简单随机抽样(答案)
简单随机抽样

[ p z 2 v( p), p z 2 v( p)] [0.2846,0.4154]
2.3 比率估计量及其性质
当存在与我们调查的主要变量高度相关 的所谓其他辅助变量的有效信息,且这些 辅助变量的信息质量较好时,利用这些信 息无疑将有助于提高估计的精度。
主要变量为Y,另一个与Y有关的辅助变量 为X,对简单随机抽样的一个样本中的每 一个单元获得了Y和X的调查值yi和xi,而X 的总体总值是已知的。
总体比例的简单估计
性质1. E(Pˆ) E( p) P
性质2.V (Pˆ) 1 f S 2 1 f 1 NP(1 P)
n
n N 1
证明:S 2
1 N -1
N i 1
(Yi
Y )2
1 N -1
N i 1
(Yi 2
2YYi
Y
2)
1 N -1
N i 1
Yi 2
NY
2
1 (NP NP2 ) 1 NP(1 P)
[P z 2
1 f n
1 N 1
Np(1
p),
P
z
2
1 f 1 Np(1 p)] n N 1
2.4 某大学有10000名本科生,现欲估计在暑期间参加
了各类英语培训的学生所占的比例。随机抽取了200名
学生进行调查,得到p 0.35。试估计该大学所有本科
生中暑假参加培训班的比例的95%的置信区间。
解:利用去年化肥总产量X 2135,今年化肥总产量 Y的估计值为
YˆR
XRˆ
X
y x
2135 22 25
2426.14.
引理2.3 对于简单随机抽样,n较大时, =; 二是说在某种条件下, 是近似无偏的。
第三章-简单随机抽样

N!
考虑顺序可能的样本为 N n !
每个样本被抽中的概率为 ( N n)! N!
s2 1358.41, v( y) (1 f )s2 / n 37.6444, se( y) 6.1355
对该校大学生某月电信消费人均支出额的估计为 53.64元,在置信度95%下,临界值1.96,可以说以 95%的把握说明该校大学生该月的人均支出在 [53.64+(-)1.96*6.1355],即41.61~65.67元。
n 1
2n
正态近似产生的误差 主要与nP有关,特别 当nP比较小时,产生 的误差甚大,在95% 置信度下,P<0.5时正 态分布需要的最小nP 值与n值如下表。
P
nP
0.5
0.4
0.3
0.2
0.1
0.05
0
n
15
30
20
50
24
80
40 200
60 600
70 1400
80 无穷
试以95%的置信度估计上例大学生月电信消费超 过80元的人数及其比例。
N n S2 N n
nN
为调查某校大学生的电信消费水平,在全 校N=15230名学生用简单随机抽样抽取 n=36名学生,调查上月电信支出数据。试 以95%的置信度估计该校大学生该月电信 消费的平均支出额。
样本序号 消费元/月 样本序号 消费
样本序号 消费
1
45
13
高三数学抽样试题答案及解析

高三数学抽样试题答案及解析1.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一年级抽取名学生.【答案】32【解析】设从高一年级抽取4n名学生,则从高二、高三年级分别抽取3n,3n名学生,因此【考点】分层抽样2.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.【答案】【解析】从甲、乙、丙、丁4位同学中随机选出2名代表共有种基本事件,甲被选中包含种,基本事件,因此甲被选中的概率是【考点】古典概型概率3.春节前,有超过20万名广西,四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾驶人员休息站,让过往返乡过年的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行省籍询问一次,询问结果如图所示.(1)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法;(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的被抽取了5名,则四川籍的应抽取几名?(3)在上述抽出的驾驶人员中任取2名,求至少有1名驾驶人员是广西籍的概率.【答案】(1)系统抽样方法(2)2(3)【解析】解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员是广西籍的有5+20+25+20+30=100名,四川籍的有15+10+5+5+5=40名.设四川籍的驾驶人员应抽取x名,依题意得=,解得x=2,即四川籍的应抽取2名.(3)用a1,a2,a3,a4,a5表示被抽取的广西籍驾驶人员,b1,b2表示被抽取的四川籍驾驶人员,则所有基本事件有{a1,a2},{a1,a3},{a1,a4},{a1,a5},{a1,b1},{a1,b2},{a2,a3},{a2,a4},{a2,a5},{a2,b1},{a2,b2},{a3,a4},{a3,a5},{a3,b1},{a3,b2},{a4,a5},{a4,b1},{a4,b 2},{a5,b1},{a5,b2},{b1,b2},共21个,其中2名驾驶人员都是四川籍的基本事件有{b1,b2},1个.所以抽取的2名驾驶人员都是四川籍的概率P1=,至少有1名驾驶人员是广西籍的概率P=1-P1=1-=.4.某单位有职工52人,现将所有职工随机编号,用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号职工在样本中,则样本中另外一个职工的编号是()A.19B.20C.18D.21【答案】A【解析】设样本中另外一个职工的编号是x,则用系统抽样抽出的4个职工的号码从小到大依次为:6,x,32,45,它们构成等差数列,所以6+45=x+32,x=6+45-32=19,因此另外一个职工的编号是19.故选A.5.某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现用分层抽样的方法抽出容量为n的样本,样本中A型产品有15件,那么样本容量n为()A.50B.60C.70D.80【答案】C【解析】n×=15,解得n=70.6.