联轴器钢片断裂的处理方法

联轴器钢片断裂的处理方法
联轴器钢片断裂的处理方法

联轴器售后维修项目指导书项目序号:201001f—008

编制:孙贯彪

审核:李文革

批准:姜爱良

中国重汽(香港)有限公司动力事业部

2010年05月17日

一、故障特征

联轴器钢片主要故障为钢片断裂等。

二、联轴器故障判定及维修

断裂原因如下:

(一)、高压油泵的传动轴与空压机传动轴的同轴度偏差较大。造成这种情况的原因有:空压机传动轴内部磨损,造成空压机传动轴松旷和位移;空压机内部零部件异常磨损后造成的轴向窜动超过0.30mm的;高压油泵的安装螺栓或空压机的安装螺栓松动,造成高压油泵或空压机的相对位移;

(二)、联轴器钢片老化;

(三)、高压油泵内部的故障造成高压油泵传动轴抱死;

(四)、服务站更换联轴器时,违规操作造成联轴器总成本身的同轴度超差。

(五)、更换空压机时,未按规定安装。(需将空压机与喷油泵驱动峰值错开)。

根据以上可能原因,请服务站按以下方法处理:

1、用手感觉油泵轴是否松旷;

2、确定空压机轴向、径向窜动是否超差,方法如下:

①用手晃动双缸空压机的轴,感觉窜动是合过大;

②测量法:微型磁力表座WCZ-6A(能满足空压机轴处的狭小空间)、百分表。

拆下联轴器,将磁力表座吸附在缸体上,调整百分表支架角度,使百分表头部接触空压机轴,从外圆和端部两个方向进行测量。如图所示:

(三)、检查高压油泵安装螺栓或空压机安装螺栓是否松动,如果是螺栓松动,需按螺栓拧紧力矩拧紧螺栓;

(四)、粗测高压油泵与空压机轴的同轴度:

1、先将联轴器拆下;

2、将钢丝(较粗,强度较高)的一端绑

在高压油泵的法兰上,另一端搭在空压

机传动轴上,转动高压油泵法兰,观察

钢丝的变形程度,然后调整钢丝,直到

钢丝不再受力为止。再转动高压油泵法

兰,用塞尺记录下钢丝和空压机轴的最

大间隙。

3、用薄铜垫调整油泵的4个支撑部位,要求最大间隙小于0.3mm

以下是油泵的调节部位,如图所示:

国二发动机同轴度调整举例如下:

最大间隙出现在空压机轴下方,间隙用塞尺塞出为0.8mm,说明高压油泵轴比空压机轴低,需要抬高油泵轴。在油泵托架的4个支承面上均垫上0.4mm的铁片即可;

如果最大间隙出现在空压机轴上方,间隙用塞尺塞出为0.8mm,说明油泵轴比空压机轴高,需要降低油泵轴。则把油泵托架的4个支承面用工具磨掉0.4mm 即可;

如果最大间隙出现在空压机轴的外端或里端,安装油泵时就要将油泵向间隙相反的方向靠拢再拧紧安装螺栓。

注意:在托架外部两个油泵支承面上垫铁片或磨削时,两个面增加或用油石磨削的高度要一致。

国三发动机同轴度调整举例:国三EGR发动机的托架面是倾斜的,调整时,与国2发动机不同。

不过在止口面垫高,油泵轴就会分别产生向上和向里的位移。例如在止口垫高0.4mm,油泵轴会升高0.16mm,向里移0.36mm,请服务站自己掌握.

注意:在外部止口面垫高或磨削时,两止口面高度要一致。

为了防止因装配联轴器造成故障发生,请按以下方法装备联轴器:

1.联轴器更换要更换联轴器总成,最好不要拆散装配,以免破坏联轴器总成的同轴度,造成钢片断裂故障重复发生。建议:拆换联轴器时不将联轴器总成拆散,仅将角度调节板与法兰拆开进行装配,具体见下图:

各机型联轴器装配力矩要求:联轴器上与钢片连接的螺栓力矩为115 N.m。角度调节板抱紧螺栓的拧紧力矩:国二:M14×1.5(10.9J)210 N.m;EGR :M14×1.5(12.9J)230 N.m;共轨:M12×1.5(12.9J)150 N.m。

为了防止因不正确安装空压机造成联轴器故障,请按以下方法安装空压机:

1、安装空压机:齿轮室的安装结合面涂乐泰510胶,将空压机安装在齿轮室

空压机孔内,螺栓涂乐泰271胶水,按拧紧力矩34N.m,将空压机安装在齿轮室上;

2、调整空压机轴,将空压机驱动峰值与高压油泵驱动峰值错开,根据机型不同选用专用工装调整空压机轴的位置:

工装的定位销对准空压机传动轴上定位销孔,转动空压机传动轴使工装的开口槽对准空压机壳体上的正时孔。

3、安装喷油泵齿轮:

将齿轮锥孔内涂胶(共轨、欧二涂乐泰242胶,EGR机型涂271胶)将齿轮安装在空压机前端锥轴上:

在空压机轴的螺纹处涂乐泰242胶水,装配空压机大螺母,拧紧力矩:EGR 机型400±10N.m,共轨和国二机型350±10N.m.

