煤化工废水处理方式
煤化工废水零排放技术要点及问题的处理

煤化工废水零排放技术要点及问题的处理摘要:水是生命之源,水质量的高低与人们的身体健康有着紧密的联系。
煤化工建设不断加快,其中煤化工废水处理是煤化工建设最重要的环节和组成部分。
煤化工废水处理在环境保护中扮演着重要角色,占据着关键位置。
为了进一步提升环境质量,我国提高了对于煤化工废水的处理力度。
人们应加强对其的关注与重视,对煤化工废水处理在环境保护工程中的重要性进行分析,以促进我国环境保护工程的有序发展。
1 煤化工废水处理技术设计以某煤化工企业为例,企业建立了当地煤化工废水零排放项目。
水处理单位考察了该煤化工企业,并根据企业的实际情况选择了膜分盐浓缩技术以及分质结晶技术完成对废水的处理。
在试验阶段,水处理单位将企业的部分生产车间用于改造中,将废水采用膜浓缩处理技术后,对剩余的浓水利用分盐结晶单元加以处理,使产出水可以达到生产回收的要求,并且分离出来的硫酸钠晶体以及氯化钠晶体等,均可以达到煤化工副产工业盐的基本要求,促使资源得到高效回收与利用。
同时在处理过程中可将纯净水收集起来用于其他项目的使用。
若将该处理技术用于该煤化工企业的全套废水处理中,可以有效解决当地的废水问题,同时还可以为当地提供更多的水资源,为保护当地生态提供一份力量,并且该项目具有良好的发展前景,将会成为企业的特色,最终为企业经济效益的提高发挥作用。
2 零排放技术在煤化工废水处理中的应用思考2.1 煤化行业废水零排放应用思路1)通过节水来提高对水资源的利用。
通过减少水资源的使用以及将废水和废水加工处理后进行重复利用未达到节约水资源的目的。
2)采用废水处理技术。
将浓度超标的废水采用不同的工艺处理后加工为浓缩液并存放在固定的区域,避免排放到周边居民生活区或者生态环境中。
例如高盐废水,经过浓缩处理后成为固体或者浓缩液,不再以废水的形式进行排放。
2.2 零排放技术在煤化工废水处理中的强化措施2.2.1 水质受影响企业经营者都想用较低的成本换取更大的效益,为了实现高效低能生产,需要根据废水处理要求进行多方面的调整,从而达到理想效果。
蒸发结晶技术在煤化工废水零排放领域的应用

蒸发结晶技术在煤化工废水零排放领域的应用蒸发结晶技术是一种通过加热废水,使其蒸发形成水蒸气,再将水蒸气冷凝成水滴沉淀,在此过程中将废水中的溶解固体物质逐渐沉淀结晶的技术。
与传统的化学沉淀、吸附、过滤等废水处理工艺相比,蒸发结晶技术具有能耗低、处理效率高、产生的污泥易处理、废水零排放等优点。
在煤化工废水处理领域,蒸发结晶技术具有广阔的应用前景。
1. 废水浓缩处理:蒸发结晶技术首先将煤化工废水中的水分蒸发掉,使废水中的溶解固体物质浓缩,形成浓缩废水。
在蒸发过程中,通过控制蒸发温度和时间,使得废水中的溶解固体物质逐渐结晶沉淀,形成固体废物。
这个过程不仅可以有效地减少废水的体积,降低后续处理的成本,而且还能够将有害物质固化成固体废物,方便后续的处置处理。
2. 固液分离:经过蒸发结晶处理的固液混合物可以通过简单的过滤或离心分离进行固液分离。
得到的固体物质可以进一步进行资源化利用,如制备复合肥料等。
而过滤、离心的液相可以进行再生利用,降低废水处理的成本。
3. 水蒸气净化:在蒸发过程中产生的水蒸气可以进行净化处理,去除其中的有机物和颗粒物,净化后的水蒸气可用于工业循环冷却或者再生热利用,以降低废水处理的能耗。
