高一数学函数单调性1
高一数学必修一第三讲《函数的单调性与奇偶性》

注意:
①函数的奇偶性是函数的整体性质;
②定义域内的任意一个 x,则-x 也一定是定义域内的一个自变量
(即定义域关于原点对称)。
★★★利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定 f(-x)与 f(x)的关系;
③作出相应结论:
若 f(-x) = f(x) 或 f(-x)-f(x) = 0,则 f(x)是偶函数;
f (a2 1) f (a 1) 0 的实数 a 的取值范围.
家长签字:
第五讲 函数单调性与奇偶性的复习 一、必备基础
1.单调函数:增函数,减函数,单调性,单调区间 2.奇偶函数定义:奇偶函数图象性质
3.最值:设函数 y f x 定义域为 I,如果存在实数满足:①对于任意的 x I ,都有 f x M 。②存在 x0 I 使得 f x0 M ,那么称函数 y f x 有最大值为 M。
2、画出反比例函数 y 1 的图象。 x
(1)这个函数的定义域 是什么? (2)它在定义域 上的单调性是怎样的?证明你的结论。
家长签字:
第3页共8页
一、偶函数
暑期预科:函数
第四讲 奇偶性
勤动笔,多思考! 各位,加油!!
画出函数 f (x) x 2 和函数 f (x) | x | 的图象,思考并讨论以下问题:
你能仿照函数最大值的定义,给出函数 y f (x) 的最小值 (min imum value )的定义吗? 例 5、求函数 f (x) x 1 在区间 (0,2) 上的最小值。
x
第2页共8页
暑期预科:函数
勤动笔,多思考! 各位,加油!!
例
6、已知函数
y
2( x 1
高一数学 函数单调性讲解

高中数学必修一函数——单调性考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。
能力解读:函数单调性的判断和函数单调性的应用。
利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。
掌握并熟悉抽象函数以及符合函数的单调性判断方法。
知识要点:1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用一、单调性的定义(1)设函数)(x f y =的定义域为A ,区间A I ⊆如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间(2)设函数)(x f y =的定义域为A如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的最大值;如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的最小值。
二、函数单调性的证明重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;定义法判断单调性:如果用定义证明)(x f y =在某区间I 上的单调性,那么就要用严格的四个步骤,即①取值;②作差;③判号(关键化成因式的乘积);④下结论。
高一数学讲义函数的单调性

函数的单调性、知能点全解:知能点一: 函数单调性的定义 1、图形描述:从函数2x y =的图象(图1)看到:图象在 y 轴的右侧部分是从左向右连续上升的,也就 是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果任取21,x x [)0,∈+∞,得到1y =)(1x f ,2y =)(2x f ,那么当1x <2x 时,有1y <2y 。
这时我们就说函数)(x f =2x 在[0,+ ∞)上是增函数。
图象在y 轴的左侧部分是从左向右连续下降的,也就是说, 当x 在区间(],0-∞上取值时,随着x 的增大,相应的y 值反而随着减小,即如果任取21,x x (],0∈-∞,得到1y =)(1x f ,2y =)(2x f ,那么当1x <2x 时,有1y >2y 。
这时我们就说函数)(x f =2x 在(-∞,0)上是减函数. 2、定量描述对于函数)(x f 的定义域I 内某个区间D 上的任意两个自变量的值21,x x , (1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在区间D 上是增函数; (2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在区间D 上是减函数。
3、单调性与单调区间若函数y =)(x f 在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。
此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
特别提醒:1、函数是增函数还是减函数,是对定义域内某个区间而言的。
有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数2x y =(图1),当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数。
而有的函数在整个定义域上都是单调的,如图2。
(完整)数学必修1专题1:抽象函数的单调性