三、联轴器产品识别

合格供应商:

四、故障件返回标准及注意事项

旧件返回时应注意以下几点:

1、必须附带中国重汽统一格式的处理单;

2.必须在信息处理单中记录零件图号、供应商代码、生产序列号或流水号,故障模式,需要检测数据的记录检测数据;

3、必须使用统一规定的包装方式,并避免再次损坏的发生;

4、必须确保零部件及铭牌的完整性,不允许缺失,不允许擅自拆解。

金属材料-准静态断裂韧性测试的方法

ICS 77.040.10 Ref. No. ISO 12135:2002/Cor.1:2008(E) ? ISO 2008 – All rights reserved Published in Switzerland INTERNATIONAL STANDARD ISO 12135:2002 TECHNICAL CORRIGENDUM 1 Published 2008-06-01 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ? МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ? ORGANISATION INTERNATIONALE DE NORMALISATION Metallic materials — Unified method of test for the determination of quasistatic fracture toughness TECHNICAL CORRIGENDUM 1 Matériaux métalliques — Méthode unifiée d'essai pour la détermination de la ténacité quasi statique RECTIFICATIF TECHNIQUE 1 Technical Corrigendum 1 to ISO 12135:2002 was prepared by Technical Committee ISO/TC 164, Mechanical testing of metals , Subcommittee SC 4, Toughness testing — Fracture (F), Pendulum (P), Tear (T). Page 1, Clause 2 Replace the reference to ISO 7500-1:— with the following: ISO 7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system Delete the reference to Footnote 1) and the footnote “To be published. (Revision of ISO 7500-1:1999)”. Page 13, Figure 6 Add “(not to scale)”. Move the note from under the title of Figure 6 to above the title. Page 16, Figure 9, Footnote d) Replace “on” with “or” to give d Edge of bend or straight compact specimen.

疲劳断裂行为High

超高频强度钢的疲劳断裂行为 J. Mater. Sci. Technol., Vol.24 No.5, 2008 1) 国家重点实验室的先进加工钢材和产品,北京100081,中国 2) 国家工程研究中心,北京100081钢铁技术先进,中国 3) ,燕山大学,秦皇岛,中国 ⑷对金属的中国社会,北京100711,中国 疲劳断裂行为的超高强度钢与不同熔化过程,研究了夹杂物尺寸不同通过用在旋转弯曲疲劳机上多达107循环加载。观察骨折面发射扫描电子显微镜(FESEM。当它被发现时已经尺寸的夹杂物对疲劳行为未清除。对钢在AISI 4340夹杂物尺寸小于5.5微米,所有的疲劳裂纹除的确做到了包含但不引发的地表和传统从标本的s - n曲线的存在。对65Si2MnW在100和Aermet钢平均12.2和14.9米,疲劳裂纹在较低的夹杂物引发的s - n曲线应力幅值和逐步进行观测。弯曲疲劳 强度的s - n曲线显示一个不断下降和疲劳失效的大型氧化物夹杂源于对60Si2CrVA 钢平均夹杂物的尺寸44.4米。在案件的内部骨折在周期超越约1X 106 65Si2MnWI?60Si2CrVA钢、夹杂物sh-eye经常发现里面和颗粒状明亮的方面(GBF)进行了观察附近约夹杂。GB尺寸的增加这个循环数的增加对失败的长寿命的政权。结构应力强度因子的价值范围内裂纹萌生施工现场对GBI与Nf几乎不变, 几乎是相等的表面夹杂物和内部包含在周期低于约1X 106。既不sh-eye GBF也 没有观察到100 Aermet钢在目前的研究中。 关键词:High-cycle超高强度钢疲劳,夹杂物s - n曲线,鱼眼骨折 1、介绍 High-cycle疲劳(HCF)失败是普通的实用的建筑工程项目的土石方作业。因此,广泛的研究已进行多年了令人满意的理解和解决方案尚未达成。众所周知,有一个很好的旋转弯曲疲劳强度之间的关系,如光滑的标本和抗拉强度、维氏 硬度、高压、或低或中等强度。对于低或中等强度钢如下 (T w 心 0.5Rm (T w 心 1.6HV (1) 在这种情况下,从疲劳裂纹倾向于表面,因此被称为表面的结构。然而,在较高 的拉伸强度范围或维氏硬度、线性相关性没发生,有了更多的散射或甚至星体疲劳强度值。疲劳断裂的起源的高强度钢的表面并不总是,但经常还有一定距离尤其是forhigh-cycle 疲劳,因此被称为内部断裂。断裂表面经常展现一个小光滑斑裂纹起

