专题12 解析几何-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

合集下载

2019年高考数学全国3卷文理科试卷分析和点评解析

2019年高考数学全国3卷文理科试卷分析和点评解析

2019年高考数学全国3卷文/理科试卷分析和点评解析10.双曲线 C :1 的右焦点为 F ,点 P 在 C 的一条渐近线上,O 为坐标原点.若4 2|PO |=|PF |,则△PFO 的面积为( )3 2 3 2 A. B.4 2C. 2 2D. 3 2【解析】看到焦点和渐近线,想到双曲线参数的几何意义,即焦点到渐近线的距离为b ,过F 作渐近线的垂线,垂足为 B ,设 POPFx ,a c 2x 2x 2法一:在 Rt OFB 中,有 cos FOB ,在 OFP 中,有 cos FOB,c 2cxc21 c23 2 联立得 x,得 S b 。

2a2 2a 4c 2 c 2法二:等腰直角三角形的高为 b xc x 2,易得 x ,同上。

4 2a【点评】双曲线参数的几何意义多次考查,《解析几何的系统性突破》(唯一正版销售书店)通过高考题反复强化学生认知,从而在一些几何图形中迅速找到隐含 的信息,快速突破。

11.(送分)12. 设函数 f (x )sin(xc 2x 2- 4[)(0) ,已知 f (x )在[0,2π]有且仅有 5 个零点,下述四个结5论:①f (x )在(0,2π)有且仅有 3 个极大值点;②f (x )在(0,2π)有且仅有 2个极小值点;③f (x )在(0, ) 单调递增;④的取值范围是 12 , 29).其中所有正确结论的编号是()105 10A.①④B.②③C.①②③D.①③④【点评 1】肖博老师威信:xbmath19《高观点下全国卷高考压轴题研究三部曲》书中 最后给出了 16 套小练习(搜集最新的各地模拟题),其中第 3 套和第 4 套第 1 题如下: 1.函数 fxcos x 0在区间, 上有且只有两个极值点,则的取值范围是3 4A. 2,3B.2,3C.3, 4D.3, 41.若函数 y2sin x0的图象在区间 (,)上只有一个极值点,则的取值范围3 6为( ))A. 13B.23 32C. 34D.3 92 2法一:还原,则变成同上 2 个题。

专题12 解析几何-十年(2012-2021)高考数学真题分项详解(全国通用)(原卷版)

专题12 解析几何-十年(2012-2021)高考数学真题分项详解(全国通用)(原卷版)

则|MN|=
A. 3 2
B.3
C. 2 3
D.4
20.(2018 年全国普通高等学校招生统一考试理数(全国卷
II))双曲线 x2 a2

y2 b2
= 1(a
0,b
0) 的离心率
为 3 ,则其渐近线方程为
A. y = 2x
B. y = 3x
C. y = 2 x 2
D. y = 3 x 2
21.(2018 年全国普通高等学校招生统一考试文数(全国卷 II))已知 F1 ,F2 是椭圆 C 的两个焦点,P 是 C
一条渐近线的
倾斜角为 130°,则 C 的离心率为
A.2sin40°
B.2cos40°
C. 1 sin50
D. 1 cos50
12.(2019 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知椭圆 C 的焦点为 F1( −1, 0),F2(1, 0),过 F2
的直线与 C 交于 A,B 两点.若│AF│2 = 2│F2B│,│AB│=│BF│1 ,则 C 的方程为

y2 b2
= 1 (a>0,b>0)的左、
右焦点分别为 F1,F2,离心率为 5 .P 是 C 上一点,且 F1P⊥F2P.若△PF1F2 的面积为 4,则 a=( )
A.1
B.2
C.4
D.8
11.(2019
年全国统一高考数学试卷(文科)(新课标Ⅰ))双曲线
C:
x2 a2

y2 b2
= 1(a 0,b 0) 的
点(–2,0)且斜率为
2 3
的直线与
C
交于
M,N
两点,则
FM
FN

2019年全国新课标II卷试题及解析

2019年全国新课标II卷试题及解析

2019高考数学试题+完美解析!2019全国新课标II卷试题+解析一.选择题:本题共12道,每小题5分,共60分。

在每小题给出的四个选项中,只有一个项是符合题目要求的。

【解析】考察一元二次不等式,一元一次不等式的解法,集合的运算【解析】考察复数的共轭,及其坐标表示【解析】考察向量的坐标运算,向量的减法,求模,数量积等基本公式,此题只要依题意进行公式套入即可。

