基于弹塑性理论的落石碰撞恢复系数和峰值冲击力研究

基于弹塑性理论的落石碰撞恢复系数和峰值冲击力研究
基于弹塑性理论的落石碰撞恢复系数和峰值冲击力研究

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

岩土类材料的弹塑性力学模型及本构方程 摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。 关键词:岩土类材料,弹塑性力学模型,本构方程 不同的固体材料,力学性质各不相同。即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。 第一章岩土类材料 地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。 岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。归纳起来,岩土材料有3点基本特性:1.摩擦特性。2.多相特性。3.双强度特性。另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。4.土体的塑性变形依赖于应力路径。 对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。 固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复;(2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。因此,应力与应变是一一对应的关系。 固体材料的塑性变形具有以下特点:(l)塑性变形不可恢复,所以外力功不可逆。塑性变形的产生过程,必定要消耗能量(称耗散能或形变功);(2)在塑性变形阶段,应力和应变关系是非线性的。因此,不能应用叠加原理。又因为加载与卸载的规律不同,应力与应变也不再存在一一对应的关系,也即应力与相应的应变不能唯一地确定,而应当考虑到加载的路径(即加载历史);(3)当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生塑性变形的塑性区域。并且随着载荷的变化,两区域的分界面也会产生变化。 第二章弹塑性力学中常用的简化力学模型 对于不同的材料,不同的应用领域,可以采用不同的变形体模型。在确定力学模型时,要特别注意使所选取的力学模型必须符合材料的实际情况,这是非常重要的,因为只有这样才能使计算结果反映结构或构件中的真实应力及应

吉林省市(县)抗震设防烈度、设计基本地震加速度一览表

吉林省市(县)抗震设防烈度、设计基本地震加速度一览表

附件:吉林省市(县)抗震设防烈度、设计基本地震加速度一览表 烈度 地 区加速度ⅧⅦⅥ0.20g0.15g0.10g0.05g 长春长春、九台榆树、德惠、农安 吉林吉林、舒兰、永吉蛟河、桦甸、磐石 四平伊通、公主岭、梨树、四平白城大安白城镇赉、洮南、通榆 松原松原、前郭尔罗斯乾安扶余、长岭 辽源东丰、东辽、辽源 延边延吉、汪清、图们、珲春、 龙井、和龙、安图 白山抚松、靖宇

通化辉南、梅河口 吉林省乡镇抗震设防烈度区划一览表 地区区划 乡 镇 名称 地震动峰值加速度分区 ⅦⅥ 0.15 0.1 0.05 镇(乡)镇(乡)镇(乡) 长春长春市 大屯镇、永春镇、新立城镇、净月镇、泉眼镇、四家乡、 兴隆山镇、奋进乡、双德镇、玉潭镇、幸福乡、劝农山 镇、齐家镇、新安镇、三道镇、英俊乡、奢岭办事处、 城西乡、石溪乡、鹿乡镇、云山办事处、平湖办事处 佟家乡、太平镇、长 岭乡、山河办事处、 合心镇、兰家镇、土 顶镇 九台市 土门岭镇、西营城镇、沐石河镇、其塔木镇、饮马河镇、 龙家堡镇、卡伦湖镇、东湖镇、苇子沟镇、胡家回族乡、 卢家乡、二道沟乡、加工河乡、波泥河乡、莽卡满族乡、 九郊乡、庆阳乡、三台乡 城子街镇、六台乡、 上河湾镇、纪家镇、 春阳乡、鸡鸣乡、兴 隆镇 农安市 杨树林乡、哈拉海 镇、高家店镇、小城 子乡、黄鱼圈乡 三盛玉乡、永安乡、万顺乡、榛柴岗乡、新农乡、柴岗 镇、万金塔乡、青山口乡、靠山乡 伏龙泉镇、鲍家镇、 开安镇、合隆镇、烧 锅镇、华家镇、新刘 家外地人、巴吉垒镇、 前岗乡、滨河乡、龙 王乡、三岗乡、黄金

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

弹塑性接触分析

题1:表面光滑的刚性圆柱体与弹性平面的接触问题。有以下假设:接触体材料均匀连续,各向同性,在接触区内只产生服从虎克定律的弹性变形,接触区相比接触体表面很小且在其附近的表面是光滑的,压力垂直于物体接触面,接触面上的摩擦力忽略不计。各参数为:计算区域宽度为L=0.128mm,圆柱体半径R=0.5mm,弹性模量E=210GPa,泊松比,平面应变问题,P=50N/m,μ=0.3 1) 用有限元法求弹性平面应力分布; 2) 用有限元法求的弹性平面表面接触压力分布曲线,并与Hertz理论解作对比。 解: 1、使用有限元方法求解 (1)建立有限元模型 图1 有限元模型 如图1有限元模型,刚性圆弧半径为0.5mm,AB边长为0.128mm。可变形体采用PLANE42 μ=。单元,如图2设置为处理平面应变问题。材料参数为:弹性模量E=210000M Pa,泊松比0.3 图2 PLANE42的单元设置 (2)接触对设置 按照图3所示的各图完成接触对的设置;在接触对的设置过程中,将圆弧线定义为刚体,同时在坐标原点y方向上0.1mm处定义刚体的控制节点,利用此节点施加刚体的边界条件;选择图1所示的AB边作为可变形体的接触区域;最后使用翻转法线方向的命令,保证两接触对的法线方向相对。最后进行模型检测,看间隙是否过大,在接触单元Options中选择cnof/icont中选闭合Gap。接触算法采用软件默认的设置,不定义摩擦系数。