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13【答案】B【解析】间隔数k==16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数值为7.7.网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.【答案】57【解析】由最小的两个编号为03,09可知,抽取人数的比例为,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.8.(本小题满分12分)海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测50150100(1)求这6件样品中来自各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.【答案】(1) A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)这2件商品来自相同地区的概率为.【解析】(1)首先确定样本容量与总体中的个数的比是,从而得到样本中包含三个地区的个体数量分别是:,,.(2)设6件来自A,B,C三个地区的样品分别为,写出抽取的这2件商品构成的所有基本事件:,,,,共15个.记事件D:“抽取的这2件商品来自相同地区”,写出事件D包含的基本事件:共4个.由每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的,利用古典概型概率的计算公式得解.试题解析:(1)因为样本容量与总体中的个数的比是,所以样本中包含三个地区的个体数量分别是:,,,所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为,则抽取的这2件商品构成的所有基本事件为:,,,,共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的,记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:共4个.所有,即这2件商品来自相同地区的概率为.【考点】分层抽样,古典概型.9.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.,B.,C.,D.,【答案】A【解析】由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选A.【考点】本题考查分层抽样与统计图,属于中等题.10.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.【答案】60.【解析】应从一年级抽取名.【考点】等概型抽样中的分层抽样方法.11.总体由编号为01,02,…,19,20的个体组成,利用下面的随机数表选取7个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数,则选出的第7个个体的编号为【答案】04【解析】由随机数表可看出所选的数字依次为:16,08,02,14,07,02,01,04,去掉重复数字02,则第7个个体编号为04.故答案为04.【考点】简单随机抽样.12.[2013·唐山质检]将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9【答案】B【解析】本题考查系统抽样.依题意及系统抽样可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495得<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.13.高三(3)班共有学生56人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、31号、45号同学在样本中,那么样本中还有一个同学的座号是()A.15B.16C.17D.18【答案】C【解析】∵用系统抽样的方法,抽取一个容量为4的样本,∴样本对应的组距为56÷4=14,∴3+14=17,故样本中还有一个同学的座号是17,故选:C.14.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为01到50的袋装奶粉中抽取5袋进行检验,现将50袋奶粉按编号顺序平均分成5组,用每组选取的号码间隔一样的系统抽样方法确定所选取的袋奶粉的编号,若第4组抽出的号码为36,则第1组中用抽签的方法确定的号码是 .【答案】06【解析】因为按系统抽样方法选取的编号依次构成一个等差数列,且公差为10,所以由得:因此确定的号码是06.【考点】系统抽样15.某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为.【答案】30【解析】根据分层抽样的特点:按比例,可得,解得.【考点】分层抽样16.某校选修篮球课程的学生中,高一学生有名,高二学生有名,现用分层抽样的方法在这名学生中抽取一个样本,已知在高一学生中抽取了人,则在高二学生中应抽取__________人.【答案】【解析】设高二学生抽取人,则,解得.【考点】分层抽样.17.2013年湖北省宜昌市为了创建国家级文明卫生城市,采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为001,002,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.20B.19C.10D.9【答案】C【解析】采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即,第k组的号码为,令,而,解得,则满足的整数k有10个.【考点】系统抽样.18.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.【答案】600【解析】,,∴,所以在该次数学考试中成绩小于60分的学生数是600.【考点】1.频率分布直方图;2.分层抽样.19.2014年3月,为了调查教师对第十二届全国人民代表大会二次会议的了解程度,安庆市拟采用分层抽样的方法从三所不同的中学抽取60名教师进行调查.