【解析】考察统计中各个数据的含义,此题需理解中位数的求法即可。

【详解】9个数的中位数去掉两端的两个数据后,新7个数的中位数和原来相同,故选A【解析】此题看似不等式,实则是考察函数的单调性,通过函数单调性比较函数值的大小关系。

【解析】此题考察面面平行的判定定理。

【详解】判定定理:如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。

故选B【解析】圆锥曲线,考察抛物线和椭圆的焦点坐标,代入焦点坐标公式中即可求解,难度中等。

注意识别焦点位置。

【解析】考察图像变换中的含绝对值的图像变换,则利用图像判断函数单调区间【解析】考察三角函数的恒等变换,利用二倍角公式,可化简求tanα,进而求sinα【解析】此题考察双曲线的离心率的求法,根据题意做出图像,已知条件中的PQ=OF ,寻找关于a,b,c的等量关系,变形整理出离心率,是难题【解析】此题是“类周期函数”函数每向右一个单位,纵坐标总扩大2倍,做出函数图像,解出相应的函数解析式,再根据恒成立的条件,可求m的取值范围。

【解析】统计问题,考察频率分布中的平均值的求法,方法:频率乘相应数据再求和【解析】考察函数的奇偶性,及指数对数的计算。

根据已知区间的函数值,利用奇函数性质转换到未知区间的函数值,可求参数a【解析】此题考查解三角形中余弦定理,面积公式的应用。

应用余弦定理课解出a和c,在用面积公式可解【解析】本题考察数学文化,注重社会主义核心价值观,并将5分拆成2+3分两部分,利于学生拿分;第一空,应用题中“对称”二字,可数出面数;第二空,恰当做出截面是关键,把立体图形的放在平面几何中研究,是解决立体几何的重要手段1【解析】(1)问考察线面垂直的判定定理,找到与BE垂直的两条相交直线(2)问考察空间向量中二面角的求法,注意此题问的是正弦值,还需将余弦值转化为正弦值。

专题13概率、统计-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

专题13概率、统计-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

2019年新课标全国卷(1、2、3卷)理科数学备考宝典13.排列组合、概率统计一、2018年考试大纲二、新课标全国卷命题分析三、典型高考试题讲评2011—2018年新课标全国(1卷、2卷、3卷)理科数学分类汇编——13.排列组合、概率统计一、考试大纲1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.4.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.5.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.6..随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.7.分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.8.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.9.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.10.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.11.统计案例——了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析:了解回归分析的基本思想、方法及其简单应用.二、新课标全国卷命题分析排列组合、概率统计在新课标全国卷高考中一般考查2小1大,概率中古典概型和几何概型是重点,一般以小题或解答题中的一小问出现,计数原理常考题型有:(1)排列组合;(2)二项式定理,几乎二者是隔一年或隔两年交互出题,排列组合这种排序问题常考,已经属于高考常态,利用二项式定理求某一项的系数或求奇偶项和也已经属于高考常态,尤其是利用二项式定理求某一项的系数更为突出.概率与统计的解答题,全国卷更注重统计的应用,而统计更多的是实际生活和生产中的广泛应用.散型随机变量是高考考点之一,随机变量分布是热点话题,正态分布和二项分布都以小题出现,且在基础题位置,难度较低,在平时复习时不宜研究难题.所以高三复习时,提高自己阅读理解能力的同时,更要关注统计中的概率分布直方图、线性回归方程、随机变量概率分布的数字特征和独立性检验等概念.三、典型高考试题讲评题型1 随机抽样例1 (2013·新课标Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.故选C.题型2 根据统计图判断例2 (2018·新课标Ⅰ,理3) 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列选项中不正确的是:A.新农村建设后,种植收入减少。