图3 设置接触对 (3)施加边界条件 如图4所示施加边界条件。约束可变形平面底边的所有自由度,约束刚体控制点x方向 的位移,并在刚体控制点上施加负y方向50N的压力。

第七章粘弹塑性模型的基本概念

第七章粘弹塑性模型的基本概念 7 . 1 引言 为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模 型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。 弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F独自反映材料本构关系的一个方面的特性。理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。实际工程材料的本构关系可以用这些简单模型的各种组合来构成。 理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图 7-1( a ))。其本构方程为虎克定律。一维条件下,如单轴压缩和纯剪清况下,表达式分别为: E (7.1.1) G (7.1.2)式中E——弹性模量、 G剪切模量。 剪切模量与弹性模量和泊松比的关系如下式所示: G E—(7.1.3) 2 1 式中——泊松比。 三维条件下本构方程可表示为下述形式: (7.1.4) m K 式中K ——体积弹性模量。

(a) (b) 图7-1理想弹性模型 体积弹性模量与弹性模量和泊松比的关系如下式所示: (7.1.6) 理想粘性模型又称牛顿粘滞体模型。通常用一粘壶(或称阻尼器)表示(图7-2 ( a ))。粘壶内充满粘滞液体和一个可移动的活塞。活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。一维条件如单轴压缩或纯剪情况下,表达式分别为: & (7.1.7) & (7.1.8) 式中、——粘滞系数由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。 与理想弹性体的方程相对应,类似式7.1.3,存在下述关系: (7.1.9)

地震峰值加速度与烈度对照表

地震峰值加速度与烈度对 照表 Final revision by standardization team on December 10, 2020.

地震峰值加速度与烈度对照表 地Array震 反 应谱:在给定的地震输入下,不同固有周期的地层或结构物将有不同 的振动位移反应,这种反应的时程曲线是由多种频率成分组成的振动 曲线,叫谱取对应于不同固有周期的位移时程曲线的最大值作为纵座 标,取所对应的固有的周期为横座标,由此绘成曲线,供抗震设计中 选用在设计周期下的相应振动幅值。 所谓地震反应谱,就是单自由度弹性系统对于某个实际地震加速 度的最大反应(可以是加速度、速度和位移)和体系的自振特征(自 振周期或频率和阻尼比)之间的函数关系。 由于地震的作用,建筑物产生位移、速度和加速度。人们把不同 周期下建筑物反应值的大小画成曲线,这些曲线称为反应谱。 一般来说,随周期的延长,位移反应谱为上升的曲线;速度反应 谱比较恒定;而加速度的反应谱则大体为下降的曲线。一般说来,设 计的直接依据是加速度反应谱。加速度反应谱在周期很短时有一个上 升段(高层建筑的基本自振周期一般不在这一区段),当建筑物周期 与场地的特征周期接近时,出现峰值,随后逐渐下降。出现峰值时的 周期与场地的类型有关:I类场地约为0.1~0.2s;Ⅱ类场地约为 0.3~0.4s;Ⅲ类场地约为0.5~0.6s;Ⅳ类场地约为0.7~ 1.0s;

建筑物受到地震作用的大小并不是固定的,它取决于建筑物的自振周期和场地的特性。一般来说,随建筑物周期延长,地震作用减小。 衡量地震作用强烈程度目前常用地面运动的最大加速度Amax作为标志,它就是建筑物抗震设计时的基础输人最大加速度,其单位为重力加速度g(9.81m/s)或Gal(gal=10mm/s),大体上,7度相当于最大加速度为l00Gal,8度相当于200Gal,9度相当于400Gal。 在地震时,结构因振动面产生惯性力,使建筑物产生内力,振动建筑物会产生位移、速度和加速度。地震力大小与建筑物的质量与刚度有关。在同等的烈度和场地条件下,建筑物的重量越大,受到地震力也越大,因此减小结构自重不仅可以节省材料,而且有利于抗震。同样,结构刚度越大、周期越短,地震作用也大,因此,在满足位移限值的前提下,结构应有适宜的刚度。适当延长建筑物的周期,从而降低地震作用,这会取得很大的经济效益。 但是,从世界范围来说,地震预报仍处于探索阶段,尚未完全掌握地震孕育发震的规律,地震预报主要是根据多年积累的观测资料和震例而作出的经验性预报,因此,不可避免地带有很大局限性。目前的地震预报水平和现状,大体可这样概括:人们对地震孕育发生的原理、规律有所认识,但还没有完全认识;能够对某些类型的地震作出一定程度的预报,但还不能预报所有的地震;做出的较大时间尺度中长期预报有一定的可信度,但短临预报的成功率还相对较低,特别是临震预报。