已知学校中分别有180,270,90名教师,则从学校中应抽取的人数为().A.10B.12C.18D.24【答案】A【解析】从学校中应抽取的人数为,选A.【考点】分层抽样.20.为了抽查某城市汽车尾气排放执行标准情况,在该城市的主干道上采取抽取车牌末位数字为5的汽车检查,这种抽样方法称为________.【答案】系统抽样【解析】由于这种抽样方法采用抽取车牌末位数字为5的汽车检查,可以看成是将所有的汽车车牌号分段为若干段(一个车牌末位数字从0到9为一段),每一段抽取一个个体,因此它符合系统抽样的特征,故答案为系统抽样.21.下列抽样中是系统抽样的有__________.(填序号)①从标有1~15的15个球中,任取3个作为样本,按从小号到大号排序,随机选起点i,以后i 0+5,i+10(超过15则从1再数起)号入样;②在用传送带将工厂生产的产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止;④电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈.【答案】①②④【解析】系统抽样实际上是一种等距抽样,只要按照一定的规则(事先确定即可以).因此在本题中,只有③不是系统抽样,因为事先不知道总体,不能保证每个个体按事先规定的概率入样.22.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为________.【答案】25,17,8【解析】根据系统抽样的特点可知抽取的号码间隔为=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.23.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.【答案】37,20【解析】由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,且分段的间隔相等.在第1段内采用简单随机抽样的方法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.由题意,第5组抽出的号码为22,因为2+(5-1)×5=22,则第1组抽出的号码应该为2,第8组抽出的号码应该为2+(8-1)×5=37.由分层抽样知识可知,40岁以下年龄段的职工占50%,按比例应抽取40×50%=20(人).24.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93①这种抽样方法是一种分层抽样;②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差;④该班男生成绩的平均数小于该班女生成绩的平均数,则以上说法一定正确的是________.【答案】③【解析】若抽样方法是分层抽样,男生、女生分别抽取6人、4人,所以①错;由题目看不出是系统抽样,所以②错;这五名男生成绩的平均数,男=(86+94+88+92+90)=90,这五名女生成绩的平均数=(88+93+93+88+93)=91,故这五名男生成绩的方差为=(42+42女+22+22+02)=8,这五名女生成绩的方差为=(32+22+22+32+22)=6.显然③正确,④错25.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【答案】15、2、3【解析】分层抽样应按各层所占的比例从总体中抽取.∵120∶16∶24=15∶2∶3,又共抽出20人,∴各层抽取人数分别为20×=15(人),20×=2(人),20×=3(人).26.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15【解析】由已知,高二人数占总人数的,所以抽取人数为×50=15.27.高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的方法抽取一个容量为4的样本,已知学号5,29,41在样本中,那么还有一个同学的学号应为________.【答案】17【解析】根据系统抽样是“等距离”抽样的特点解题.将48人分成4组,每组12人,所以用系统抽样抽出的学生学号构成以12为公差的等差数列,所以还有一个学生的学号是17.28.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.【答案】12【解析】设应抽取的女运动员人数是x,则=,易得x=12.29.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是().A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D【解析】总体(100名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.30.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【答案】C【解析】不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.31.北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为分,规定测试成绩在之间为体质优秀;在之间为体质良好;在之间为体质合格;在之间为体质不合格.现从某校高三年级的名学生中随机抽取名学生体质健康测试成绩,其茎叶图如下:(Ⅰ)试估计该校高三年级体质为优秀的学生人数;(Ⅱ)根据以上名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取名学生,再从这名学生中选出人.(ⅰ)求在选出的名学生中至少有名体质为优秀的概率;(ⅱ)求选出的名学生中体质为优秀的人数不少于体质为良好的人数的概率.【答案】(Ⅰ)100;(Ⅱ)(ⅰ),(ⅱ)【解析】(Ⅰ)由茎叶图可知抽取的30名学生中体质优秀的有10人,所以优秀率为,用总数乘以优秀率即可得优秀的总人数。
简单随机抽样 (24)

2.利用简单随机抽样,从一个含有 N 个个体的总体中逐个 不放回地抽取 n 个个体作为样本(n≤N),每个个体入样的可能性 是多少?