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

高强度紧固件失效实例分析

高强度紧固件失效实例分析 ⅰ疲劳断裂的实例 一.疲劳断裂的特征 1.疲劳与断裂的概念: 疲劳是机械零件常见的失效形式,据统计资料分析,在不同类型的零件失效中,有50%—80%是属于疲劳失效。疲劳断裂在破坏前,零件往往不会产生明显的变形和预先的征兆,但破坏却往往是致命的,会酿成重大事故。疲劳损坏产生及发展有其特点,最终形成为疲劳断裂。 疲劳问题的探索,最早是在1839年,法国人彭赛列提出材料和结构件的疲劳概念,德国人A·沃勒在1855年研究了代表疲劳性能的应力应变与震动次数的理论(S—N曲线),并且提出了疲劳极限的概念,因此,沃勒被称为材料疲劳理论的奠基人。 疲劳与断裂的力学理论经过一百多年的发展,各行业具体疲劳断裂事例不断涌现,经过科学家及工程师不间断地研究和探索,目前,疲劳断裂科学理论不断地充实和发展,从而在本质上了解了疲劳破坏的机理。 疲劳概念的论述:金属材料在应力或应变的反复作用下发生的性能变化称为疲劳; 疲劳断裂:材料承受交变循环应力或应变时,引起的局部结构变化和内部缺陷的不断地发展,使材料的力学性能下降,最终导致产品或材料的完全断裂,这个过程称为疲劳断裂。也可简称为金属的疲劳。引起疲劳断裂的应力一般很低,疲劳断裂的发生,往往具有突发性、高度局部性及对各种缺陷的敏感性等特点。 2.疲劳的分类: (1)高周疲劳与低周疲劳 10的疲劳,如果作用在零件或构件的应力水平较低,破坏的循环次数高于5 称为高周疲劳,弹簧、传动轴、紧固件等类产品一般以高周疲劳见多。 10的疲作用在零件构件的应力水平较高,破坏的循环次数较低,一般低于4

劳,称为低周疲劳。例如压力容器,汽轮机零件的疲劳损坏属于低周疲劳。 (2)应力和应变来分: 应变疲劳——高应力,循环次数较低,称为低周疲劳; 应力疲劳——低应力,循环次数较高,称为高周疲劳。 复合疲劳,但在实际中,往往很难区分应力与应变类型,一般情况下二种类 型兼而有之,这样称为复合疲劳。 (3)按照载荷类型 弯曲疲劳 扭转疲劳 拉拉疲劳与拉压疲劳 接触疲劳 振动疲劳 随着断裂力学的不断发展,行业内广大的技术人员逐渐认识疲劳裂纹的产生 及其发展的规律,为控制和减少疲劳引起损害奠定了基础。 3.疲劳断裂的特征: 宏观:裂纹源—→扩展区—→瞬断区。 裂纹源:表面有凹槽、缺陷,或者应力集中的区域是产生裂纹源的前提条件。 疲劳扩展区:断面较平坦,疲劳扩展与应力方向相垂直,产生明显疲劳弧线,又 称为海滩纹或贝纹线。 瞬断区:是疲劳裂纹迅速扩展到瞬间断裂的区域,断口有金属滑移痕迹,有些产 品瞬断区有放射性条纹并具有剪切唇区。 微观:疲劳断裂典型的特征是出现疲劳辉纹。 一些微观试样中还会出现解理与准解理现象(晶体学上的名称,在微观显 象上出现的小平面),以及韧窝等微观区域特征。 4.疲劳断裂的特征: (1)断裂时没有明显的宏观塑性变形,断裂前没有明显的预兆,往往是突然性 的产生,使机械零件产生的破坏或断裂的现象,危害十分严重。 (2)引起疲劳断裂的应力很低,往往低于静载时屈服强度的应力负荷。 (3 )疲劳破坏后,一般能够在断口处能清楚地显示出裂纹的发生、扩展和最后这前三种疲劳,往往二种或二种以上交错进行或出现。 前三种类型一般在机械运动中经常出现,是疲劳损坏的主要形式。

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

弹簧失效的原因分析

弹簧失效的原因分析 弹簧失效的原因分析 一、佛山弹簧分解弹簧永久变形及其影响因素 弹簧的永久变形是弹簧失效的主要原因之一 弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。 检查弹簧永久变形的方法 1.快速高温强压处理检查弹簧永久变形:是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。 2.长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。 二、弹簧断裂及其影响因素 弹簧的断裂破坏也是弹簧的主要失效形式之一 弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。 弹簧的疲劳断裂: 弹簧的疲劳断裂原因:属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。 疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。 受力状态对疲劳寿命的影响 (a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。 (b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。 (c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。 腐蚀疲劳和摩擦疲劳 腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。 摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。 弹簧过载断裂 弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。 过载断裂的形式 (a)强裂弯曲引起的断裂; (b)冲击载荷引起的断裂; (c)偏心载荷引起的断裂 佛山弹簧后处理的缺陷原因及防止措施 缺陷一:脱碳 对弹簧性能影响:疲劳寿命低 缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底 防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。2、加强对原材料表面质量检查 缺陷二:淬火后硬度不足

金属材料的断裂认识

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析 脆性断裂有以下特征: (1)脆断都是属于低应力破坏,其破坏应力往往远低于材料的屈服极限。(2)一般都发生在较低的温度,通常发生脆断时的材料的温度均在室温以下20℃。(3)脆断发生前,无预兆,开裂速度快,为音速的1/3。(4)发生脆断的裂纹源是构件中的应力集中处。

