推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.

[注]:一平面内的任一直线平行于另一平面.

(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行?线线平行”)

(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.

两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线

的平面垂直于这个平面.(“线面垂直?面面垂直”)

注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.

(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.

推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三

平面.

简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l , 因为ααββ⊥?⊥?OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角)

简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.

成角比交线夹角一半大,又比交线夹角补角小,一定有2条. 成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 5. 棱柱. 棱锥 (1)棱柱

a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.

②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.

b.{四棱柱}?{平行六面体}?{直平行六面体}?{长方体}?{正四棱

P

α

β

θ

M A

B O

柱}?{正方体}.

{直四棱柱}I {平行六面体}={直平行六面体}. c.棱柱具有的性质:

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形.....

. ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.

③过棱柱不相邻的两条侧棱的截面都是平行四边形. d.平行六面体:

定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.

定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.

推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则

1cos cos cos 222=++γβα.

推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为

γβα,,,则

2cos cos cos 2

22=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.

[注]:①一个三棱锥四个面可以都为直角三角形.

②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形

的中心.

[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)

ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等

iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.

②正棱锥的侧面积:'Ch 2

1S =(底面周长为C ,斜高为'h )

③棱锥的侧面积与底面积的射影公式:α

cos 底侧S S =(侧面与底面成的二面

角为α)

附:以知c ⊥l ,b a =?αcos ,α为二面角b l a --.

则l a S ?=2

11①,b l S ?=2

12②,b a =?αcos ③ ?①②③得α

cos 底侧S S =

.

注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

c.特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面

l

a

b

c

多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.

(3)球:

a.球的截面是一个圆面.

①球的表面积公式:24R S π=.②球的体积公式:33

4R V π=.

b.纬度、经度:

①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.

②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.

附:①圆柱体积:h r V 2π=(r 为半径,h 为高)

②圆锥体积:h r V 23

1π=(r 为半径,h 为高)

③锥体体积:Sh V 3

1=(S 为底面积,h 为高)

(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36

=

,24

3a S =底,2

43a S =

侧,得

R a R a a a ??+?=?2224331433643a a a R 4

6

34233

4/42=?=

=?. 注:球内切于四面体:h S R S 3

13R S 3

1V 底底侧ACD B ?=?+???=-.

②外接球:球外接于正四面体,可如图建立关系式. 6. 空间向量

(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.

b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.

c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.

d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.

②空间任一点...O .和不共线三点......A .、.B .、.C .,则

)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件.

(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)

注:①②是证明四点共面的常用方法.

(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.

推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使

z y x ++=(这里隐含

x+y+z≠1).

O

B

D

O

R

注:设四面体ABCD 的三条棱,,,,d AD c AC b AB === 其中Q 是△BCD 的重心,

则向量)(3

1c b a AQ ++=用MQ AM AQ +=即证.

对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r ,

则四点P 、A 、B 、C 是共面?1x y z ++=

(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标).

①令=(a 1,a 2,a 3),),,(321b b b =,则

),,(332211b a b a b a b a ±±±=+,

))(,,(321R a a a a ∈=λλλλλ,

332211b a b a b a b a ++=? ,

a ∥)(,,332211R

b a b a b a b ∈===?λλλλ3

3

2211b a b a b a ==?

0332211=++?⊥b a b a b a .

222321a a a ++==(向量模与向量之间的转化

:a a =??=空间两个向量的夹角公式23

22

21

23

22

21

3

32211|

|||,cos b

b b a a a b a b a b a b a b

a b a ++?++++=

??>=<ρρρρρρ

(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:2

12212212)()()(z z y y x x d -+-+-=

.

b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.

c.向量的常用方法:

①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α|

|n .

②异面直线间的距离

d =

(12,l l 是两异面直线,其公垂向量为n r

C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

③直线AB 与平面所成角的正弦值sin ||||

AB m AB m β?=u u u r u r

u u u r u r (m u

r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).

d.证直线和平面平行定理:已知直线?a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).