提示:简单随机抽样每一次抽取时总体中的各个个体被抽 到的可能性相同,均为Nn .
3.抽取一个号签,记录其编号后放入容器中,再次抽取记 录,连续 n 次后得到号签上的号码对应的个体,这些个体组成 样本,这种抽样方法是抽签法吗?
个数有限, 逐个抽取, 简单随机抽样不放回, 等可能性.
如果四个特征有一个不满足就不是简单随机抽样.
常用的简单随机抽样方法有抽签法和随机数法.
2.关注 2 类易错点——应用抽签法和随机数表法抽样应注 意的问题
(1)利用抽签法抽取样本时应注意以下问题: ①编号时,如果已有编号(如学号、标号等)可不必重新编号. ②号签要求大小、形状完全相同. ③号签要搅拌均匀. ④要逐一不放回抽取.
[答案] B
探究 (变条件)如将本例中的“从随机数表中第 1 行的第 5 列和第 6 列的数字开始由左到右依次选取两个数字”改为“从 随机数表中第 1 行的倒数第 2 列和第 3 列的数字开始由右到左 依次选取两个数字”,其他条件不变,则选出来的第 4 个个体 的编号为多少?
解:从随机数表中第 1 行的倒数第 2 列和第 3 列的数字开 始由右到左依次选取两个数字,依次为 91,08,27,99,63,42,07,04,13,…,其中 08,07,04,13,…符合条件, 故选出来的第 4 个个体的编号为 13.
[方 法 总 结] 要判断所给的抽样方法是否是简单随机抽样,关键是看它 们是否符合简单随机抽样的定义,即简单随机抽样的四个特点: (1)总体的个数有限;(2)逐个抽取;(3)是不放回地抽取;(4)保证 每个个体被抽到的可能性是相同的.
2.1.1 简单随机抽样

配人教版 数学 必修3
简单随机抽样的概念 【例1】 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取50个个体作为样本; (2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进 行质量检查; (3)某连队从200名党员官兵中,挑选出50名最优秀的官兵 赶赴青海参加抗震救灾工作;
配人教版 数学 必修3
2.1 随机抽样 2.1.1 简单随机抽样
配人教版 数学 必修3
目标定位
重点难点
1.理解随机抽样的必要性和重 要性. 2.会用简单随机抽样方法从总 体中抽取样本.
重点:理解随机抽样的必要性 和重要性,用抽签法和随机数 法抽取样本. 难点:抽签法和随机数法的实 施步骤.
配人教版 数学 必修3
配人教版 数学 必修3
第二步,从“7”开始向右每次读取三位,凡在600~999中 且不与已读出的数重复的数保留,否则跳过去不读,依次得 753,724,688,770,721,763,676,630,785,916.
第三步,以上号码对应的10个零件就是要抽取的对象.
配人教版 数学 必修3
利用随机数表法抽样时应注意的问题 1.编号要求位数相同,若不相同,需先调整到一致再进 行抽样,如当总体中有100个个体时,为了操作简便可以选择 从00开始编号,那么所有个体的号码都用两位数字表示即可, 从00~99号.如果选择从1开始编号那么所有个体的号码都必 须用三位数字表示,从001~100.很明显每次读两个数字要比 读三个数字节省读取随机数的时间. 2.第一个数字的抽取是随机的. 3.当随机数选定,开始读数时,读数的方向可左,可 右,可上,可下,但应是事先定好的.