1. 某煤化工企业废水处理案例某煤化工企业生产过程中产生的废水中含有大量的氨氮、有机物等有毒有害物质,传统的废水处理工艺往往处理不彻底,产生的废水排放会对周边环境产生严重污染。
为此,该企业引进了蒸发结晶技术对废水进行处理,取得了良好的效果。
废水经过蒸发结晶处理后,COD(化学需氧量)和氨氮浓度大为降低,处理后的水质可达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A排放标准,固体废物可以再生利用,实现了煤化工废水的零排放。
2. 蒸发结晶技术在煤化工废水处理中的优势(1)高浓度废水处理:煤化工废水中通常含有高浓度的有机物、盐类等物质,传统的废水处理工艺往往处理不彻底,无法满足废水零排放的要求。
煤化工废水深度处理及回用技术

精品整理
煤化工废水深度处理及回用技术
一、基本原理
该技术通过酚/油萃取回收焦油和粗酚,高效蒸氨回收浓氨水通过生化处理去除大部分有机物,再通过混凝沉淀去除总氰和部分有机物,再通过臭氧氧化进一步去除水体中有机物,实现废水达标排放的目标;还可根据实际需要,通过超滤、纳滤、电渗析等过程脱盐,实现废水回用目的
二、工艺流程
工艺流程为:
1、煤化工废水首先进入酚油协同萃取槽,回收可利用的焦油和粗酚产品
2、萃取出水进入蒸氨塔,回收浓氨水回用
3、蒸氨废水进入生化处理系统,去除废水中大部分有机物和总氮总磷
4、生化出水进入混凝沉淀系统,脱除废水中绝大部分总氰,色度,悬浮物,并部分去除CODCr
5、混凝出水进入臭氧氧化塔和曝气生物滤池,进一步去除废水中的CODCr和微量有毒污染物,实现废水达标排放目标
6、臭氧出水再经过超滤、纳滤、电渗析等脱盐单元,实现废水回用目的
三、技术优势
开发酚油协同萃取剂,可同步萃取焦油、单元酚和多元酚,萃取效率高。
采用自主研发的有机无机复配絮凝剂,对极性有机物和氰化物去除效率高,并同步去除色度和悬浮物。
采用自主研发的非均相催化剂,催化分解臭氧效率高,产生自由基深度矿化有机物能力强
四、适用范围
煤焦化废水、煤气化废水、钢铁工业园综合废水处理。
煤化工环保技术方案

煤化工环保技术方案概述煤化工作为中国能源行业的重要组成部分,其在经济发展中起到了至关重要的作用。
然而,煤化工生产会产生大量的废气、废水和固体废物等污染物,给环境造成了极大的危害。
因此,为了减少煤化工生产对环境的影响,必须采取一系列的环保措施。
该文档旨在介绍一些常见的煤化工环保技术方案,供煤化工企业参考和借鉴。
废气治理煤化工生产过程中产生的废气种类较多,治理难度也较大。
以下列举几种废气治理技术:1.烟气脱硫除尘技术:采用喷雾吸收或干法吸收的方式,将烟气中的二氧化硫、二氧化硝气和颗粒物等污染物去除,达到排放标准。
常见的烟气脱硫技术包括湿式烟气脱硫和半干法烟气脱硫等。
2.煤气化尾气脱酸技术:通过改变蒸汽煤气化工艺条件,采取干法、湿法或生物法去除尾气中的酸性气体,如二氧化碳、一氧化碳、氢气和硫化氢等。
常见的技术包括酸雾除尘吸收法和碱液吸收法等。
3.低温等离子处理技术:利用等离子体化学反应原理,将废气中的污染物离子化并与等离子体反应,除去有害物质。
该技术适用于污染物浓度低、成分复杂的废气治理。
废水治理煤化工生产过程中产生的废水对环境的影响也非常大,如若排放不当,将导致地下水、水源地等大面积污染。
以下是一些常见的废水治理技术:1.生物处理:利用微生物对有机物进行降解处理,形成可供植物或土地利用的生物质。