2019年高考数学(理)真题和模拟题分项汇编专题12 数系的扩充与复数的引入- 含解析

2019年高考数学(理)真题和模拟题分项汇编专题12 数系的扩充与复数的引入- 含解析

2019年高考真题和模拟题分项汇编数学(理)专题12 数系的扩充与复数的引入1.【2019年高考北京卷理数】已知复数2i z =+,则z z ⋅=A B C .3D .5【答案】D【解析】由题2i z =+,则(2i)(2i)5z z ⋅=+-=,故选D .2.【2019年高考全国Ⅰ卷理数】设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .221(1)x y +=- C .22(1)1y x +-=D .22(+1)1y x +=【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案为C . 【答案】C【解析】由题可得i,i (1)i,z x y z x y =+-=+-i 1,z -==则22(1)1x y +-=.故选C .3.【2019年高考全国Ⅱ卷理数】设z =–3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【解析】由32i,z =-+得32i,z =--则32i z =--对应的点(-3,-2)位于第三象限.故选C . 4.【2019年高考全国Ⅲ卷理数】若(1i)2i z +=,则z = A .1i -- B .1i -+ C .1i -D .1i +【答案】D 【解析】()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .5.【2019年高考天津卷理数】i 是虚数单位,则5|ii|1-+的值为______________. 【分析】先化简复数,再利用复数模的定义求所给复数的模.【解析】5i (5i)(1i)|||||23i |1i (1i)(1i)---==-=++-. 6.【2019年高考浙江卷】复数11iz =+(i 为虚数单位),则||z =______________. 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【解析】由题可得1|||1i |2z ===+. 7.【2019年高考江苏卷】已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是______________.【分析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值. 【答案】2【解析】2(2i)(1i)i 2i 2i 2(2)i a a a a a ++=+++=-++,令20a -=,解得2a =. 8.【江西省南昌市南昌外国语学校2019届高三高考适应性测试】记复数z 的共轭复数为z ,若(1i)2i z -=(i 虚数单位),则||z =A B .1C .D .2【答案】A【解析】由(1i)2i z -=,可得2i 2i(1+i)1i 1i 2z ===-+-,所以1i z =--,||z =A .9.【山东、湖北部分重点中学高三高考冲刺模拟考试(二)】已知复数z 满足||z =2z z +=(z 为z 的共轭复数)(i 为虚数单位)则z =。

专题10 数列-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

专题10 数列-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

2019年新课标全国卷(1、2、3卷)理科数学备考宝典10.数列一、考试大纲1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式). (2)了解数列是自变量为正整数的一类函数. 2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数、等比数列与指数函数的关系.二、新课标全国卷命题分析数列属于高考必考考点,一般占10分或12分,即两道小题或一道大题,其中必有一道小题属于基础题,一道中档偏上题或压轴题,大题在17题出现,属于基础题型,高考所占分值较大,在高中教学中列为重点讲解内容,也是大部分学生的难点,主要是平时教学题型难度严重偏离高考考试难度,以及研究题型偏离命题方向,希望能引起注意;考试主线非常明晰:(1)等差数列通向公式n a 及其前n 项和n S ;(2)等比数列通向公式n a 及其前n 项和n S ;(3)错位相减法、裂项相消法等求数列的前n 项和等等.数列在大学中有着特殊位置,《微积分》中的无穷级数,《数论》中扩展的数列都有涉猎,数列还是比较重要的知识今年没有出等比数列的知识,是比较不足的地方,望考生从等比数列和等差数列两方面出题,2019年若是在出数列,有可能出现“错位相减法求和”,因为考查学生运用数学思想去解决问题,考查考生的内在数学涵养。

三、典型高考试题讲评题型1 等差数列与等比数列的基本量例1 (2018·新课标Ⅰ,理4)记n S 为等差数列{}n a 的前n 项和,若4233S S S +=,21=a ,则=5a ( )A .12- B. 10- C. 10 D. 12 解析:4233S S S += 且n S 为等差数列{}n a 的前n 项和.()111333246a d a d a d ∴+=+++,即0231=-d a ,又21=a ,3-=∴d , ()10342415-=-⨯+=+=∴d a a , 故选B【解题技巧】等差数列与等比数列的通项公式及前n 项和公式,共涉及到五个量,1a ,n a ,d 或q ,n ,n S ,知道其中三个就可以求另外两个,体现方程的思想,在求解此类问题时,使用1a ,d 或q 建立方程是基本方法。