配人教版 数学 必修3
D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000 亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量
大学抽样调查试题及答案

大学抽样调查试题及答案一、单项选择题(每题2分,共20分)1. 抽样调查中,样本容量是指()。
A. 总体中个体的数目B. 样本中个体的数目C. 总体中个体的数目与样本中个体的数目之和D. 总体中个体的数目与样本中个体的数目之差答案:B2. 在抽样调查中,系统抽样法的特点是()。
A. 简单易行,但可能存在抽样偏差B. 简单易行,且抽样偏差较小C. 复杂难行,但抽样偏差较小D. 复杂难行,且抽样偏差较大答案:B3. 以下哪种抽样方法不属于概率抽样()。
A. 简单随机抽样B. 分层抽样C. 整群抽样D. 判断抽样答案:D4. 抽样调查中,样本的代表性是指()。
A. 样本能够代表总体B. 样本容量足够大C. 样本的抽取是随机的D. 样本的抽取是分层的答案:A5. 在抽样调查中,如果总体中的个体数较少,通常采用()。
A. 分层抽样B. 整群抽样C. 系统抽样D. 简单随机抽样答案:D6. 抽样调查中,样本的抽取是随机的,这意味着()。
A. 每个个体被抽中的概率相等B. 样本容量必须固定C. 样本容量必须足够大D. 样本必须是分层的答案:A7. 抽样调查中,样本容量的确定通常基于()。
A. 总体的变异性B. 总体的均值C. 总体的中位数D. 总体的众数答案:A8. 在抽样调查中,如果总体中的个体差异较大,通常采用()。
A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案:B9. 抽样调查中,样本的抽取是分层的,这意味着()。
A. 每个个体被抽中的概率相等B. 每个层的样本容量相等C. 每个层的样本容量与总体中该层的比例相等D. 每个层的样本容量必须固定答案:C10. 抽样调查中,如果总体中的个体数较多,通常采用()。
A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案:C二、多项选择题(每题3分,共15分)11. 以下哪些因素会影响抽样调查的结果()。
A. 抽样方法的选择B. 样本容量的大小C. 总体的分布情况D. 抽样误差的大小答案:ABCD12. 在抽样调查中,以下哪些是简单随机抽样的特点()。
简单随机抽样

随机数表的制作
随机数表是人们根据需要编制出来的,由0,1,2,3,4, 5,6,7,8,9十个数字组成,表中每一个数字都是用随机方法 产生的(称为"随机数").随机数的产生方法主要有抽签法、 抛掷骰子法和计算机生成法 . (1)抽签法:用0,1,2,3,4,5,6,7,8,9十个数字做十个签, 放入一个箱中并搅拌均匀,再从箱中每次抽出一个签并记 下签的数码,再放回箱中,如此重复进行下去即可得到一 个随机数表 . 若需要两位数表,则将所得的各个数码按顺序两两连 在一起.如01,07,15,34,76,93, ··· 若需要三位数表,就三三连在一起,如012,321,249, 460,634,105,···
一般地,用抽签法从个体个数为N的总体中抽取一 个容量为k的样本的步骤为:
(1)将总体中的所有个体编号(号码可以从1到N); (2)将1到N这N个号码写在形状、大小相同的号签上; (3)将号签放在同一箱中,并搅拌均匀; (4)从箱中每次抽取一个号签,并记录其编号,连续抽 取k次; (5)从总体中将与抽到的签的编号相一致的个体取出.
抽签法简单易行 , 适用于总体中个体数不多的情形 .
例1.(1)简单随机抽样中,对于每一个个体被抽取的 可能性的判断正确的是( B ) A.与每次抽样有关,第一次抽中的能性要大一些; B.与每次抽样无关,每次抽中的可能性相等; C.与每次抽样有关,最后一次抽中的可能性要大一些; D.与每次抽样无关,每次都是等可能性抽取,但各次抽 取的可能性不一样.
(3) 从选定的数开始按一定的方向读下去, 得到的数码 若不在编号中,则跳过;若在编号中, 则取出;如果得到 的号码前面已经取出, 也跳过;如此继续下去,直到取满 为止 ; (4) 根据选定的号码抽取样本 .