A

B

二、经典例题

考点一 空间向量及其运算

1. 已知,,A B C 三点不共线,对平面外任一点,满足条件

122555

OP OA OB OC =++u u u r u u u r u u u r u u u r ,

试判断:点P 与,,A B C 是否一定共面?

解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序

实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r

.

答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r

∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r

∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,

所以,点P 与,,A B C 共面.

点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,

首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.

2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13

AN AE =.求证://MN 平面CDE .

解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r

可以用平面CDE 内的两个不共线的向量DE u u u r

和DC u u u r 线性表示.

答案:证明:如图,因为M 在BD 上,且13

BM BD =,

所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133

AN AD DE =+u u u r u u u r u u u r ,

又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r

1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u

u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r

共面.

由于MN 不在平面CDE 内,所以//MN 平面CDE .

点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.

考点二 证明空间线面平行与垂直

3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;

解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,

∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,

∴ DE//AC 1,∵ DE ?平面C D B 1,AC 1?平面C D B 1, ∴ AC 1//平面C D B 1;

解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y

轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (2

3,2,0)

(1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC ?1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴12

1

AC DE =,∴DE ∥AC 1.

A B C

A

B

C E x

y

z

4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点. (1)求证:BM ∥平面PAD ;

(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦.

解析:本小题考查直线与平面平行,直线与平面垂直, 二面角等基础知识,考查空间想象能力和推理论证能力.

答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则

ME

CD 2

1

,又AB CD 2

1

∴四边形ABME 为平行四边形

∴BM ∥EA ,PAD BM 平面?,PAD EA 平面? ∴BM ∥PAD 平面

(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E

在平面PAD 内设()z y N ,,0,()1,1,1---=→

--z y MN ,()2,0,1-=→

--PB ,

()0,2,1-=→

--DB

由→--→--⊥PB MN ∴0221=+--=?→

--→--z PB MN ∴2

1

=z 由→

--→

--⊥DB MN ∴0221=+--=?→

--→

--y DB MN ∴2

1=y

∴??

?

??21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥

(3)设直线PC 与平面PBD 所成的角为θ

()2,2,2-=→--PC ,??? ?

?

---=→

--21,21,1MN ,设→--→--MN PC ,为α

3

22

6322cos -

=?

-=

?=

--→--→

--→--MN

PC MN

PC α 32cos sin =-=αθ

故直线PC 与平面PBD 所成角的正弦为

3

2

解法二:

(1)ΘM 是PC 的中点,取PD 的中点E ,则

ME

CD 2

1

,又AB CD 2

1

∴四边形ABME 为平行四边形 ∴BM ∥EA ,PAD BM 平面?

PAD EA 平面? ∴BM ∥PAD 平面

(2)由(1)知ABME 为平行四边形

ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥

∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面?AE

∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD

PBD PD 平面?

∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MF

MF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE

∴3

2

=

MF ,22=NE N 为AE 的中点

∴当点N 为AE 的中点时,BD MN P 平面⊥

(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成

的角,设为θ,3

2

sin ==

MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为

3

2

点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来

考点三 求空间图形中的角与距离

根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这

三种角的大小.

5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点. (Ⅰ)求PA 与底面ABCD 所成角的大小; (Ⅱ)求证:PA ⊥平面CDM ; (Ⅲ)求二面角D MC B --的余弦值.

解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法

答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .

连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.

∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =

3

∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.

(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图,

则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C . 由M 为PB 中点,∴33

(1,M .

∴33((3,0,3),DM PA ==u u u u r

u u u

r (0,2,0)DC =u u u r .

∴333203)0PA DM ?=

?-=u u u r u u u u r ,

03200(3)0

PA DC ?=?+?-=u u u r u u u r

∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .

(III)33(),(3,1,0)CM CB ==u u u u r

u u u

r .令平面BMC 的法向量(,,)n x y z =r

则0n CM ?=u u u u r r ,从而x +z =0; ……①, 0

n CB ?=u u u

r r 30

x y +=. ……②

由①、②,取x =?1,则3,1

y z =. ∴可取(3,1)

n =-r

由(II)知平面CDM 的法向量可取(3,0,3)

PA =u u u r

2310cos ,||||56

n PA n PA n PA ?-<>=?u u u r r u u

u r r u u u r r 10

法二:(Ⅰ)方法同上

(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,

则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥, 又在PAB ?中,中位线//

MN 12AB ,1

//2

CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ?中,AO PO =, 则ON AP ⊥,故AP MC ⊥而MC CD C =I , 则PA MCD ⊥平面

(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ?中,易

得PA

=PB ==

=

cos AB PBA PB ∠=

==

cos cos()5NMB PBA π∠=-∠=-

故,所求二面角的余弦值为5

-

点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角

的平面角,是常用的方法.

6. 如图,在长方体1111ABCD A B C D -中,

11,2,AD AA AB ===点E 在线段AB 上.

(Ⅰ)求异面直线1D E 与1A D 所成的角; (Ⅱ)若二面角1D EC D --的大小为45?,求

点B 到平面1D EC 的距离.

解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利

1

D A

B

C

D E

1

A

1

B

1

C

于问题的解决,此外用向量也是一种比较好的方法.

答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.

∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.

根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90?. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥ 所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=?.

于是111,DF DD D F ==易得

Rt Rt BCE CDF ???,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .

∵1

,B CED D BCE V V --=即1111113232

CE D F h BE BC DD ???=???,

11CE D F h BE BC DD ??=??,即=,∴4

h =.

故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.

(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r

设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r

. ∵111010DA D E ?=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r

则异面直线1D E 与1A D 所成的角为90?.

(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则

(,,)x y z =n

||

|cos ,|cos 45||||

2

?<>=

=

=?=

m n m n m n ∴222z x y =+. ①

由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即1

0DC ?=u u u u r

n ∴20y z -= ② 由①、②,可取(3,1,2)=n

又(1,0,0)CB =u u u r

,所以点B 到平面1D EC 的距离

||36

422

CB d ?===

u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.

考点四 探索性问题

7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°. (1)求BD 和面BEF 所成的角的余弦;

(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂

直,若存在,求EP 与PF 的比值;若不存在,说明理由.

解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,

或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,

则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB 设平面BEF 的法向量x z y x n -=则),,,(

0,02==++y z y ,则可取)0,1,2(=n ,

∴向量)1,0,2(=n DB 和所成角的余弦为

10

10)2(21220222

222=-++-+?. 即BD 和面BEF 所成的角的余弦

10

10. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂

直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12

,121,121(

m

m m m m +++++ 则向量=),12,121,121(

m m m m m +++++,向量=CP ),12

,11,121(m

m m m ++-++ 所以2

1

,012)2(12101212

==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求. 8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,

且AC BC a ==,π02VDC θθ??

=<< ??

?

∠.

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何题经典例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面 AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结 1、 多面体(棱柱、棱锥)的结构特征 (1)棱柱: ①定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的 公共边都互相平行,由这些面所围 成的几何体叫做棱柱。 棱柱斜棱柱直棱柱正棱柱; 四棱柱平行六面体直平行六面体 长方体正底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是正多边形 侧棱垂直于底面 侧棱不垂直于底面

棱长都相等 四棱柱正方体。 ②性质:Ⅰ、侧面都是平行四边形;Ⅱ、两底面是全等多边形; Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形; Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。 (2)棱锥: ①定义:有一个面是多边形,其余各面是有 一个公共顶点的三角形,由这些面 围成的几何体叫做棱锥; 正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质: Ⅰ、平行于底面的截面和底面相似, 截面的边长和底面的对应边边长的比 等于截得的棱锥的高与原棱锥的高的 比; 它们面积的比等于截得的棱锥的高与 原棱锥的高的平方比;

截得的棱锥的体积与原棱锥的体积的 比等于截得的棱锥的高与原棱锥的高 的立方比; Ⅱ、正棱锥性质:各侧面都是全等的等腰三 角形;通过四个直角三角形POH Rt ?,POB Rt ?, PBH Rt ?,BOH Rt ?实现边,高,斜高间的换算 2、 旋转体(圆柱、圆锥、球)的结构特征 A B C D O H P