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A. 22+11()x y += B. 22(1)1x y -+=C. 22(1)1x y +-=D. 22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-=+-1,z i -则22(1)1x y +-=.故选C .【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为A.B.C. D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D. A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B. 310n a n =- C. 228n S n n =-D. 2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C.对D,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y += 【答案】B 【解析】 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12A F n =,在1A FB △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得2n =,从而可求解. 【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()s i n s i n s i n s i n ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.【答案】D 【解析】 【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解. 【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==3442338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴===,又===2A B B C A C ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D . 【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。

2019年高考全国Ⅲ卷理数19题解答及分析

2019年高考全国Ⅲ卷理数19题解答及分析

题目:【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A C a b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.一.思路展示与解答(1)由题设及正弦定理得sin sin sin sin 2A C AB A +=. 因为sin A ≠0,所以sin sin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B =,因此B =60°. (2)解题视角一:代数法.解三角形问题通常使用代数法研究图形的几何性质,一般都是化为某一种形式的式子,即全部化为角或者边的式子来研究.本题是以锐角三角形为背景的面积最值问题,因此可使用锐角三角形对应的“代数”特点来解决。

方法一 构造单一变量的目标函数(函数思想).本题考查三角形面积最值问题,很自然地想到建立目标函数即三角函数求面积最值。

通过正弦定理及三角形内角和为π,把三角形面积用单一角表示,进而根据锐角三角形所约束的角范围来确定面积的范围.由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.方法二 构造单一变量的不等式(不等式思想).本题的锐角三角形可通过余弦定理建立含有三边的不等式关系,再通过消元的思想得到只有边a 的不等式关系,得出边a 的范围,进而得到面积的范围.由题设及(1)知△ABC的面积ABC S =△.由余弦定理得2221cos 22a cb B ac +-==,故221a a b -+=,① 因为ABC ∆为锐角三角形,故cos 0cos 0A C >>,,则2210b a -+>,② 22+10a b ->,③将①分别代入②,③,可得:122a <<,从而82ABC S <<△.因此,△ABC 面积的取值范围是⎝⎭.方法三 构造未知与已知的关系(转化与化归思想).本题的锐角三角形也可通过向量建立不等式关系,再用已知向量表示未知向量,即建立未知量只有边a 的不等式关系,来确定边a 的范围,进而得到面积的范围.由题设及(1)知△ABC 的面积4ABC S a =△. 因为ABC ∆为锐角三角形,故cos 0cos 0A C >>,,则由cos 00A AB AC >⇒⋅>,所以()+0AB AB BC ⋅> 所以()2cos 0AB AB BC B π+->,即11022a a ->⇒<, 由cos 00C CA CB >⇒⋅>,所以()+0CB CB BA ⋅>,所以()2cos 0CB BA CB B π+->,即211022a a a ->⇒>,所以122a <<ABC S <<△.因此,△ABC 面积的取值范围是⎝⎭.视角二:坐标法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年新课标全国卷(1、2、3卷)理科数学备考宝典12.解析几何一、考试大纲1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式), 了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.3.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.4.曲线与方程了解方程的曲线与曲线的方程的对应关系.二、新课标全国卷命题分析解析几何部分一般是2小1大,小题一般考查圆、圆锥曲线的性质,如离心率、渐近线,与圆、圆锥曲线有关的最值、取值范围问题,解答题一般考查直线与圆、圆锥曲线的位置关系,充分地考查了考生的逻辑思维能力、应用解析几何思想解决问题的能力和进行代数运算的能力.突出考查了用解析几何方法解决几何问题的能力,试题计算量较大,在计算的过程中,无论是公式记错了,用错了,还是算错了,都会由于一步的计算错误而导致整道试题的解答错误,因此,强调运算的准确性对于解析几何是十分必要的,充分应用解析几何基本知识与基本思想的通性通法.三、典型高考试题讲评 题型1 直线与圆的位置关系例 1 (2018·新课标Ⅲ,理6)直线20x y ++=分别与轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C. D.⎡⎣ 解析:由直线20x y ++=得(2,0),(0,2)A B --,∴||AB ==,圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++==P 到直线20x y ++=的距离的取值范围为d -≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.题型2 圆锥曲线的性质——离心率、渐近线例2 (2018·新课标Ⅲ,理11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( )AB .2CD【答案】C 解析:∵2||PF b =,2||OF c =,∴ ||PO a =;又因为1|||PF OP =,所以1||6PF a=;在2R tP O F ∆中,22||cos ||PF bOF cθ==;∵在12Rt PF F ∆中,2222121212||||||c o s2||||P F F F P F b P F F F cθ+-==⋅⋅,222222224644633bb c a b c a c a c=⇒+-=⇒-=- 223c a ⇒=e ⇒=.例3 (2018·新课标Ⅱ,理12)已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 ( )A .23B .12C .13D.14解析:解三角形的方法(几何法) :在12PF F ∆为等腰三角形,012=120F F P ∠,所以,212==2F P F F c ,在Rt 2PDF ∆中,2DF c =,DP =,所以,2AD a c =+,在Rt PDA ∆,故离心率14e =.解法二:解三角形的方法(几何法):在12PF F ∆为等腰三角形,012=120F F P ∠,所以,212==2F P F F c ,由余弦定理可知:1PF =,因为()111sin sin APF PAF AF P ∠=∠+∠,1sin PAF ∠,1cos PAF ∠所以1sin APF ∠=1APF ∆=,故离心率14e =.例4 (2018·新课标Ⅱ,理5)双曲线()2222100x y a b a b-=>,>)A.y =B.y =C.y = D.y x = 解析:由于()2222100x y a b a b -=>>,可知:该双曲线的渐近线方程为b y x a=±.已知离心率e =(ce a=),设a t =,则c =,由222c a b =+可知:b,故双曲线的渐近线方程为y =。