疲劳断裂失效分析

1 5.1疲劳断裂失效的基本形式和特征 5.2疲劳断口形貌及其特征 5.3疲劳断裂失效类型与鉴别 5.4疲劳断裂失效的原因与预防 第5章疲劳断裂失效分析 2?按应力循环次数 当Nf>105时为低应力高周疲劳(通常所指) 当Nf<10 4时为高应力低周疲劳?按服役的温度及介质条件 机械疲劳、高温疲劳、低温疲劳 冷热疲劳、腐蚀疲劳?基本形式 切断疲劳:面心立方在单向压缩、拉伸及扭转条件下多以切断形式破坏 正断疲劳:大多数的金属构件的疲劳失效都是以此形式进行的,特别是体心立方金属 3 ?疲劳断裂的突发性?疲劳断裂应力很低 ?疲劳断裂是一个损伤积累的过程?疲劳断裂对材料缺陷的敏感性?疲劳断裂对腐蚀介质的敏感性 4 典型的疲劳断口一般有三个区,即疲劳源区、疲劳裂纹扩展区和瞬时破断区。疲劳断口的宏观特征与静载破坏的脆性断口相似,无明显的宏观塑性变形。 5 ?疲劳核心是疲劳破坏的起点,它总是位于零件强度最低或应力最高的地方。 ?零件承受弯曲、扭转疲劳负荷时,最大应力区是在零件的表面。 ?零件表面的加工刀痕、凹槽、尖角、台肩等处由于应力集中往往成为疲劳源。 ?如果零件内部存在缺陷,如脆性夹杂物、白点、空洞、化学成分的偏析等,则可能在零件内部产生疲劳源。 1、疲劳核心(或称疲劳源) 6 ù疲劳源的数目可以不止一个,在名义应力较高或是应力集中较为严重时,在高应力区域就可能产生几个疲劳源。 ù疲劳源的位置用肉眼或低倍放大镜就能判断,一般在疲劳区中磨得最光亮的地方。 ù在断口表面同时存在几个疲劳源的情况下,可按疲劳线的密度来确定疲劳源产生的次序,疲劳线的密度越大,表示起源的时间越早。

7 疲劳断口上最重要的特征区域 该区域上常有疲劳断裂独特的宏观标志,如贝纹状、蛤壳状、海滩波纹等。 贝纹线以疲劳源为中心,向四周推进呈弧形线条,垂直于 裂纹扩展方向。 对于光滑试样,疲劳弧线的圆心一般指向疲劳源区。扩展到一定程度时,也可能出现疲劳弧线的转向现象 当试样表面有尖锐缺口时,疲劳弧线的圆心指向疲劳源区的相反方向。 在低周疲劳断口上一般也不常能观察到贝壳状条纹线。 8 $疲劳裂纹达到临界尺寸后发生的快速破断,它的特征与 静拉伸断口中快速破坏的放射区及剪切唇相同,但有时仅出现剪切唇而无放射区。$对于非常脆的材料,此区为结晶状断口,即使是塑性良好的合金钢或铝合金,疲劳断件断口附近通常也观察不到宏观的塑性变形。 9 10 6与静载拉伸断裂时不同,拉压疲劳断裂的疲劳核心多源于表面而不是内部。缺口试样由于缺口根部有应力集中故靠近表面裂纹扩展快,结果形成波浪形的疲劳弧线。高应力导致疲劳稳定扩展区较小,而最终断裂区所占比例较大。 6旋转弯曲的疲劳源区一般出现在表面,但无固定地点,疲劳源可 以为多个。疲劳源区和最后断裂区相对位置一般总是相对于轴的旋转方向而逆转一个角度。而高应力集中时,最终撕裂面移向中心,呈现棘轮花样。交变扭转载荷也出现这种花样 6双向弯曲的疲劳源区可能在零件的两侧表面,最后断裂区在截面内部。在高名义应力下,光滑的和有缺口的零件瞬断区的面积都大于扩展区,且位于中心部位,形状似腰鼓形。随着载荷和应力程度的提高,瞬断区的形状逐渐变形成为椭圆形。在低名义应力下,两个疲劳核心并非同时产生,扩展速度也不一样,所以断口上的疲劳断裂区一般不完全对称,瞬断区偏离中心位置。 11 D第一阶段为切向扩展阶段。在交变应力作用下,使滑移形成的裂纹源扩展形成可观察的裂纹,裂纹尖端将沿着与拉伸轴呈45°角方向的滑移面扩展。该阶段中裂纹扩展范围较 小,一般在2~5个晶粒之内。 D第二阶段为正向扩展阶段。裂纹从原来与拉伸轴呈45 °的滑移面,发展到与拉伸轴呈90 °,该阶段的断口具有引人注目的独特形态-疲劳辉纹。 D第三阶段是由于裂纹扩展到一定长度后,使构件的有效截面减少而造成的一次性快速断裂,断口特征常为韧窝型撕裂。 12疲劳辉纹的一般特点 (1)疲劳裂纹是一系列基本上相平行的条纹,略带弯曲呈波浪形,并与裂纹局部扩展方向相垂直,其凸弧面指向裂纹扩展方向。 (2)在疲劳裂纹稳定扩展阶段,所形成的每一条辉纹相当于一次载荷循环。辉纹确定了裂纹前沿线在前进时的位置。(3)疲劳辉纹的间距随应力场强度因子而变化,应力越大,间距越宽;反之应力越小,则间距越窄。 (4)疲劳断口的微观范围内,通常由许多大小不同、高低不一的小断块组成,每一小断块上的疲劳辉纹连续且平行,而相邻小断块上的疲劳辉纹不一定连续和平行。(5)断口的两匹配面上的辉纹基本对应。