数学必修1专题1:抽象函数的单调性1. 三类抽象函数的类型及其单调性分析(1) 已知定义在R 上的函数)(x f 对任意实数y x 、都满足)()()(y f x f y x f +=+,且当0>x 时,0)(>x f .判断)(x f 的单调性并证明.证明:令0==y x ,则)0()0()00(f f f +=+ ∴0)0(=f令x y -=,则0)()()0()(=-+==-x f x f f x x f ∴)()(x f x f =-在R 上任取21x x ,,且使21x x < 0)()()()()(121212<-=-+=-x x f x f x f x f x f 即)()(12x f x f <由定义可知)(x f 在R 上为单调递减函数(2) 已知函数)(x f 的定义域是()∞+,0,满足)()()(y f x f xy f +=,且当1>x 时,0)(>x f .判断)(x f 的单调性并证明.证明:令1==y x ,则)1()1()1(f f f += ∴0)1(=f 令x y 1=,则0)1()()1()1·(=+==x f x f f x x f ∴)()1(x f xf -= 任取()∞+∈,,021x x ,且使21x x <0)()1()()()(121212>=+=-x x f x f x f x f x f 即)()(12x f x f > 由定义可知)(x f 在()∞+,0上为单调递增函数(3) 已知函数)(x f 的定义域是()∞+,0,且对一切00>>y x ,都有)()()(y f x f yx f -=,当1>x 时,有0)(>x f .判断)(x f 的单调性并证明.证明:令1==y x ,则)1()1()1(f f f += ∴0)1(=f任取()∞+∈,,021x x ,且使21x x < 则0)()()(1212>=-x x f x f x f 即)()(12x f x f > 由定义可知)(x f 在()∞+,0上为单调递增函数2. 简短评价(1) 注意三类函数的定义域不同的区别;(2) 其实我们可以看出解题的思路大致一样:求出)0(f 或)1(f ;令x y -=或xy 1=针对练习:1。
高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析1.画出函数y=|x-1|的图象,并根据图象写出函数的单调区间,以及在各单调区间上,函数是增函数还是减函数。
【答案】见解析【解析】对于画含绝对值的函数的图像,先去绝对值号(注意一定要明确自变量的取值范围,选择与之对应的对应关系),写成分段函数,画出函数图像,函数图象从左到右上升的区间为增区间,下降的区间为减区间,结合图象可得答案.试题解析:由y=|x-1|=画出函数的图像,可得函数的单调区间是,1)减函数,)增函数。
【考点】查函数的单调性,数形结合是解决问题的关键2.函数的最小值为.【答案】5.【解析】首先将函数化简为,该式子可以看作是点到两个定点、的距离.即将求“函数的最小值”问题转化为“求的最小值” ,作出函数图像如下图所示,过点作其关于轴的对称点,连接,交轴于点.此时由三角形的两边之和大于第三边可得:此时取得最小值,即,即为所求.【考点】直线方程的应用.3.已知奇函数f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角且,则下列结论正确的是()A.B.C.D.【答案】B【解析】∵奇函数在[-1,0]上是减函数,∴在[0,1]上是增函数,又∵是锐角三角形两内角,∴,又∵,∴,∴,B正确,A错误;.对于C,D:∵为锐角三角形两内角,∴,∴,即,∴,∴C正确,D错误.【考点】1、奇函数单调性的判断;2、三角函数值的大小比较.4.下列函数在其定义域上,既是奇函数又是减函数的是()A.B.C.D.【答案】C【解析】由奇函数和减函数的概念可知选C.【考点】1.函数的奇偶性;2.函数增减性.5.设定义域为的函数(Ⅰ)在平面直角坐标系内作出函数的图象,并指出的单调区间(不需证明);(Ⅱ)若方程有两个解,求出的取值范围(只需简单说明,不需严格证明). (Ⅲ)设定义为的函数为奇函数,且当时,求的解析式.【答案】(Ⅰ)作图岁详解.单增区间:,,单减区间,;(Ⅱ)或;(Ⅲ).【解析】(Ⅰ)利用一次函数、二次函数的图象及对称性可作出图象,然后根据图象可写单调区间;(Ⅱ)考虑直线与函数的图象只有两个交点时,写出满足的条件;(Ⅲ)当时,,由此可得到的解析式,然后利用函数奇偶性可求得的解析式,又由奇函数的特性易知,进而可求得的解析式.试题解析:(Ⅰ)如图.单增区间:,,单减区间,.(Ⅱ)在同一坐标系中同时作出图象,由图可知有两个解,须或,即或.(Ⅲ)当时,,因为为奇函数,所以,且,所以.【考点】1、分段函数的图象;2、函数单调性及奇偶性.6.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)【答案】(Ⅰ);(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【解析】(1)分析可知当时,车流速度为常数所以此时。
3.2.1第1课时函数的单调性(教学课件)-高中数学人教A版(2019)必修第一册

A.(-∞,1]
B.(-∞,2]
()
C.[1,+∞)
D.[2,+∞)
【答案】B 【解析】∵函数 f(x)=x2-(a-1)x+5 图象的对称轴为 x=a-2 1,且
f(x)在区间12,1上单调递增,∴a-2 1≤21,即 a≤2.