抽样调查习题答案

抽样调查习题答案【篇一:抽样调查习题及答案】ss=txt>1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2. 采用不重复抽样方法,从总体为n的单位中,抽取样本容量为n的可能样本个数为n(n-1)(n-2)??(n-n+1)。
3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4. 参数估计有两种形式:一是点估计,二是区间估计。
5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√) 4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(c)a. 2倍b. 3倍c. 4倍d. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(d)a. 分层抽样b. 简单随机抽样c. 整群抽样d. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(b)a. 最小一个 b. 最大一个 c. 中间一个 d. 平均值4. 抽样误差是指(d)a. 计算过程中产生的误差b. 调查中产生的登记性误差c. 调查中产生的系统性误差d. 随机性的代表性误差5. 抽样成数是一个(a)a. 结构相对数b. 比例相对数c. 比较相对数d. 强度相对数 6. 成数和成数方差的关系是(c)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大 7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(b)a. 全面调查b. 非全面调查c. 一次性调查d. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)a. 4% b. 4.13% c. 9.18% d. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(b)a. 甲产品大b. 乙产品大c. 相等d. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(b)a. 甲企业较大b. 乙企业较大c. 不能作出结论d. 相同四、多项选择题抽样调查中的抽样误差是(abcde)a. 是不可避免要产生的b. 是可以通过改进调查方法来避免的c. 是可以计算出来的d. 只能在调查结果之后才能计算e. 其大小是可以控制的 2. 重复抽样的特点是(ac)a. 各次抽选相互影响b. 各次抽选互不影响c. 每次抽选时,总体单位数始终不变 d 每次抽选时,总体单位数逐渐减少e. 各单位被抽中的机会在各次抽选中相等 3. 抽样调查所需的样本容量取决于(abe)a. 总体中各单位标志间的变异程度b. 允许误差c. 样本个数d. 置信度e. 抽样方法4. 分层抽样误差的大小取决于(bcd)a. 各组样本容量占总体比重的分配状况b. 各组间的标志变异程度c. 样本容量的大小d. 各组内标志值的变异程度e. 总体标志值的变异程度 5. 在抽样调查中(acd)a. 全及指标是唯一确定的b. 样本指标是唯一确定的c. 全及总体是唯一确定的d. 样本指标是随机变量e. 全及指标是随机变量五、名词解释 1.抽样推断 2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单随机抽样一、单选题1. 抽样比的计算公式为( B )。
A. f= (n-1)/ (N-1)B. f=n/NC. f= (n-1)/ND. f= (N-n)/N2. 不放回的简单随机抽样指的是哪种情形的随机抽样?(D ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序3. 放回的简答随机抽样指的是哪种情形的随机抽样?( A ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序4. 通常所讨论的简单随机抽样指的是( D )。
A. 放回的简单随机抽样 B. 放回无序随机抽样 C. 不放回有序随机抽样 D. 不放回的简单随机抽样5. 下面给出的四个式子中,错误的是(D )。
A. ()E y Y = B.()E Ny Y =C.()E p P =D. ˆ()E RR = 6. 关于简单随机抽样的核心定理,下面表达式正确的是( A )。
A. 21()f V y S n-=B. 21()1f V y s n -=-C. 21()V y s n =D. 21()f V y s n-=7. 下面关于各种抽样方法的设计效应,表述错误的是( B )。