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I 型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C 的区别与联系? 7、在什么条件下应力强度因子K 的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K 准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K 的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。 16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G 准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry 应力函数?什么是韦斯特加德( Westergaard)应力函数?写出

Westergaard应力函数的形式,并证明其满足双调和方程。

钢结构基本原理第八章 钢结构的脆性断裂和疲劳

第8章 钢结构的脆性断裂和疲劳 8.1 钢结构脆性断裂及其防止 8.1.1 脆性断裂破坏 脆性破坏: 结构的最终破坏是由于其构件的脆性断裂导致的。 特点:无塑性发展或很小,断裂时伸长量极其微小,没有破坏的预兆。 脆性破坏分类 ①过载断裂:由于过载,强度不足而导致的断裂。 特点:破坏速度快,主要是钢丝束、钢绞线和钢丝绳等。 ②非过载断裂:塑性很好的钢构件在缺陷、低温等因素影响下突然呈脆性断裂 ③应力腐蚀断裂:在腐蚀性环境中承受静力或准静力荷载作用的结构,在远低于屈服极限的应力状态下发生的断裂,强度越高则对应力腐蚀断裂越敏感。 ④疲劳断裂与腐蚀疲劳断裂:在交变荷载作用下,裂纹的失稳扩展导致的断裂,高周:循环周数在105以上者,低周:只有几百或几十次, 环境介质导致或加速疲劳裂纹的萌生和扩展称为腐蚀疲劳。 ⑤ 氢脆断裂: 氢使材料韧性降低而导致的断裂 钢结构的非过载脆性破坏P302 8.1.2脆性断裂的防止 构件不出现非过载脆性断裂的条件IC I K K ≤=σπα(含义见书) 为了防止脆性断裂,需要从三个方面着手: 1.钢材选择(保证足够韧性IC K ) 材料韧性指标:冲击韧性。 碳素钢:夏比V 形缺口冲击功不低于27J ; 低合金高强度结构钢:夏比V 形缺口冲击功不低于34J ; 公路钢桥和吊车梁在翼缘板厚度不超过4Omm ,按所处最低温度加40℃级别要求; 公路钢桥和吊车梁在翼缘板厚度超过 4Omm, 降低最低温度; 低温地区避免用厚度大的钢板,必须用厚板时,应提高对冲击韧性的要求或进行全厚度韧性试验。 2.初始裂纹:减小初始裂纹,避免形成裂缝间隙,保证焊缝质量,限制和避免焊接缺陷,焊缝表面不得有裂纹; 3.应力:缓和应力集中,减小应力值,避免受到约束而产生高额残余应力 4.结构形式与构造细节:超静定结构优于静定结构:由于地基不均匀沉陷会导致严重不利的内力重分布。静定结构采用多路径传递荷载优于单路径传递荷载。单个构件:多路径组织要优于单路径组织 焊接受弯构件的受拉翼缘,当弯矩很大,需要选取较厚的翼缘时,从抗断裂的

汽车钢板弹簧断裂分析方法

汽车钢板弹簧断裂分析方法 李 涛 (江西五十铃汽车有限公司) 摘要:汽车钢板弹簧在路试或使用中会偶发断裂现象,分析断裂原因的方法应从 断裂宏观、微观入手,对断裂件进行化学成分、低倍组织、夹杂物、硬度、金相、 脱碳层及喷丸检验,从而找出断裂的根本原因。 关键词:钢板弹簧;早期;断裂;分析;热处理;喷丸; Auto leaf spring fracture analysis method Li Tao (Jiang Xi ISUZU Motors Co., Ltd.) Abstract: Auto leaf spring in the road test or use will be accidental fracture phenomenon, this paper analyzes the reasons of fracture method from macro and micro fracture of the broken pieces of chemical composition, macrostructure, inclusions, hardness, metallographic, decarburization layer and shot peening inspection, so as to find out the root cause of the fracture. Key words:Leaf spring;Early;Fracture;Analysis;Heat treatment;Shot peening; 汽车钢板弹簧(下简称:板簧)是汽车关键的弹性元件,主要功能是当路面 对轮子传输冲击力时,钢板产生变形,起到缓冲、减振的作用,纵向布置时还具 有导向传力的作用[1]。 在路试和正常的使用中会偶发板簧断裂现象,在排除设计原因导致产品强度 不够导致断裂的前提下,为查找到断裂的根本原因对其分析过程进行详细诠释。 一、 断裂宏观微观分析 1.断裂位置 常规的板簧断裂位置为U型螺栓夹紧位置附近,此种断裂多为板簧寿命达 到极限,因板簧在设计过程中此区域为应力最大区(除等应力板簧)[2],见下图: 板簧中心孔发生断裂,此种断裂多为对板簧的夹紧出现松动,中心孔为U 型螺栓夹紧的范围内,此段通称为无效段,因U型螺栓夹紧后此段不受到任何 力的作用,但是当U型螺栓夹紧段发生松动后,此段将后受到外部传来的应力, 而中心孔位置本身就是“缺陷”位置,故会产生应力集中,从而导致板簧发生断 裂,此种断裂多数不为板簧本身质量问题。 板簧其他位置发生断裂,这种断裂通常为异常断裂,或因产品本身质量问题 导致断裂,或因外部原因导致板簧产生缺陷导致断裂。