3.(题型3)函数f(x)是定义域上的单调递减函数,且图象过点(-3,2) 和(1,-2),则使|f(x)|<2的x的取值范围是________.
设x1,x2是f(x)定义域某一个子区间M上的两个变量值,如果f(x)满足 以下条件,该函数f(x)是否为增函数?
(1)对任意 x1<x2,都有 f(x1)<f(x2); (2)对任意 x1,x2(x1≠x2),都有(f(x1)-f(x2))(x1-x2)>0; (3)对任意 x1,x2(x1≠x2)都有fxx11- -fx2x2>0.
【答案】-1,12 -1≤x≤1,
【解析】由题意得x<21,
解得-1≤x<12.
题型4 根据函数的单调性求参数的取值范围 已知函数f(x)=x2-2ax-3在区间[1,2]上具有单调性,求实数a
的取值范围. 素养点睛:考查直观想象和数学运算的核心素养. 解:由于二次函数图象的开口向上,对称轴为x=a,故其增区间为
(2)画出函数y=-x2+2|x|+1的 图象并写出函数的单调区间.
素养点睛:考查直观想象和逻 辑推理的核心素养.
【答案】(1)[-2,1] [3,5] [-5, -2] [1,3]
【解析】观察图象可知,y=f(x)的单调区间有[-5,-2],[-2,1], [1,3],[3,5].其中 y=f(x)在区间[-5,-2],[1,3]上具有单调递增,在区 间[-2,1],[3,5]上单调递减.
1高一数学函数的单调性(1对1)
师:什么是函数的单调性呢? 生:回答师:我们在函数单调性的知识点上重点考察的题型有哪些呢? 生:回答师:我们通过今天的学习一起来回顾一下单调性的重点题目。
一、用定义证明函数的单调性:定义法证明函数在某个区间上是增(减)函数是最基本方法其步骤是: 1、取量定大小:即设21,x x 是区间上的任意两个实数,且1x <2x ;2、作差定符号:即()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形;3、判断定结论: 即根据定义得出结论。
二、判断较复杂函数的单调性的几条有用的结论 1、函数()y f x =-与函数()y f x =的单调性相反 2、当()f x 恒为正或恒为负时,函数()1y f x =与函数()y f x =的单调性相反 3、在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数,减函数-增函数=减函数。
三、复合函数单调性的判断对于函数)(u f y =和)(x g u =,如果)(x g u =在区间),(b a 上是具有单调性,当),(b a x ∈时,),(n m u ∈,且)(u f y =在区间),(n m 上也具有单调性,则复合函数在区间具有单调性的规律见下表:)(u f y = ),(n m u ∈ 增 ↗ 减 ↘ )(x g u = ),(b a x ∈增 ↗减 ↘增 ↗减 ↘函数的单调性))((x g f y = ),(b a x ∈增 ↗ 减 ↘ 减 ↘ 增 ↗以上规律还可总结为:“同增异减”。
(20-40分钟)类型一用定义证明函数的单调性例1:证明:函数f (x )=2x 2+4x 在(-∞,-1]上是减函数.练习1:证明函数f (x )=-x 在定义域上是减函数练习2:(2014~2015学年度宁夏育才中学中学高一上学期月考)设函数f(x)=x+2x+1,用单调性定义证明在(-1,+∞)上是减函数。
类型二 证明含参数的函数的单调性例2:已知函数f (x )=axx 2-1(a 为常数且a ≠0),试判断函数f (x )在(-1,1)上的单调性.练习1:判断函数f (x )=a x(a 为常数且a ≠0)在(0,+∞)上的单调性.考点练习2:判断函数()()20x af x a x-+=>在(),0-∞上的单调性类型三 证明抽象函数的单调性例3:已知函数y =f (x )在(0,+∞)上为增函数,且f (x )<0(x >0),试判断F (x )=1f x在(0,+∞)上的单调性,并证明.练习1:已知函数y =f(x)在(0,+∞)上为减函数,且f(x)<0(x>0),试判断F(x)=f ²(x)在(0,+∞)上的单调性,并证明练习2:(2014~2015学年度江苏泰州三中高一上学期期中测试)函数f(x)=x ²+2x +3在[-1,+∞)的单调性为____类型四 求函数的单调区间例4:求函数y =x +1x,x ∈(0,+∞)的单调区间,并画出函数的大致图象.