相关系数与P值地一些基本概念

相关系数与P 值的一些基本概念 注:在期末论文写作过程中,关于相关系数与假设检验结果的表达方式,出现了一些概念问题。这篇文档的内容是对一些相关资料进行整理后的结果,供感兴趣的同学参考。如果需要更确切的定义,请进一步参阅统计分析类的教材。 1. 相关系数 常用Pearson ’s correlation coefficient ,计算公式与传统概念上的相同,即: 常用符号r 表示。-1≤r ≤1 如果用于评估数据点与拟合曲线间的关联程度,则一般用相关系数的平方值表示,常用 符号为2R ,1R 02≤≤ 典型示例如下图。2R 相差不大,但显然数据规律完全不同。因此,一般需要结合拟合 曲线图表给出2 R ,才有参考价值。

相关系数另一方面的应用是用来评估两组数据之间相互关联的程度,简单来说,就是判断一下两参量之间是否“相关”,有3种可能的情况,如下面的图所示。 (1)r>0,正相关。x增大,y倾向于增大; (2)r<0,负相关。x增大,y倾向于减小; (3)r=0,不相关。x增大,y变化无倾向性; 此时的相关系数一般用r表示。下图给出了不同r取值的例子。 显然,如果只是用来判断两参量之间的“关联”性质,r=-0.70与r=0.70应该是相同的。所以也可用(常见)r的绝对值表达。用文字表述“关联”程度时,可参考下面的取值

范围建议: 需要注意的是,这种相关系数的计算方法给出的r值,实际上反映的是“线性相关”的程度,如果两者虽然相关,但不是线性的,很可能给出不是很靠得住的结果,观察下面的例子。 左下角图中,两参量显然相关,但“线性”程度不够,所以Pearson’s correlation coefficient只有0.88。 另外一种相关系数的计算方法,Spearman correlation coefficient,用来评估两参量之间的“单调相关性”。如上面左下角图中的Spearman相关系数=1。Spearman correlation coefficient计算公式为: 其中,n为样本数,

常用弹塑性料模型

常用弹塑性材料模型下表列出了ANSYS/LS-DYNA材料模型以及相应的LS-DYNA命令 B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3

B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDA TA,1,900e6 ! Yield stress (Pa) TBDA TA,2,445e6 ! Tangent modulus (Pa) B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy MP,ex,1,100e9 ! Pa MP,nuxy,1,.36 ! No units MP,dens,1,4650 ! kg/m3 TB,BKIN,1 TBDA TA,1,70e6 ! Yield stress (Pa) TBDA TA,2,112e6 ! Tangent modulus (Pa)

B.2.11. Plastic Kinematic Example: 1018 Steel MP,ex,1,200e9 ! Pa MP,nuxy,1,.27 ! No units MP,dens,1,7865 ! kg/m3 TB,PLAW,,,,1 TBDA TA,1,310e6 ! Yield stress (Pa) TBDA TA,2,763e6 ! Tangent modulus (Pa) TBDA TA,4,40.0 ! C (s-1) TBDA TA,5,5.0 ! P TBDA TA,6,.75 ! Failure strain

第七章-粘弹塑性模型的基本概念教学内容

第七章-粘弹塑性模型的基本概念

第七章 粘弹塑性模型的基本概念 7 . 1 引言 为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。 弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F 独自反映材料本构关系的一个方面的特性。理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。实际工程材料的本构关系可以用这些简单模型的各种组合来构成。 理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图7-1( a ))。其本构方程为虎克定律。一维条件下,如单轴压缩和纯剪清况下,表达式分别为: E σε= (7.1.1) G τγ= (7.1.2) 式中E —— 弹性模量、 G ——剪切模量。 剪切模量与弹性模量和泊松比的关系如下式所示: () 21E G ν=+ (7.1.3) 式中 ν ——泊松比。 三维条件下本构方程可表示为下述形式: m K νσε= (7.1.4) 式中 K ——体积弹性模量。

(a ) (b ) 图7-1 理想弹性模型 体积弹性模量与弹性模量和泊松比的关系如下式所示: () 312E K ν=- (7.1.6) 理想粘性模型又称牛顿粘滞体模型。通常用一粘壶(或称阻尼器)表示(图7-2 ( a ) )。粘壶内充满粘滞液体和一个可移动的活塞。活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。一维条件如单轴压缩或纯剪情况下,表达式分别为: σ?ε=& (7.1.7) τηγ=& (7.1.8) 式中 ?、η ——粘滞系数。 由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。 与理想弹性体的方程相对应,类似式7.1.3,存在下述关系: ()*21? ην=+ (7.1.9)