常见的生物处理工艺包括好氧生物处理和厌氧生物处理。
2.膜分离技术:采用膜过滤、膜生物反应器和膜蒸发等工艺,将废水中固体颗粒物、污染物离子和微生物分离出来,形成可重新利用的水源。
3.化学法处理:采用化学药剂对废水进行处理,如氧化剂、还原剂、沉淀剂等。
该方法能够快速处理废水,但对环境的影响也比较大,需要谨慎使用。
固体废物处置煤化工生产过程中产生的固体废物种类较多,包括煤灰、炉渣等。
以下是一些常见的固体废物处置技术:1.焚烧处置:将固体废物进行高温焚烧,并通过废气处理技术对排放的烟气进行净化。
该方法有效降低了固体废物占用的空间,但烟气处理技术需要投入大量资金。
煤化工废水零排放技术要点及问题的处理

煤化工废水零排放技术要点及问题的处理摘要:近年来我国综合国力的不断增强,工业的迅猛发展,涌现出大量的工业企业。
:当前我国的化工领域在生产工艺的改进下显著提升了生产效率,与此同时行业也高度关注节能降耗以及环境保护问题,减少化工生产中的废水排放,积极推动行业的绿色发展已成必然。
实践表明,煤制油煤化工生产废水零排放具有可行性,在实施过程中关键在于处理技术的选择,实现水资源与生态环境的有效保护。
本文就煤化工废水零排放技术要点及问题的处理展开探讨。
关键词:煤化工;废水类型;废水治理;零排放引言传统煤化工生产领域中,高消耗高污染是制约企业发展的突出问题。
近年来,国家环保政策日益收紧,2020年,我国提出了双碳目标。
煤化工企业的发展需要从高能耗高污染的阶段向清洁型节能型的方向转变。
由于煤化工生产中产生的污水成分复杂,包括煤焦化废水、气化废水、液化废水等,给煤化工废水治理增加了难度。
在大力提倡节能减排理念的新形势下,煤化工企业必须加快技术创新,采用合理有效的工艺方法实现节能环保治理目标。
为此,对煤化工废水零排放技术进行分析研究十分重要。
1废水处理工艺简述首先,在氯化钠结晶单元增加了除硅系统,通过投加镁剂的方式去除浓盐水中的二氧化硅,以保护后续高压反渗透、MVR和氯化钠蒸发结晶系统免受二氧化硅结垢的风险,确保系统运行的稳定性和可靠性。
除硅系统主要包括加药、絮凝沉淀、砂滤、超滤和污泥脱水模块。
其次,在硫酸钠结晶单元增加了纳滤Ⅱ系统,将冷冻母液经纳滤Ⅱ继续处理,一方面利用纳滤膜的道南效应使得氯离子尽可能地进入纳滤产水侧,并回流至前端纳滤继续分盐处理,并最终以氯化钠结晶盐的形式产出,增加氯化钠产量;另一方面通过纳滤膜的浓缩作用减少冷冻母液量,从而降低杂盐蒸发结晶器的处理规模,降低投资和运行成本;再一方面通过纳滤浓水的回流作用增加硫酸钠的产量,进一步降低最终的杂盐量。
最后,在硫酸钠结晶单元增加了高级氧化系统,将冷冻母液中的有机物进行去除。
煤化工废水处理与回用技术导则

煤化工废水处理与回用技术导则随着煤炭资源的开发利用,煤化工产业逐渐成为我国重要的能源产业之一。
然而,在煤化工生产过程中,会产生大量的废水,这些废水中含有多种有害物质,如氨氮、有机物、重金属等,对环境和水资源造成了严重的污染。
因此,本文将介绍煤化工废水处理与回用的重要性,分析当前存在的问题和挑战,并提出相应的技术导则,为相关企业提供参考和借鉴。
一、背景及现状煤化工废水是一种复杂的工业废水,具有高浓度、难降解等特点。
传统的处理方法往往难以彻底去除其中的有害物质,而且处理后的水质仍然达不到排放标准。
同时,水资源短缺问题日益严重,煤化工废水的回用已经成为一种必然趋势。