练习1:求函数f (x )=11-x 的单调区间.练习2:函数()211x x y x -=--的单调递减区间是类型五 利用单调性解不等式例5:已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (a 2-1),求a 的取值范围.练习1:已知f (x )是定义在[-1,1]上的增函数,且f (x -2)<f (1-x ),求x 的取值范围.练习2:函数f (x )在(-∞,+∞)上是减函数,且a 为实数,则有( ) A .f (a )<f (2a ) B .f (a 2)<f (a ) C .f (a 2+1)<f (a )D .f (a 2-a )<f (a )类型六 用单调性求最值例6: 求f (x )=x +x -1的最小值.练习1: (2014~2015学年度山东济宁市兖州区高一上学期期中测试)已知f (x )=1x -1,x ∈[2,6],求函数f (x )的最大值和最小值.练习2: 函数1y x =+在[]2,2-上的最大值与最小值分别为 。
高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时) 函数单调性
3.2函数的基高一数学复习知3.2.1单调性与最大函数单调数的基本性质复习知识讲解课件最大(小)值(第1课时)数单调性在区间D上单调递增在区间D上单调递减要点2 函数的单调区间如果函数y =f (x )在区间D 上__________这一区间具有_________________,区间注意:(1)函数单调性关注的是整个区间单调递增或(严格的)单调性问题,所以单调区间的端点若属于定义域点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大_______________,那么就说函数y =f (x )在区间D 叫做y =f (x )的单调区间.个区间上的性质,单独一点不存在单调性递增或单调递减义域,则该点处区间可开可闭,若区间端可能大.3.通过上面两道题,你对函数的单调 答:函数单调性定义中的,必须是x 1x 2时,要注意保持其任意性.的单调性定义有什么新的理解? 必须是任意的,应用单调性定义解决问题课时学案探究1 (1)证明函数的单调性的常用方是:①取值,在给定区间上任取两个自变量进行代数恒等变形,一般要出现乘积形式根据条件判断f (x 1)-f (x 2)变形后的正负;(2)讨论函数的单调性常见有两种:一种数在定义域的子区间上具有不同的单调性常用方法是利用函数单调性的定义,其步骤自变量x 1,x 2;②作差变形,将f (x 1)-f (x 2)形式,且含有x 1-x 2的因式;③判断符号,;④得出结论.一种是参数对单调性的影响,一种是函调性.思考题2 (1)如图所示为函数f (x )的图________________________,单调递减区间[-1,0],[1,2],[3,4] 的图象,其单调递增区间是_________减区间是________________________.[0,1],[2,3](2)【多选题】设f (x ),g (x )都是单调函数A .若f (x )单调递增,g (x )单调递增,B .若f (x )单调递增,g (x )单调递减,C .若f (x )单调递减,g (x )单调递增,D .若f (x )单调递减,g (x )单调递减,调函数,则下列命题中正确的是(),则f (x )-g (x )单调递增,则f (x )-g (x )单调递增BC ,则f (x )-g (x )单调递减,则f (x )-g (x )单调递减探究3求函数的单调区间常用方法方法:①图象法;②利用已知函数的单调性;③定义法.课 后 巩 固1.函数y=x2-6x+10在区间(2,A.减函数C.先减后增函数4)上是()B.增函数CD.先增后减函数2.设(a ,b ),(c ,d )都是函数f (x )的单调d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是(A .f (x 1)=f (x 2) C .f (x 1)>f (x 2) 的单调递增区间,且x 1∈(a ,b ),x 2∈(c ,)D B .f (x 1)<f (x 2) D .