地震震级、烈度、抗震设防烈度、动峰值加速度的区分

地震震级、烈度、抗震设防烈度、动峰值加速度 1. 地震的震级 地震的震级是相对于某一次具体地震而言的,是根据仪器测试结果衡量某次地震释放的能量的来分级的,这个数据是唯一的。震级是衡量一次地震大小的等级,用符号M表示。震级的原始定义是:在离震中100km处的坚硬地面上,由标准地震仪(摆的自振周期为0.8s,阻尼为0.8,放大倍数为2800倍)所记录的最大水平位移A(单位为μm)的常用对数值M= lgA 。因为这个震级的定义是1935年里希特所给出的,故称为里氏震级。震级每相差1.0级,能量相差大约32倍;每相差2.0级,能量相差约1000倍。 微震:M<2的地震,人们感觉不到。 有感地震:M=2~4的地震。 破坏性地震:M>5的地震,建筑物有不同程度的破坏。 强烈地震或大地震:M=7~8的地震。 特大地震:M>8的地震。 2. 地震烈度 对于一次地震,表示地震大小的震级只有一个,但它对不同的地点影响程度是不一样的。一般说离震中愈远,受地震的影响就愈小,烈度也就愈低。对于一次地震的影响,随震中距的不同,可以划分为

不同的烈度区。国家根据地面破坏程度的观察和感觉,人为地划分了12个度,即世界上通用的麦氏烈度表(MM)。第12度是毁灭性的破坏程度。但总之,震级和地震烈度都是相对于某一次具体地震而言的。 3. 地震基本烈度 地震基本烈度其实是根据某地区地震的历史等因素综合考虑给定的,那是一种概率评估的结果。国家根据我国各地区不同情况,给出一个地震基本烈度表,以作为建筑物抗震能力设计的参考,具体见1999年由国家地震局颁布实施的《中国地震烈度表》。某地区如果划分的基本烈度大,则同样的建筑物要求的抗震级别就要高一些。 一个地区的基本烈度是指该地区今后50年时间内,在一般场地条件下可能遭遇到超越概率为10%的地震烈度。 4. 抗震设防烈度 抗震设防烈度是与建筑物的抗震性能要求有关的,它根据各地区的地震基本烈度、建筑物重要性等确定的抗震设防烈度,一个建筑物的取用的抗震设防烈度未必和该地区的抗震设防烈度一致。取用烈度还要考虑该建筑物的社会、政治、文化等的重要性并参考该地区抗震设防烈度综合考虑的。以阿拉伯数字表示烈度,如7~9度。 抗震规范将建筑物按其重要程度不同分为四类:甲、乙、丙、丁四个等级。 甲类建筑(特殊设防类,如核电站、存剧毒气体建筑、大型油气工程

相关系数

地震地磁观测与研究 S E I S M O L G I C A L N D G E O M A G N E T I C O B S E R V A T I O N A N D R E S A R C H 1999年第20卷第4期 Vol.20 No.4 1999 南黄海地震前江苏地磁Z21相关 系数异常分析 王桂友陆学振许忠祥陆学兵 摘要通过对江苏地区7个地磁台多年地磁Z21资料相关分析,检出地磁Z21相关系数异常与该区东部南黄海两次M S≥5.0地震有较好的对应关系。地震前地磁相关系数异常,对今后监视中强地震的短临前兆具有重要意义。 关键词地磁Z21;相关系数;异常分析 Analysis of abnormal correlation coefficient of geomagnetic Z21 in Jiangsu Province before the South Yellow Sea earthquake Wang Guiyou (Seismological Bureau of Haian,Jiangsu Province 226600,China) Lu Xuezhen,Xu Zhongxiang and Lu Xuebieng (Seismic Station of Haian,Jiangsu Province 226600,China) Abstract By using the method of correlation analysis to Z21 recorded in seven geomagnetic stations in Jiangsu Province for many years,we found that the abnormal correlation coefficient had good relationship with the two south Yellow Sea earthquakes of M S≥5.0.The result that the geomagnetic correlation coefficient is abnormal before an earthquake is significant for monitoring short term precursors of moderate earthquakes. Key words:geomagnetic Z21,correlation coefficiet,anomalistic analysis 引言 地球磁场主要可分为外源场和内源场,外源场源于太阳活动等外空电流体系产生的地球变化磁场。内源场又可分为热剩磁场和感应场,热剩磁场系地壳岩石受地磁磁化作用而获得的磁场,它具有永磁性和生成时代的地磁的方向性;而感应场则由于地壳构造运动的应变和外源场感应而变化。 地磁场日变化是一种依赖于地方时的周期性变化场。位于相邻纬度