目前,国内外对于煤化工废水处理与回用的研究和实践已经取得了一定的成果,但仍然存在许多问题和挑战,需要进一步完善和创新。
二、面临的问题和挑战1. 处理难度大:煤化工废水中含有的污染物种类繁多,性质各异,导致处理难度较大。
此外,某些有害物质的化学性质不稳定,容易分解或转化为其他物质,给处理过程带来一定的困难。
2. 成本较高:煤化工废水处理的设备投资和维护费用较高,加上污水处理厂的运营成本也相对较高,使得一些企业为了降低成本而选择不进行废水处理或者简单处理后就排放。
3. 技术瓶颈:现有的废水处理技术和回用技术的效率和质量还有待提高,尤其是针对复杂性和难降解的煤化工废水的处理技术还需要进一步研究和创新。
4. 管理不足:部分企业对煤化工废水处理和回用的重视程度不够,缺乏有效的管理制度和管理手段,导致废水处理效果不佳或者出现二次污染等问题。
三、技术导则1. 优化工艺流程:根据不同类型和性质的煤化工废水,采用不同的预处理和主处理工艺,以提高废水处理的效率和效果。
例如,可以采用膜分离技术、高级氧化技术等新型处理技术来处理高浓度、难降解的废水。
2. 加强技术创新:加大对新型废水处理技术和回用技术的研发力度,不断提高现有技术的性能和稳定性。
同时,加强国际合作和技术交流,引进国外先进的技术和方法,促进国内技术的发展和创新。
煤化工废水处理技术研究及应用分析

科技信息煤化工是以煤为原料经过化学加工,实现煤的转化并进行综合利用的工业,主要可分为炼焦、煤炭气化、煤炭液化、煤制化学品以及其他煤加工制品等。
新型煤化工潜力巨大,煤制气及某些煤制化学品技术已经较为成熟,而我国能源基本格局为“富煤、缺油、少气”,因此,煤化工行业仍将在我国工业发展中占很大比例,是我国能源工业的重要战略发展方向[1]。
煤化工废水含有大量酚类、烷烃类、芳香烃类、杂环类和氨氮等有毒有害物质,治理难度大,已成为制约我国煤化工产业可持续发展的瓶颈。
目前国内很少有企业能切实做到废水达标排放,主要是因为该行业欠缺技术可行且经济合理的处理技术。
因此,如何实现煤化工废水的达标排放、减量排放是关乎国计民生的大事。
1.煤化工废水的特点煤化工企业用水量大,废水主要来源于煤炼焦、煤气净化和化工产品回收精制等生产过程[2]。
此类废水水质复杂,以酚和氨为主,含有大量有机污染物,水量大,毒性大,污染物浓度高,具有一定的处理难度若未经合理处置就排入水体,会对水域周边的人、畜、农作物造成严重危害[3-4]。
煤化工废水中的污染物质有300多种[5],主要包括COD、BOD5、总氨、总酚、挥发酚、石油类、氰化物、硫化物、SS等,其COD约5000mg/L、氨氮200~500mg/L,是一种典型的含难降解有机物的工业废水。
废水中的易降解有机物主要是酚类和苯类,如砒咯、萘、呋喃、咪唑类等;难降解有机物包括砒啶、异喹啉、喹啉、咔唑、联苯等。
煤化工废水常常还含有各种生色基团和助色基团物质,因而色度和浊度较高[6]。
2.煤化工废水处理方法2.1预处理煤工业废水成分复杂、浓度高、色度和毒性大,需要先去除部分污染物质,减轻后续处理工艺的负荷。
预处理方法多为物化法,常用的有隔油、气浮、反渗透[11]、高效混凝沉淀、Fenton-混凝沉淀、活性炭吸附、高级氧化技术等[7-11]。
范树军[12]等人采用铁炭微电解/Fenton氧化组合工艺预处理高浓度煤化工废水,结果表明COD总去除率可以达到60%~70%,其中微电解反应床COD去除率为40%~47%。