不能确定3.函数y =|x |-1的单调递减区间为A .(0,+∞) C .(-∞,-1)解析解析 y =|x |-1=x -1,x ≥0,-x -1,x <0,易知( )B .(-∞,0)B D .(-1,+∞)易知其单调递减区间为(-∞,0).故选B.4.【多选题】已知四个函数的图象如的函数是()BC图象如图所示,其中在定义域内具有单调性自助 餐一、证明单调性的探究1 单调性的证明证明某个函数在给定区间上的单调性明.它的步骤如下:第一步:取值.设x 1,x 2是给定区间上第二步:作差变形.写出差式f (x 1)方等手段,向有利于判断差的符号的方向变形式.第三步:判断符号.根据已知条件,第四步:下结论.根据定义,作出结论调性的方法与技巧调性,最常用的方法就是用定义去证区间上的任意两个自变量的值,且x 1<x 2. -f (x 2),并且通过提取公因式、通分、配方向变形,一般写成几个最简因式相乘的,确定f (x 1)-f (x 2)的符号. 出结论.(5)图象变换对单调性的影响.①上下平移不影响单调区间,即y ②左右平移影响单调区间.如=2的减y x 间为(-∞,-1].③y =kf (x ),当k >0时单调区间与f (x=f (x )和y =f (x )+b 的单调区间相同. 的减区间为-∞,,=+2的减区(0]y (x 1))相同,当k <0时与f (x )相反.例2 已知f (x )>0在R 上恒成立,并且满f (x )>1,求证:f (x )在R 上是增函数.【证明证明】】 设x 1,x 2∈R 且x 1<x 2,则∵x >0时,f (x )>1,∴f (x 2-x 1)>1,又f (x )>0在R 上恒成立∴f (x 2)=f ((x 2-x 1)+x 1)=f (x 2-x 1)·f (∴f (x )在R 上是增函数. 并且满足f (x +y )=f (x )·f (y ),当x >0时,则x 2-x 1>0,成立,x 1)>f (x 1).。
高一数学函数单调性的证明 图文
1、单调增函数与单调减函数
一般地,设函数y = f(x) 的定义域为I,区间D I.
如果对于区间D内的任意两个值x1、x2,当当xx11<<xx22时时,,都都 有f(x1)<f(x2),那么就说y=f(x)在区间D上是单调增函数, D称为y=f(x)的单调增区间. 如果对于区间D内的任意两个值x1、x2,当x1<x2时,都 有f(x1)>f(x2),那么就说y=f(x)在区间D上是单调减函数, D称为y=f(x)的单调减区间.
内y随x的增大而增 y随x的增大而减小;
例1:画出下列函数的图象
(1)y = x
x1
y y=x
1·
O 1· x
此函数在区间 大,在区间
f(x1)
内y随x的增大而增 y随x的增大而减小;
例1:画出下列函数的图象
(1)y = x
y
1·
x1 O
y=x
1· x
f(x1)
此函数在区间 大,在区间
内y随x的增大而增 y随x的增大而减小;
取值
2(x1x2)
作差变形
∵ x1 x2
∴ x1x2 0, 2(x1x2)0 ∴ f(x1)f(x2)0,即 f(x1)f(x2).
定号
∴ f(x)2x2在R上是单调减函数. 下结论
例3 证明:函数 f(x)x22x 在3区间
(-1,+∞)上是单调增函数.
证:在区间(-1,+∞)上任意取两个值 x1,,x2且 ,
y
f(x2)
图 象 f(x1)
0
图象 特征 数量 特征
在区间I内
y=f(x)
·
y
函数的单调性与最值课件-高一上学期数学湘教版(2019)必修第一册
1 < 4, 1 > (4)
类似地:
(1, (1))
(4, (4))
2 < 3, 2 > (3)
3.5 < 5, 3.5 > (5)
活动探究
追问1
由y随x增大而减小,任取两个
不同的x值,就能根据他们的大
小关系,写出函数值的大小关
系.那么,这个描述反过来是
否成立呢?
都考察一遍呢?如果不能,那又该怎样定量描述这种变化.
“所有”=“全部”=“任意”=“每个”
任取两个
在(0, +∞)内,任取两个自变量的值,记为1 和2 ,
y随x的增大而减小
对整体的直观描述
当1 < 2 时,都有 1 > (2 )
对具体值的量化描述
活动探究
在(0, +∞)内,任取两个自变量的值,记为1 和2 ,
活动探究
追问2
在之前的数学学习中,你还见过哪些类似这样的变化特征呢?