(2)性质: ①任意截面是圆面(经过球心的平面,截得 的圆叫大圆,不经 过球心的平面截得 的圆叫 小圆) ②球心和截面圆心的连线垂直于截面,并且 2d 2 =,其中R为球半径,r为截 r- R 面半径,d为球心的到截面的距离。 3、柱体、锥体、球体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

立体几何知识点总结(全)

必修2 第一章 空间几何体知识点总结 一.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图:光线从几何体的上面向下面正投影得到的投影图。反映了物体的长度和宽度 三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 二.空间几何体的直观图 斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450 (或1350 ) ③画对应图形 在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变; 在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; 直观图与原图形的面积关系:4 2S ?=原图形直观图S 三.空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ??=π2侧面 ⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:l R l r S ??+??=ππ侧面 h S V ?=柱体h S V ?= 3 1锥体() 1 3 V h S S S S =+?+下下 台体上上 球的表面积和体积 32 3 44R V R S ππ= =球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。 正四面体是每个面都是全等的等边三角形的三棱锥。 第二章 点、直线、平面之间的位置关系知识点总结 一. 平面基本性质即三条公理 公理1 公理2 公理3 图形语言 文字 语言 如果一条直线上的两点在 一个平面内,那么这条直线 在此平面内. 过不在一条直线上的三点,有且只有一个平面. 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号 语言 ,,A l B l l A B ααα∈∈????∈∈? ,,,,A B C A B C α ?不共线确定平面 ,l P P P l αβαβ=?∈∈??∈? 作用 判断线在面内 确定一个平面 证明多点共线 公理2的三条推论: 推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面. 二.直线与直线的位置关系 共面直线: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点。(既不平行,也不相交) 三.直线与平面的位置关系有三种情况: 在平面内——有无数个公共点 . 符号 a α 相交——有且只有一个公共点 符号 a ∩α= A 平行——没有公共点 符号 a ∥α 说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 1.直线和平面平行的判定 (1)定义:直线和平面没有公共点,则称直线平行于平面; (2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号: ////a b a a b ααα ?? ?????? 2.直线和平面平行的性质定理: 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行,则线线平行. 符号: a a a b b α βαβ??=? ???? 3.直线与平面垂直 ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各 个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱 四棱柱 平行六面体直平行六面体 长方体正四棱柱 正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形

1.3 棱柱的面积和体积公式 ch S =直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 A B C D P O H

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

高考立体几何知识点总结

高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四 边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成 的几何体叫 做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是 高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的底面是四边形 底面是平行四边形 侧棱垂直于底面 底面是矩形 底面是正方形 棱长都相等 图1-1 棱柱

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体 直平行 六面体长方体 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c·h+ 2S 底 V 棱柱 = S 底 ·h? 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 A B C D P O H

立体几何典型例题精选[含答案解析]

F E D C B A ; 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥ 平面ABCD , 1EF =,,90FB FC BFC ? =∠=,3AE = . (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. · ! 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值.

] 变式2:[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示. (1)求证:AB⊥CD; (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. ? (1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2. — (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小. 【

立体几何知识点总结归纳

一、立体几何知识点归纳 第一章 空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①???????? →???????→?? ?? 底面是正多形 棱垂直于底面 斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形 侧棱与底面边长相等 1.3①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的

平方和;【如图】2222 11AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么 222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则2 2 2 cos cos cos 2αβγ++=,2 2 2 sin sin sin 1αβγ++=. 1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式: 2S c h S c h S S h =?=?+=?直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱 2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式: S 圆柱侧=2rh π;S 圆柱全=2 22rh r ππ+,V 圆柱=S 底h=2 r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥 3.1棱锥——有一个面是多边形,其余各 面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.2棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:,,,SOB SOH SBH OBH 为直角三角形) 3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。 侧面 母线 B

相关文档
最新文档