煤化工废水中化学需氧量(COD)降解与处理方法研究

煤化工废水中化学需氧量(COD)降解与处理方法研究摘要:随着煤化工行业的快速发展,煤化工废水中化学需氧量(COD)成为严重的环境问题。
本论文通过文献综述和实验研究,研究了COD降解与处理方法。
结果显示,物理化学、生物和联合处理方法均可有效降低COD浓度。
尤其是生物处理方法在处理效果和经济性方面表现突出。
然而,针对高浓度COD废水的降解仍面临困扰。
因此,联合处理方法被提出并得到验证。
本研究为煤化工废水治理提供了重要参考,实现可持续发展。
关键词:煤化工废水;化学需氧量;降解;处理方法引言煤化工行业是我国重要的基础化工产业之一,但伴随着生产过程中产生的大量废水,特别是高浓度化学需氧量(COD)废水,给环境造成严重污染和生态破坏。
COD是衡量废水有机物含量的重要指标,直接影响到废水处理的效果和环境质量。
因此,研究煤化工废水中COD的降解与处理方法,对于减少环境污染、保护生态环境具有重要意义。
1.煤化工废水和COD的特点和影响因素煤化工废水是指在煤炭加工及煤化工过程中产生并排放的废水。
其特点包括高浓度有机物、高盐度、复杂组分、难降解性和污染性强等。
化学需氧量(COD)是衡量废水中有机物含量和生化耗氧性的指标,常用于评价废水处理效果。
COD的影响因素包括废水pH值、温度、废水源的不同以及废水中的有机物种类和浓度等。
了解煤化工废水和COD的特点和影响因素,对有效控制和处理废水具有重要意义。
2.COD的来源和分析方法2.1煤化工废水中COD的主要来源煤化工废水中化学需氧量(COD)的主要来源包括煤炭气化、煤制油、煤制气和煤炭洗选等过程。
在煤炭气化过程中,大量的有机物质被分解并释放到废水中,导致COD含量升高。
煤制油过程中,产生的大量焦油、油醚和苯类物质也是COD的主要贡献源。
此外,煤制气和煤炭洗选过程中,排放的废水中还含有大量有机物质,进一步增加了COD的含量。
2.2COD的分析方法及适用性评价化学需氧量(COD)是衡量废水中有机物含量的重要指标,常用于评价废水处理效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤化工废水处理方式
煤化工废水处理方式具体内容是什么,下面本店铺为大家解答。
1 煤化工废水来源及成分
焦化废水主要是对煤进行加工和提炼时所产生的废水,其中主要包括洗煤、熄焦和加工。
而废水的来源是由熄焦过程中所产生的废水、洗煤中产生的含硫、氮元素的化合物废水等,这些多方面废水混合到一起后加大了处理的难度。
因此需要先进的处理技术对其进行“预处理—生化处理—深度处理”这一措施。
2 煤化工废水的处理的方式
2.1 预处理
物化预处理是对煤化工废水处理的第一步,由于煤化工废水具有复杂性高、毒性大以及有害物质浓度高等特点,因此首先需要对污染物质进行简单清理后,为后期的处理提供一定的方便。
预处理的方式其中90%都是物化法,例如反渗透、隔油、混凝沉淀以及Fenton-混凝沉淀等方式。
另外,我国相关学者还通过铁炭微电解加上Fenton-混凝沉淀的方式来煤化工的废水处理的实验中表明了,通过这种结合的方式处理后可以去除30%-40%的COD,其中主要的去除比率采用微电解的方式。
加上微电解的方式是以电的方式来处理,这样为后期的生物处理提供不同程度的便利。
2.2 生化处理