腐蚀疲劳断口分析

西安石油大学本科课程设计(论文) 课程设计(论文) 题目:钻杆钢腐蚀疲劳的断口分析学院(系):材料科学与工程学院 专业:金属材料工程 班级:金材1002 学生姓名:李佳典 指导教师:雒设计 所在单位:西安石油大学 完成时间:2013年9月

目录 1.引言 (2) 2. 钻杆钢 (2) 2.1 钻杆钢的分类及应用 (2) 2.2 钻杆钢在腐蚀环境下的失效分析 (2) 3. 实验方法 (3) 3.1 实验材料的选用 (3) 3.2 断口的制备和保存及注意事项 (4) 4. 腐蚀疲劳的断口形貌分析 (4) 4.1 宏观断口形貌特征分析 (5) 4.2 疲劳裂纹源的微观断口形貌特征分析 (6) 4.3 疲劳裂纹扩展区的微观断口形貌特征分析 (7) 5. 结果分析 (8) 5.1 钻杆钢腐蚀疲劳断口形貌特征的影响因素 (8) 6. 结论 (8) 参考文献 (9)

1.引言 许多工程结构件的使用状态,不但是处于交变载荷和常温大气的条件下,而大多数是经受交变载荷和腐蚀介质的共同作用。金属的腐蚀疲劳[1]是工程中经常出现的一种现象,钻探管道,压缩机和燃气轮的叶片,舰船用螺旋桨和舵,蒸汽和水管道,化学工业中的泵轴等,往往遭受到腐蚀疲劳破坏。所以,随着现代化工业的发展,腐蚀疲劳已成为在石油、化工、冶金和海洋灯用钢结构中的重要研究课题之一。国外非常重视腐蚀疲劳研究工作,1973年召开过国际腐蚀疲劳会议。近些年来,已将断裂力学应用于腐蚀疲劳研究中,但是,国内对金属腐蚀疲劳研究很少。 鉴于我国目前海水用钢和抗硫化氢用钢等防腐蚀用钢发展的需要,应积极采取措施在现有疲劳试验机上增加腐蚀装置,大力开展腐蚀疲劳的实验研究工作。 2. 钻杆钢 2.1 钻杆钢的分类及应用 石油钻杆一般采用中碳合金钢,钢管都以热处理状态交货,通常采用调质热处理,得到回火索氏体组织,其具有良好的综合机械性能。按美国石油学会标准API5D钻杆按钢级可分为E-75,X-95,G-105,S-135,短线后的数字代表最小屈服强度,其中S135材质相对于36CrNiMo,36CrMnMo,30CrMn,也可以采用不锈钢材质,如00Cr13Ni5Mo。 钻杆是尾部带有缧纹的钢管,用于连接钻机地表设备和位于钻井底端钻磨设备或底孔装置。钻杆的用途是将钻探泥浆运送到钻头,并与钻头一起提高、降低或旋转底孔装置。钻杆必须能够承受巨大的内外压、扭曲、弯曲和振动。在油气的开采和提炼过程中,钻杆可以多次使用,钻杆的长度一般在九米左右。 光管和原钢管材在经过多次加工步骤后被制成钻杆。首先,通过钢管加厚工序的处理,光管外表面向内弯,钢管管壁加厚。下一步,进行螺纹加工并镀上能够增加强度的铜。然后进行非破坏性质量控制检验,随后进行钢管管体接头的焊接。而后,管体会经历焊接热处理和焊接最终处理,以消除焊接残余压力。在对成品钻杆进行渡漆和包装前要对钢管成品进行其他的一些检测,包括硬度测试,压力测试和非破坏性测试。 2.2 钻杆钢在腐蚀环境下的失效分析 钻杆腐蚀疲劳失效[2,3], 是腐蚀介质和弯曲交变载荷共同作用的结果从大量钻杆失效分析中观察到,腐蚀疲劳失效大都发生在内加厚过渡区终了处,即接头端面0.5~1.0m