粘弹塑性模型的基本概念

第七章 粘弹塑性模型的基本概念 7 . 1 引言 为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。 弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F 独自反映材料本构关系的一个方面的特性。理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。实际工程材料的本构关系可以用这些简单模型的各种组合来构成。 理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图 7-1( a ))。其本构方程为虎克定律。一维条件下,如单轴压缩和纯剪清况下,表达式分别为: E σε= (7.1.1) G τγ= (7.1.2) 式中E —— 弹性模量、 G ——剪切模量。 剪切模量与弹性模量和泊松比的关系如下式所示: () 21E G ν=+ (7.1.3) 式中 ν ——泊松比。 三维条件下本构方程可表示为下述形式: m K νσε= (7.1.4) 式中 K ——体积弹性模量。 (a ) (b ) 图7-1 理想弹性模型

体积弹性模量与弹性模量和泊松比的关系如下式所示: () 312E K ν=- (7.1.6) 理想粘性模型又称牛顿粘滞体模型。通常用一粘壶(或称阻尼器)表示(图7-2 ( a ) )。粘壶内充满粘滞液体和一个可移动的活塞。活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。一维条件如单轴压缩或纯剪情况下,表达式分别为: σ?ε= (7.1.7) τηγ= (7.1.8) 式中 ?、η ——粘滞系数。 由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。 与理想弹性体的方程相对应,类似式7.1.3,存在下述关系: ()*21? ην=+ (7.1.9) 式中 *ν ——粘性应变速率的横向比值。 (a ) (b ) 图7-2 理想粘性模型 理想粘性体的体积变化与形状变化速率无关, 即不具有体积粘性。因此,*ν应等于0.5 。于是式7.1.9成为: 3?η= () 这与弹性不可压缩时的E=3G 相对应。 在三维条件下理想粘性体本构方程可表示为:

地震峰值加速度与烈度对照表

地震峰值加速度与烈度 对照表 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

地震峰值加速度与烈度对照表 地Array震反 应 谱:在给定的地震输入下,不同固有周期的地层或结构物将有不同的振动位移反 应,这种反应的时程曲线是由多种频率成分组成的振动曲线,叫谱取对应于不同 固有周期的位移时程曲线的最大值作为纵座标,取所对应的固有的周期为横座 标,由此绘成曲线,供抗震设计中选用在设计周期下的相应振动幅值。 所谓地震反应谱,就是单自由度弹性系统对于某个实际地震加速度的最大反 应(可以是加速度、速度和位移)和体系的自振特征(自振周期或频率和阻尼 比)之间的函数关系。 由于地震的作用,建筑物产生位移、速度和加速度。人们把不同周期下建筑 物反应值的大小画成曲线,这些曲线称为反应谱。 一般来说,随周期的延长,位移反应谱为上升的曲线;速度反应谱比较恒 定;而加速度的反应谱则大体为下降的曲线。一般说来,设计的直接依据是加速 度反应谱。加速度反应谱在周期很短时有一个上升段(高层建筑的基本自振周期 一般不在这一区段),当建筑物周期与场地的特征周期接近时,出现峰值,随后 逐渐下降。出现峰值时的周期与场地的类型有关:I类场地约为0.1~0.2s; Ⅱ类场地约为0.3~0.4s;Ⅲ类场地约为0.5~0.6s;Ⅳ类场地约为0.7~ 1.0s; 建筑物受到地震作用的大小并不是固定的,它取决于建筑物的自振周期和场 地的特性。一般来说,随建筑物周期延长,地震作用减小。

衡量地震作用强烈程度目前常用地面运动的最大加速度Amax作为标志,它就是建筑物抗震设计时的基础输人最大加速度,其单位为重力加速度g (9.81m/s)或Gal(gal=10mm/s),大体上,7度相当于最大加速度为 l00Gal,8度相当于200Gal,9度相当于400Gal。 在地震时,结构因振动面产生惯性力,使建筑物产生内力,振动建筑物会产生位移、速度和加速度。地震力大小与建筑物的质量与刚度有关。在同等的烈度和场地条件下,建筑物的重量越大,受到地震力也越大,因此减小结构自重不仅可以节省材料,而且有利于抗震。同样,结构刚度越大、周期越短,地震作用也大,因此,在满足位移限值的前提下,结构应有适宜的刚度。适当延长建筑物的周期,从而降低地震作用,这会取得很大的经济效益。 但是,从世界范围来说,地震预报仍处于探索阶段,尚未完全掌握地震孕育发震的规律,地震预报主要是根据多年积累的观测资料和震例而作出的经验性预报,因此,不可避免地带有很大局限性。目前的地震预报水平和现状,大体可这样概括:人们对地震孕育发生的原理、规律有所认识,但还没有完全认识;能够对某些类型的地震作出一定程度的预报,但还不能预报所有的地震;做出的较大时间尺度中长期预报有一定的可信度,但短临预报的成功率还相对较低,特别是临震预报。 地震动峰值加速度:与地震动加速度反应谱最大值相应的水平加速度。g:重力加速度,地震时地面运动的加速度。可以作为确定烈度的依据。在以烈度为基础作出抗震设防标准时,往往对相应的烈度给出相应的峰值加速度。