A. 简单随机抽样的deff=1B. 分层随机抽样的deff>1C. 整群随机抽样的deff>1D. 机械随机抽样的deff ≈18. 假设考虑了有效回答率之外所有其他因素的初始样本量为400,而设计有效回答率为80%,那么样本量应定为( B )。
A. 320B. 500C. 400D. 480 9. 在要求的精度水平下,不考虑其他因素的影响,若简单随机抽样所需要的样本量为300,分层随机抽样的设计效应deff=0.8,那么若想达到相同的精度,分层随机抽样所需要的样本量为(C )。
A. 375B. 540C. 240D. 360二、多选题1. 随机抽样可以分为( ABCD)。
A. 放回有序B. 放回无序C. 不放回有序D.不放回无序2.随机抽样的抽取原则是(ABC )A.随机取样原则B.抽样单元的入样概率已知C. 抽样单元的入样概率相等D.先入为主原则E.后入居上原则3.辅助变量的特点( ABCD )A.必须与主要变量高度相关B.与主要变量之间的相关系数整体上相当稳定C.辅助变量的信息质量更好D.辅助变量的总体总值必须是已知的,或更容易获得E.辅助变量可以是任何一个已知的变量4.影响样本容量的因素包括(ABCDE)A.总体规模B.(目标)抽样误差C.总体方差D.置信度E.有效回答率5. 简单随机抽样的实施方法(ABD)A.抽签法B.利用统计软件直接抽取法C.随便抽取法D.随机数法E.主观判断法6. 产生随机数的方式有(ABCDE)A.使用计算器B.使用计算机C.使用随机表D.使用随机数色子E.使用电子随机数抽样器三、简答题1.简述样本容量的确定步骤。
2.简述预估方差的几种方法;3.讨论下列从总体中抽得的样本是否属于概率抽选(回答“是”或“否”):(1)总体(1-112)。
抽法:从数1-56中随机抽取一个数r,再从数1-2中抽取一个数,以决定该数为r或56+r;(2)总体(1-112)。
抽法:首先从1-2中抽选一个数以决定两个群1-100或101-112,再从抽中的群中随机抽选一个数r;(3)总体(1-1109)。
抽法:从1-10000中抽选一个随机数r,若第一位是偶数,则用后面的三位数来表示1-1000(以000代表1000);若第一位数是奇数,当后面的三位数在101-109之间就代表1001和1109,若在110和1000之间被抛弃,重新抽选r;(4)总体(67084-68192)。
抽法:从1-1109中抽选一个随机数r,然后用r+67083作为被抽选的数;(5)总体(67084-68192)。
抽法:从1-2000中抽选一个随机数r,若在0084-1192之间就加67000取相应数,否则就抛弃,重选r;(6)总体有1109个数分布在61000-68000之间。
抽法:随机抽选四位数r加60000,如果该数有相应的数就算抽中,无相应数抛弃重选;(7)总体(1-17)。
抽法:在1-100中抽选r,再除以20,若余数在1-17之间,就抽中相应的数,否则抛弃重选;(8)总体(1-17)。
抽法:在1-100中随机抽选一个数除以17,以余数作为抽中的数。
4.设某个总体由L个子总体构成,今从该总体中抽取一个大小为n的简单随机样本,且设属于第j个子总体的单元数为n j固定的条件下,这n j个单元可看成是从第j个子总体中抽取的一个简单随机样本。
5. 简单随机抽样在抽样技术中的地位;6. 简单随机抽样中样本量确定的原则及主要考虑因素;7. 总体方差的预先确定思路。
四、计算题1. 为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取300户进行调查,现得到其日用电平均值为9.5(千瓦时),方差为206。
试估计该市居民日用电量的95%的置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?2. 某大学10000名本科生,现欲估计在暑假期间参加了各类英语培训的学生所占的比例,随机抽取了200名学生进行调查,得到p=0.35。
试估计该大学所有本科生中暑假参加培训班的比例的95%的置信区间。
3. 研究某小区家庭用于文化方面(报刊、电视、网络等)的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:4. 对某问题进行调查,在总体中抽取一个样本容量为200的简单随机样本,若赞成、反对及不表态的人数分别为:n1=132,n2=51,n3=17,试给出赞成、反对或不回答比例P1、P2、P3的近似置信区间。
设N很大,f可忽略。