断裂韧度与钢组织性能的关系

2007年11月第2卷 第4期 失效分析与预防 N ove m ber ,2007V o.l 2,N o .4 [收稿日期] 2007年2月26日 [修订日期] 2007年3月28日 [作者简介] 郭峰(1982年-),男,硕士研究生,主要从事金属材料方面的研究。 断裂韧度与钢组织性能的关系 郭 峰,李 志 (北京航空材料研究院,北京 100095) [摘 要] 本文阐述了断裂韧度与材料本征因素和基本力学性能的关系。合金成分、微量元素、夹杂物和第二相、显微组织与晶粒度是控制断裂韧度的关键因素,提出了改善断裂韧度的一些思路和方法,如改善晶界状态、细化晶粒尺寸、控制夹杂物的含量、变性变质夹杂物、改善材料组织结构都能改善材料的断裂韧。断裂韧度既是强度、塑性、冲击韧性的综合反映,同时具有独立的力学意义,断裂韧度与材料力学性能之间的关系使经济、有效地预测断裂韧度成为可能。[关键词] 断裂韧度;材料因素;力学性能 [中图分类号] O346.1 [文献标识码] A [文章编号] 1673-6214(2007)04-0059-06 Correl ation between K I C and M icrostructure and Properties of Steels GUO Feng ,LI Zhi (B eijing Institute of A eronauticalM aterials ,B ei j i ng 100095,Ch i na) Abstrac t :In t h i s paper ,the re l ations a m ong fract ure t oughness ,the essential factors and the basic m echan i ca l properti es of the m ater i a ls are i ntroduced .The key factors o f a ffecti ng t he facture toughness a re all oy com ponent ,m icro ele m ent ,i nclus i ons ,the second phases ,m i crostructure and the g ra i n size .Som e thoughts and me t hods tha tm ay i m prove t he fracture toughness o f the ma -ter i a l s are put f o r w ard ,for exa m ple ,am end i ng the state of the g ra i n i nte rface ,m aki ng t he gra i n size s m a l,l controlling t he con -tent o f t he i nclusi ons ,chang i ng the i ncl usion estate ,i m prov i ng the m ater i a lm icrostruct ure and so on .F rac t ure t oughness is not on l y t he i nteg rated refl ection of streng t h ,plasti c and i m pact toughness o f the m ater i a ls ,but a lso a spec ialty mechan i ca l property .T he relation bet ween the fracture toughness and o t her m echanical properti es m ake it possi ble to forecast the fracture toughness e -conom i ca lly and effec tive l y . K ey word s :fract u re t oughness ;m ate rials factors ;mechan i ca l property 1 引言 金属材料的失效是由于材料表面或内部裂纹(群)的萌生和扩展,随着裂纹的扩展,裂纹前端 的应力强度因子将达到临界应力强度因子,即材料的 断裂韧度 ,裂纹将迅速扩展而导致材料抵抗断裂的能力下降和丧失。因此,研究断裂韧度的影响因素,对于失效分析和预防有重要意义。 Griffth 于1920年根据能量原理提出的断裂准则表明:当裂纹扩展释放的能量超过了相同裂纹增量所需的表面能时,裂纹将失稳扩展。30年 后,O ro w an 通过对金属材料裂纹扩展的研究,指出裂纹扩展尖端产生一个塑性区。因此,在G rif-f th 判据基础上,提出塑性功和表面能成为裂纹失稳扩展的阻力。众所周知,实际材料总是不可避免地带有裂纹缺陷或容易产生裂纹缺陷,这样,在设计材料时必须考虑已具有裂纹的条件下的力学性能指标即断裂韧度。平面应变断裂韧度K I C 是在断裂力学的基础上建立起来的表征实际含裂纹构件抵抗裂纹失稳扩展的力学性能指标,其物理意义表示平面应变临界强度因子,即平面应变条件下,构件在静载荷作用下裂纹开始失稳扩展的K I (张开型裂纹的临界应力强度因子)。

载货汽车钢板弹簧断裂分析

载货汽车钢板弹簧断裂分析 张喆 长春一汽集团汽车材料研究所,长春市 130011 摘要:对工作中遇到的导致钢板弹簧断裂的多种原因进行了总结,探索了提高钢板弹簧疲劳寿命切实可行的有效方法。 关键词:钢板弹簧;失效分析 钢板弹簧是载货汽车悬架的重要组成部件,作为车轮运动轨迹的导向机构,使用底盘受力情况较好,是直接影响着汽车行驶的平顺性和操纵的稳定性。在汽车行驶过程中,钢板弹簧承受交变应力的作用,疲劳断裂是常见的失效形式。我厂设计生产的J6、J5P 、L501等系列车型的前后悬架上都使用了钢板弹簧,其疲劳寿命对整车质量有着重要的影响。 作者承担了技术中心的钢板弹簧断裂分析工作,本文对工作中遇到的导致钢板弹簧断裂的多种原因进行了总结,探索了提高钢板弹簧疲劳寿命切实可行的有效方法。 1.钢板弹簧材料标准和断裂分析依据 我厂载货汽车使用的钢板弹簧材料主要有50CrMnVA 、50CrVA 、60Si2MnA 、55SiMnVB 等,具有高强度和高可靠性,其性能和工艺性能见表1。 表1 普通弹簧钢力学性能 热处理制度 力学性能 伸长率 δ% 钢材牌号 淬火温度 (℃) 回火温度 (℃) 屈服点 бS ( MPa) 抗拉强度бb ( MPa) δ5 δ10 收缩率ψ% 50CrV A 850 油 500 1150 1300 10 40 55SiMnVB 860 油 460 1250 1400 5 30 60Si2MnA 870 油 440 1400 1600 5 20 作者工作过程中接触到了许多种类的断裂情况,其中既有在台架试验过程发生断裂,也有在道路试验过程中以及用户使用过程中发生断裂。目前,我们主要采用化学分析、断口分析以及金相检验等方法对断裂的钢板弹簧进行失效分析。分析检验主要按照下列标准进行: GB/T 19844-2005《钢板弹簧》、GB/T 1222-1984《弹簧钢》、JB/T 3782-1984《钢板弹簧金相检验标准》以及一些我厂的内部标准。 2.钢板弹簧断裂分析 导致钢板弹簧断裂的因素有很多,由于篇幅的限制不能一一论述,下面将针对工作中遇到的一部分具体原因分别进行举例阐述。 2.1 部分钢板弹簧选材的原因 在进行断裂分析试样中发现少量存在着材料与图纸要求不符的情况。图1所示为我厂12米城市客车车型2912010C1T 钢板弹簧图纸要求的55SiMnVB ,在用户使用过程中发生断裂后的断口照片,该断口形式为类似脆性断裂断口。化学分析的结果显示该弹簧材料为60Si2MnA ,图纸要求的不符。由于材料不符合图纸要求,导致后续的热处理工艺出现问题,弹簧硬度过高,从而产生了图1中的类似脆性断裂断口。