软土本构模型综述

《软土地基》课程论文 学院建工学院 姓名王洋 学号

软土本构模型综述 1 引言 土体具有复杂的变形特征,如剪胀性、各向异性、受应力路径影响等。土体变形的这种复杂性是在复杂受力状态下表现出来的。复杂应力状态存在 6 个应力分量,也有 6 个应变分量。其间的关系是一种多因素物理量与多因素物理量之间的关系,不能由试验直接建立。须在简化条件的试验基础上,做某些假定及合乎规律的推理,从而提出某种计算方法,把应力应变关系推广到复杂应力状态。这种计算方法叫本构模型。 1.1 土的本构模型 发展到现在,土的本构模型数目众多,大致可以分为以下几大类: ( 1) 非线性模型; ( 2) 弹塑性模型; ( 3) 粘弹塑性模型; ( 4) 结构性模型。 对于软土而言,比较适用的一般为弹塑性模型。弹塑性模型是把总的变形分成弹性变形和塑性变形两部分,用虎克定律计算弹性变形部分,用塑性理论来解塑性变形部分。 1.2 变形假定 对于塑性变形,要作三方面的假定: ( 1) 破坏准则和屈服准则; ( 2) 硬化准则; ( 3) 流动法则。 不同的弹塑性模型,这三个假定的具体形式也不同。最常用的弹塑性模型为剑桥模型及其扩展模型。 2 剑桥模型与修正剑桥模型 1958 年,Roscoe 等发现了散粒体材料在孔隙比-平均有效应力-剪应力的三维空间里存在状态面的事实,1963 年,提出了著名的剑桥模型,1968 年,

形成了以状态面理论为基础的剑桥模型的完整理论体系。 Roscoe 等人将“帽子”屈服准则、正交流动准则和加工硬化规律系统地应用于Cam 模型之中,并提出了临界状态线、状态边界面、弹性墙等一系列物理概念,构成了第一个比较完整的土塑性模型。剑桥模型又被称为临界状态模型,是一个非常经典的弹塑性模型,它是第一个全面考虑重塑正常固结或弱超固结粘土的压硬性和剪胀性的模型,标志着土的本构理论发展新阶段的开始。 1968 年,Roscoe 等人在剑桥模型的基础上提出了修正剑桥模型,将原来的屈服面在p',q 平面上修正为椭圆,并认为在状态边界面内土体变形是完全弹性的。在状态边界面内,增加的剪应力虽不产生塑性体积变形,但可产生塑性剪切变形。修正剑桥模型是一种“帽子”型模型,在许多情况下能更好地反映土的变形特性。修正剑桥模型至今仍在工程中广泛应用,是因为它具有很多优点: 形式简单,模型参数少,参数确定方法简单( 只需常规三轴试验即可) ,参数有明确的物理意义,能够很好的反映重塑正常固结或弱超固结粘土的压硬性和剪缩性,因此修正剑桥模型是土力学中比较成熟而且应用广泛的弹塑性本构模型。同时,修正剑桥模型也有一定的局限性: 屈服面只是塑性体积应变的等值面,只采用塑性体积应变作硬化参量,因而没有充分考虑剪切变形; 只能反映土体剪缩,不能反映土体剪胀; 没有考虑土的结构性这一根本内在因素的影响; 假定的弹性墙内加载仍会产生塑性变形等。修正剑桥模型对实际情况进行了一系列假定: ①屈服只与应力球量p 和应力偏量q 两个应力分量有关,与第三应力不变量无关; ②采用塑性体应变硬化规律,以为硬化参数; ③假定塑性变形符合相关联的流动法则,即g( σ) = f( σ) ; ④假定变形消耗的功,即塑性功为: 剑桥模型是当前在土力学领域内应用最广的模型之一,其主要特点有: 基本概念明确; 较好地适宜于正常固结粘土和弱超固结粘土; 仅有3个参数,都可以通过常规三轴试验求出,在岩土工程实际工作中便于推广; 考虑了岩土材料静水压力屈服特性、剪缩性和压硬性。王清等分析了修正剑桥模型的应力应变关系,以其为基础引进了接触单元和杆单元,运用修正合格模型,用有限元程序模拟了

地震峰值加速度与烈度对照表

地震峰值加速度与烈度对照表

————————————————————————————————作者:————————————————————————————————日期:

地震峰值加速度与烈度对照表 地震反应谱:在给定的地震输入下,不同固有周期的地层或结构物将有不同的振动位移反应,这种反应的时程曲线是由多种频率成分组成的振动曲线,叫谱取对应于不同固有周期的位移时程曲线的最大值作为纵座标,取所对应的固有的周期为横座标,由此绘成曲线,供抗震设计中选用在设计周期下的相应振动幅值。 所谓地震反应谱,就是单自由度弹性系统对于某个实际地震加速度的最大反应(可以是加速度、速度和位移)和体系的自振特征(自振周期或频率和阻尼比)之间的函数关系。 由于地震的作用,建筑物产生位移、速度和加速度。人们把不同周期下建筑物反应值的大小画成曲线,这些曲线称为反应谱。 一般来说,随周期的延长,位移反应谱为上升的曲线;速度反应谱比较恒定;而加速度的反应谱则大体为下降的曲线。一般说来,设计的直接依据是加速度反应谱。加速度反应谱在周期很短时有一个上升段(高层建筑的基本自振周期一般不在这一区段),当建筑物周期与场地的特征周期接近时,出现峰值,随后逐渐下降。出现峰值时的周期与场地的类型有关:I类场地约为<0.0 5 0.05 0.1 0.15 0.2 0.3 ≥0.4 <Ⅵ Ⅵ Ⅶ Ⅶ Ⅷ Ⅷ ≥Ⅸ

0.1~0.2s;Ⅱ类场地约为0.3~0.4s;Ⅲ类场地约为0.5~0.6s;Ⅳ类场地约为0.7~1.0s; 建筑物受到地震作用的大小并不是固定的,它取决于建筑物的自振周期和场地的特性。一般来说,随建筑物周期延长,地震作用减小。 衡量地震作用强烈程度目前常用地面运动的最大加速度Amax作为标志,它就是建筑物抗震设计时的基础输人最大加速度,其单位为重力加速度g(9.81m/s)或Gal(gal=10mm/s),大体上,7度相当于最大加速度为l00Gal,8度相当于200Gal,9度相当于400Gal。 在地震时,结构因振动面产生惯性力,使建筑物产生内力,振动建筑物会产生位移、速度和加速度。地震力大小与建筑物的质量与刚度有关。在同等的烈度和场地条件下,建筑物的重量越大,受到地震力也越大,因此减小结构自重不仅可以节省材料,而且有利于抗震。同样,结构刚度越大、周期越短,地震作用也大,因此,在满足位移限值的前提下,结构应有适宜的刚度。适当延长建筑物的周期,从而降低地震作用,这会取得很大的经济效益。 但是,从世界范围来说,地震预报仍处于探索阶段,尚未完全掌握地震孕育发震的规律,地震预报主要是根据多年积累的观测资料和震例而作出的经验性预报,因此,不可避免地带有很大局限性。目前的地震预报水平和现状,大体可这样概括:人们对地震孕育发生的原理、规律有所认识,但还没有完全认识;能够对

常用弹塑性材料模型

常用弹塑性材料模型 7.2.1.1各向同性弹性模型各向同性弹性模型。使用MP命令输入所需参数: MP,DENS—密度 MP,EX—弹性模量 MP,NUXY—泊松比 此部分例题参看B.2.1,Isotropic Elastic Example:High Carbon Steel。 B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3 7.2.3.1 双线性各向同性模型 使用两种斜率(弹性和塑性)来表示材料应力应变行为的经典双线性各向同性硬化模型(与应变率无关)。仅可在一个温度条件下定义应力应变特性。(也有温度相关的本构模型;参看Temperature Dependent Bilinear Isotropic Model)。用MP命令输入弹性模量(Exx),泊松比(NUXY)和密度(DENS),程序用EX和NUXY值计算体积模量(K)。用TB和TBDATA 命令的1和2项输入屈服强度和切线模量: TB,BISO TBDATA,1,(屈服应力) TBDATA,2,(切线模量) 例题参看B.2.7,Bilinear Isotropic Plasticity Example:Nickel Alloy。 B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDA TA,1,900e6 ! Yield stress (Pa) TBDA TA,2,445e6 ! Tangent modulus (Pa) 7.2.3.5双线性随动模型 (与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹性和塑性)来表示材料的应