函数值随自变量的增大而增大或减小
增减性
(初中)
y=2x 在R内,y随x的增大而增大.
1
y=
在(−∞, 0)和(0, +∞) 内,
都是y随着x的增大而减小.
活动探究
追问3
你觉得这种对函数变化趋势的描述有什么不足之处吗?
y=2x 在R内,y随x的增大而增大.
并指定大小关系,比如1 < 2 ;
第二步,作差变形
计算 1 与 2 的差,对表达式进行变形整理,改写
成一些因式乘积的形式;
第三步,判断符号
结合1 ,2 的大小关系,判断出上一步中得到的式子的
正负,从而确定 1 与 2 的大小关系;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 案 课题:函数的单调性(一)
教材:苏教版必修(1)
1.教学目标
(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数的单调性的方
法.
(2)过程与方法:从生活实际和已有旧知出发,引导学生探索函数的单调性的
概念,应用图象和单调性的定义解决函数单调性问题,使学生领会数形结合的数
学方法,培养学生发现问题、分析问题、解决问题的能力.
(3)情感态度价值观:使学生体验数学的严谨性,培养学生细心观察、归纳、
分析的良好习惯和不断探求新知识的精神.
2.教学重点 (1)函数单调性的概念;
(2)运用函数单调性的定义判断和证明一些函数的单调性.
教学难点 利用函数单调性的定义判断和证明函数的单调性.
3.教学方法和教学手段 探索发现法和运用多媒体教学.
4.教学过程
(一)问题情境
(播放中央电视台天气预报的音乐)
如图为宿迁市2006年元旦这一天24小时内的气温变化图,观察这张气温变
化图:
问题1 怎样描述气温随时间增大的变化情况?
问题2 怎样用数学语言来刻画上述时段内“随着时间的增大气温逐渐升
高”这一特征?
问题3 在区间[4,16]上,气温是否随时间增大而增大?
(二)定义形成
1、单调增函数、单调减函数
设函数)(xfy的定义域为A,区间IA.
如果对于区间I内的任意两个值21,xx,若当1x<2x时,都有)(1xf<)(2xf,
那么就说)(xfy在区间I上是单调增函数,I称为)(xfy的单调增区间.
如果对于区间I内的任意两个值21,xx,若当1x<2x时,都有)(1xf>)(2xf,
那么就说)(xfy在区间I上是单调减函数,I称为)(xfy的单调减区间.
2、单调性、单调区间
若函数y = f(x)在区间I上是单调增函数或单调减函数,那么就说函数
)(xfy
在区间I上具有单调性,单调增区间和单调减区间统称为单调区间.
(三)定义运用
1、回到问题情境,提出问题:你能找出气温图中的单调区间吗?
2、回顾初中学过的函数,说出所列举具体函数的单调区间,并判断函数在
各区间上的单调性.运用函数单调性的定义,证明你判断的结论.
(1)22xy;
(2)322xxy;
(3)xy1.
运用实物投影,投影个别学生的证明,纠正出现的问题,规范证明的格式.请
学生归纳运用定义法探求并证明函数单调性的步骤,投影演示:①取值;②作差
变形;③定号;④判断.
(四)问题讨论
问题 讨论函数1)(xxxf的单调性.
实际问题 在一碗水中,加入一定量的糖,糖加得越多糖水就越甜.你能
运用所学过的数学知识来解说这一现象吗?
(五)课堂小结
1、函数单调性的定义.
2、判断、证明函数单调性的方法:图象、定义.
(六)作业布置
(1)阅读课本P34-35 例2
(2)书面作业:课本P43 1、4、7
课后尝试
1、若定义在R上的单调减函数)(xf满足)3()1(afaf,你知道a的取值范
围吗?
2、二次函数cbxxy2在[0,+∞)是增函数,你能确定字母b的值吗?
教学设计说明
本节课是一节概念课.函数单调性的本质是利用解析的方法来研究函数图象
的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难
点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范
的书面表达.
围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:
1、重视学生的亲身体验.具体体现在两个方面:①将新知识与学生的已有
知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识,学生对
“y随x的增大而增大”的理解;②运用新知识尝试解决新问题.如:对函数
1)(x
x
xf
在定义域上的单调性的讨论.
2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化
为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学
生认知结构升华、发现的过程.
3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实
践运用定义.
4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.