5. 在人口变动情况的调查中,出生率是一个重要的指标.根据以前的调查数据,出生率的估计可取为18‰,问在置信度95%下,实际调查估计P 的绝对误差限为0.5‰和相对误差限5%各需多大的样本量(忽略fpc ,且N-1≈N)?6. 某地区350个乡为了获得粮食总产量的估计,调查了50个乡当年的粮食产量,得到均值为1220吨,方差为25600,据此估计该地区今年的粮食产量,并给出置信水平95%夫人置信区间。
7. 某次关于1000个家庭人均住房面积的调查中,委托方要求绝对误差限为2平方米,置信水平为95%,现根据以前的调查结果,认为总体方差为68,试确定简单随机抽样所需的样本量,若欲估计有效回答率为70%,则样本量最终为多少?8. 某地区对本地100家化肥厂的尿素产量进行调查,以至去年的总产量为2135吨,抽取10个企业调查今年的产量,得到样本均值为25吨,这些企业去年的年平均产量为22吨。
是采用比率估计方法计算该地区化肥总产量。
9. 请证明教材中的定理3.3:对简单随机抽样,有1(,)xy fCov y x S n-=其中,11()()1Nxy i i i S Y Y X X n ==---∑,为总体协方差. 10. 如果在解第3题时,可以得到下表中的家庭月总支出,而全部家庭的总支出平均为1600,利用比估计的方法估计平均文化支出, 给出置信水平95%夫人置信区间,并比较比11. 某养牛场购进120头肉牛,购进时平均体重为100公斤,先从中抽取10头,,记录重量,三个月后再次测量,结果如下:结果进行比较。
12. 设总体N=5,其指标值为{3,5,6,7,9} (1)计算总体方差2σ和S 2;(2)从中抽取n=2的随机样本,分别计算放回抽样和不放回抽样的方差)(y V ; (3)按放回抽样和不放回抽样的分别列出所有可能的样本并计算y ,验证)(y E =Y ; (4)按放回抽样和不放回抽样的所有可能的样本,计算其方差)(y V ,并与公式计算的结果进行比较;(5)对所有的可能样本计算样本方差s 2,并验证在放回抽样的情况下E (s 2)=2σ;在不放回的情况下:E (s 2)= S 2。
13. 在一森林抽样调查中,某林场共有1000公顷林地,随机布设了50块面积为0.06公顷的方形样地,测得这50块样地的平均储蓄量为9m3,标准差为1.63 m3,试以95%的置信度估计该林场的木材储蓄量。
14. 某居民区共有10000户,现用抽样调查的方法估计该区居民的用水量。
采用简单随机抽样抽选了100户,得ý=12.5,s2=1252。
估计该居民区的总用水量95%的置信区间。
若要求估计的相对误差不超过20%,试问应抽多少户做样本?15. 某工厂欲制定工作定额,估计所需平均操作时间,从全厂98名从事该项作业的工人中随机抽选8人,其操作时间分别为4.2,5.1,7.9,3.8,5.3,4.6,5.1,4.1(单位:分),试以95%的置信度估计该项作业平均所需时间的置信区间(有限总体修正系数可忽略)。
16. 从某百货商店的3000张发货票中随机抽取300张来估计家用电器销售额,发现其中有200张是销售家用电器的,这200张发货票的总金额是48956元,其离差平方和为。
若置信度是95%,试估计这3000张发货票中家用电器销售额的置信区间。
17. 某总体有10个单元,分为A,B,C 三类,其中A 类有2个单元,B 类和C 类各有四个单元。
若采用不放回抽样抽取一样本量为4的简单随机样本来估计B 类单元在B,C 两类单元中的比例,试计算估计量的标准误。
18. 某县采用简单随机抽样估计粮食、棉花、大豆的播种面积,抽样单元为农户。
根据以往资料其变量的变异系数为名称 粮食 棉花 大豆 变异系数 0.38 0.39 0.44 若要求以上各个项目的置信度为95%,相对误差不超过4%,需要抽取多少户?若用这一样本估计粮食的播种面积,其精度是多少?19. 从一叠单据中用简单随机抽样方法抽取了250张,发现其中有50张单据出现错误,试以95%的置信度估计这批单据中有错误的比例。
若已知这批单据共1000张,你的结论有何变化?若要求估计的绝对误差不超过1%,则至少抽取多少张单据作样本?20. 欲调查二种疾病的发病率,疾病A 的发病率较高,预期为50%;疾病B 的发病率预期为1%。
若要得到相同的标准差0.5%,采用简单随机抽样各需要多大的样本量?试对上述不同的结果加以适当的说明。
21. 假设总体中每个单元有两个指标值Y i 和X i ,i=1,…,N ,记y,为相应的简单随机样本的均值。
试证样本协方差∑=---=n i i i yxx x y y n s 1))((11 是总体协方差∑=---=n i i i yxX X Y Y n S 1))((11的无偏估计。
22. 设ý是从总体{Y i , …,Y N }中抽取的样本量为n 的简单随机样本的均值,ýn1是从样本量为n 1的简单随机子样本均值,ýn2是剩余的样本单元均值。