沥青混合料粘弹塑性本构模型的实验研究

沥青混合料粘弹塑性本构模型的实验研究沥青混凝土路面是近年来高速公路广泛采用的一种结构形式,随着公路运输量日益增长和运输向重型方向发展,路面破坏日趋严重。进行沥青混合料本构模型的研究,对掌握路面变形规律,预测路面结构永久变形大小,预防和抑制路面损害具有十分重要的意义。 文章针对沥青混合料单轴压缩、蠕变和恢复等力学特性,在实验基础上,结合理论和数值拟合分析,建立了沥青混合料不同形式的粘弹塑性本构模型,提出了模型参数确定方法,讨论了加载应力和环境温度对混合料力学行为的影响,并将模型预测结果与实验结果进行了比较,最后还初步分析了集料级配对沥青混合料力学行为的影响。主要内容包括:(1)提出并建立了沥青砂微分型粘弹塑性本构模型。 依据沥青砂蠕变特性,将总变形分解为粘弹性、粘塑性二种分量,采用Burgers模型描述粘弹性变形,采用滑块与粘壶并联模型描述粘塑性变形,然后加以组合,提出了基于二变形分量的粘弹塑性本构模型;进一步细分,将总变形分解为粘弹性、粘塑性和弹塑性三种分量,分别采用不同子模型描述上述分量,然后组合这些子模型,提出了基于三变形分量的粘弹塑性本构模型。基于较优模型,利用实验数据建立了参数与环境温度和加载应力的函数表达式,通过模型预测与实验结果的比较,证实模型可以较好地描述沥青砂三个蠕变阶段的变形特点。 (2)提出并建立了沥青砂、沥青混合料积分型粘弹塑性本构模型。将总变形分解为粘弹性和粘塑性变形,分别采用Schapery非线性模型描述粘弹性变形,采用Uzan模型描述粘塑形变形,提出了改进的Schapery积分模型,建立了积分型的非线性粘弹塑性本构关系,提出了非线性参数的实验确定方法,分别采用蠕变回

关于地震峰值加速度单位

比方说所有的7度多遇都是0.10g。这里没有一点调整和变化吗? 还有,为什么总以g为单位?g这里是指的什么?是重力加速度9.8m/s^2吗?0.10g换算成标准单位就是0.98m/s^2?为什么不直接用0.98m/s^2表示? 这是一个很有意思的问题,仔细说起来可以追溯到很早。 一、由烈度给出地震加速度 90年(包括之前)我们国家有《地震烈度区划图》,把我国按地震烈度进行了区划,就有了7度、8度和9度区,但是我们在设计时在进行动力分析时要用到地震加速度,怎么办?当时给出了对应关系:7度0.10g,8度0.20g,9度0.40g。 二、由地震加速度给出地震烈度 2001年我们国家出了一个《地震动参数区划图》,即按地震动参数(地震加速度、特征周期)对我国的地震影响进行了区划,建议不再采用地震烈度区划,而且地震加速度是给出了这几个档:0.05g、0.10g、0.15g、0.20g、0.30g和0.40g。并建议采用烈度的概念要转变为地震加速度概念。 原话是这样的: “附录D (提示的附录)——关于地震基本烈度向地震动参数过渡的说明 本标准直接采用地震动参数(地震动峰值加速度和地震动反应谱特征周期),不再采用地震基本烈度。现行有关技术标准中涉及地震基本烈度概念的,应逐步修正。在技术标准等尚未修订(包括局部修订)前,可以参照下述方法确定: a) 抗震设计验算直接采用本标准提供的地震动参数; b) 当涉及地基处理、构造措施或其他防震减灾措施时,地震基本烈度数值可由本标准查取地震动峰值加速度并按表D1确定,也可根据需要做更细致划分。 因此新的抗规就有了下面的7度0.10g、7度0.15g(俗称7度半)、8度0.20g、8度0.30g(俗称8度半)。 三、g就是9.8m/s^2,这是毫无疑问的,但是为什么不用国际标准单位,这也是人为的习惯因素吧。另外用的较多的还有gal(伽)这个概念,1g=1000gal 看来jetlee朋友是初步涉足工程抗震的新兵。根据2001建筑抗震规范,与设防烈度(注意:不是多遇烈度也不是基本烈度)7度对应的地震加速度可以是0.1g也可以是0.15g,所以,还是有一定变化范围的。如果不采用规范,而是采用安评报告,那么与7度对应的加速度变化范围还会更宽。 规范中加速度以g为单位自有它的道理。首先,粗略使用时可以看作g=10m/s2或者=1000cm/s2,所以只要将前面的系数放大10倍或1000倍就是实际的加速度值,而以g为单位以后,系数记忆起来比较好记,系数本身的量级不大也不小,使用方便,书写也方便,不容易出错。比如,如果以cm/s2为单位,那么1.5g 就要写成1500cm/s2,其中的1500显得数量大了一些,如同你去市场买钢材,如果以kg为单位,那么100吨就必须写成100000kg,数值既显得大,感觉也不直观。还有,如果你去买金戒指,如果以kg为单位,那么5g黄金戒指就要写成0.005kg,看起来是不是很不舒服,而且头脑中的形象也不直观呢?所以,人们总是希望用一种恰当的量作为单位,使得书写尽可能简单而且容易得到直观的感觉。 在抗震分析中采用g为单位还有一个重要原因,也就是为了与重力加速度进行比较,特别是在考虑竖向地震作用时,要使一个放置在地面的重物在地震中跳离地面,那么重物必须获得向上的大于1g的加速度,由此可以直观的感觉竖向地震加速度的强弱程度。由于人类很难测量到大于1g 的地震记录,以前总认为地震加速度不可能大于1g,并且发生过很多争论,但后来观察到一些巨大的石块在地震中发生位置移动,并

相关文档
最新文档