在进行物化预处理之后,去除了一些表面杂质后还需要经过生化处理的方式来进一步处理,例如可以采用粉末活性炭—活性污泥法(PACT)、载体流动床生物膜法以及生物流化床处理法等。
2.2.1 粉末活性炭—活性污泥法(PACT)
所谓的粉末活性炭的处理方式,就是将活性污泥以及粉末活性炭融入到整个处理的水池中后,将废水经过该水池来达到降低COD的目标。
该方式的原理是由于粉末活性炭具有吸附的作用,因此可以将活性污泥融合到一起后使得污泥全方位的覆盖到活性炭的表面,进而很大程度地提升了PACT的吸附能力。
将PACT中对于基质的溶解能力提高后,自然会提升对COD的去除率,除此之外这种PACT的方式对有毒的危害物质进行处理。
总之,煤化工企业在经过预处理之后可以对高浓度的大分子等有机物都具有良好的吸附效果,并且有60%的产业都是利用PACT的方式进行处理。
2.2.2 载体流动床生物膜法(PAM)
载体流动床的生物膜法与粉末活性炭一样,也是需要活性泥污的有效结合后进行使用,具体的执行方式是将水池中投入活性泥污,在此基础上再加入一些特殊的载体,就是一些由微生物材料而构成的微生物膜层,这些膜层具有对废水中的杂质过滤的功能。
在生物膜的技术中,主要采用的是活性菌的方式,针对废水中的主要成分来培养适合的活性菌来达到分解转化的目标,进而达到对废水进一步处理的目的。
载体流动床生物膜法是最近几年新兴的技术,除了技术简单外,还有效率高等特点,现阶段生物膜法主要有微滤、纳米过滤、超滤、
反渗透等。
根据研究表明这种载体流动床生物膜法和活性泥污相比较来说,是活性泥污工艺处理效率的2-4倍,因此在有效的时间内提升了对COD的降解率。
2.2.3 序批式活性泥污法(SBR)
该种方式主要是针对间歇曝气的方式来对煤化工的废水进行处理的,和传统的污水处理技术不同的是,序批式活性泥污法采用的是实践分割的形式来代替传统的空间分割的方式。
而该种处理方式的特点是有序和间歇,污水处理池中可以进行初沉、生物降解以及二次沉淀等步骤,对于煤化工的废水处理具有很高的效率。
另外,假如在处理的过程中发现废水还没有达到指标的话,还可以在生化池中投入一些活性炭粉末来提升废水的处理效率。
2.3 深度处理
现阶段深度处理的方式主要有混凝沉淀、高级氧化技术以及吸附法等。
2.3.1 混凝沉淀
该方法在预处理当中也可以采用,而在深度处理的过程中也可以通过如混凝剂的方式来对废水中的沉淀效果进行增强。
首先需要将混凝剂中的pH值调节到一定范围的数值内,然后使得废水中的悬浮物在混凝剂的作用下将其进行下沉,进而达到水与沉淀物分离的目标,通过混凝沉淀的方式不但可以一定程度的去除废水中的杂质,更重要的是对于悬浮有机物也有显著的效果。
2.3.2 高级氧化技术
另外,在进行生化处理后,还会存在着一些杂质,而高级氧化技术则是利用在废水中产生一些自由基HO,这些自由基可以将废水中的有机物分解为水和二氧化碳两种化合物。
现阶段的高级氧化技术主要包含了多相湿式氧化法、光催化氧化法以及其他催化氧化法等。
2.3.3 吸附法
该种处理方式在深度处理中采用的并不多,其主要的原因是虽然可以取得良好的效果,但是存在着费用高以及二次污染等问题。
其实现的原理是在废水中投放固体颗粒,这些颗粒具有胶质的能力,因此可以将废水中的杂质进一步的去除,进而达到降低COD的目的。
3 结论
通过对煤化工所产生的废水进行分析后可以看出它属于工业废水,并且其内部的元素也是非常复杂的,因此加大对煤化工废水的研究无论是从污染控制学还是环境工程学方面都具有重要的现实意义。