断裂力学和断裂韧性

断裂力学与断裂韧性 3.1 概述 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧! 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ], 就被认为是安全的了。而[σ],对塑性材料[σ]=σ s /n,对脆性材料[σ]=σ b /n, 其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。 3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度

金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。图中纵坐标表示原子间结合力,纵轴上方 为吸引力下方为斥力,当两原子间 距为a即点阵常数时,原子处于平 衡位置,原子间的作用力为零。如 金属受拉伸离开平衡位置,位移越 大需克服的引力越大,引力和位移 的关系如以正弦函数关系表示,当 位移达到X m 时吸力最大以σ c 表示, 拉力超过此值以后,引力逐渐减小, 在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏, 达到完全分离的程度。可见理论断裂强度即相当于克服最大引力σ c 。该力和位移的关系为 图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。分离后形成两个新表面,表面能为。 可得出。 若以=,=代入,可算出。 3.2.2 格里菲斯(Griffith)断裂理论 金属的实际断裂强度要比理论计算的断裂强度低得多,粗略言之,至少 低一个数量级,即 。 陶瓷、玻璃的实际断裂强度则更低。

45钢轴类零件断裂分析及预防

eat Treatment H热处理 45安徽省宿州模具热处理研究中心 (234000) 赵昌胜 安徽省煤田地质局水文勘探队机厂 (234000) 杨 峰 崔 晴 45钢由于价格便宜,来源方便,加工性能好, 淬火后具有较高的硬度,调质处理后具有良好的强 韧性、高的强度和一定的耐磨性,被广泛地应用于 中低档的轴类零件。但是45钢轴在热处理过程中, 由于材料本身的原因,热加工不当和热处理工艺安 排不合理,往往容易产生热处理断裂或在工作中发 生早期失效,造成产品报废,严重影响生产。 1. 柴油机曲轴热处理产生的裂纹及预防 某柴油机厂生产一批柴油机曲轴,该工厂采用 圆钢锻造,为了赶工期,采取的加工工序是:下料 →锻造→粗加工→调质→精加工→检验入库。该批 曲轴在淬火后,一部分曲轴的曲拐处产生裂纹,造 成了产品报废。 分析工序安排可看出,因为锻后没有进行退 火或正火,钢材在锻造时产生的锻造应力没有很 好地被消除,因此在热处理淬火时,淬火产生的 应力和原来轴中存在的应力叠加,当叠加应力超 过材料的强度极限时,45钢曲轴表面应力集中处 即产生裂纹。 针对45钢锻造曲轴产生裂纹原因,对45钢锻造 后的曲轴进行正火热处理,不仅消除了锻造产生的 1. 喷砂清理 采用手动压缩空气(0.5~0.6MPa)喷枪,经 过压缩空气带动细石英砂向螺纹部表面喷射清理。 喷砂清理时注意,应及时转动齿轮,不得过度清理 某处,以防其尺寸减小。喷砂采用的压缩空气应经 过滤,保证无油、无水。此方法特点是清理效率较 高,但现场粉尘较大,应安装除尘装置。图5为齿 轮喷砂清理示意。 2. 钢丝轮清理 利用电动机带动钢丝轮传动机构,设计并制成 合理的主动齿轮卡位机构,以利于对主动齿轮尾部 螺纹等进行均匀、彻底、安全的清理。此方法特点 是清理干净,效率高。图6为主动齿轮螺纹清理机 示意。 图5 齿轮喷砂清理示意 1.转台 2.喷嘴 3.枪体 4.主动齿轮 3.化学清理 将涂覆涂料部位浸泡在温度为60~80℃的10% ~15%NaOH溶液中2~3h,可使其残留的防渗涂层 溶解。(20111103) 图6 主动齿轮螺纹清理机示意 1.电动机 2.防护罩 3.钢丝轮 4.齿轮 5.卡位机构

相关文档
最新文档