解法二:已知渐近线方程为y kx =,由于221e k =+可得:k =y =。

题型3 求曲线的方程例 5 (2017·新课标Ⅲ,5)已知双曲线C :()2222:10,0x y C a b a b -=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ). A .221810x y -= B .22145x y -=C .22154x y -= D .22143x y -= 解析:因为双曲线的一条渐近线方程为y,则b a =又因为椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,a b ==C 的方程为22145x y -=.故选B. 题型4 与圆锥曲线有关的求值、范围问题例6 (2018·新课标Ⅰ,理8) 设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .8解析:焦点F (1,0), 直线l , 2224(2)(2)3333y x x x =+=+=+,242433y xy x ⎧=⎪⎨=+⎪⎩,得2540x x -+=,解得121214,24x x y y ==⎧⎧⎨⎨==⎩⎩,所以M (1,2),N (4,4). (0,2)(3,4).8FM FN FM FN ===,故选D.例7 (2017·新课标Ⅰ,理10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴,易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性),cos AF P AF θ⋅+=∴,同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-,又DE 与AB 垂直,即DE 的倾斜角为π2θ+, 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =. ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当且仅当π4θ=取等号,即AB DE +最小值为16,故选A ;【法二】依题意知:22sin PAB θ=,2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,由柯西不等式知: 2222211(11)22816sin cos sin cos AB DE P P P θθθθ+⎛⎫+=+≥⋅== ⎪+⎝⎭,当且仅当π4θ=取等号,故选A ;题型5 与圆锥曲线有关的定值、定点、存在性问题例8 (2017·新课标Ⅰ,理20)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2 ),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.()2121m +解析:(1)根据椭圆对称性,必过3P 、4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点,将()23011P P ⎛- ⎝⎭,,代入椭圆方程得:222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b =, ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,, 联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=, 122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-= 222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠,21b k ⇒=--,此时64k ∆=-, 存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--,当2x =时,1y =-,所以l 过定点()21-,.题型6 与圆锥曲线有关的范围问题(2016·新课标Ⅰ,20)设圆015222=-++x y x 的圆心为圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 解析:⑴圆A 整理为()22116x y ++=,A 坐标()1,0-BE AC Q ∥,则C EBD =∠∠,由,AC AD D ==则∠EBD D ∴=∠∠,则EB ED =,4||AE EB AE ED AD AB ∴+=+==> 根据椭圆定义为一个椭圆,方程为22143x y +=,(0y ≠);⑵221:1x y C +=;设:1l x my =+,因为PQ l ⊥,设():1PQ y m x =--,联立l 与椭圆圆心A 到所以||PQ =()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+2011年—2018年新课标全国卷理科数学试题分类汇编12.解析几何一、选择题(2018·新课标Ⅰ,理8) 设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .8(2018·新课标Ⅰ,理11)已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3C .D .4(2018·新课标Ⅱ,理5)双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y =D .y x = (2018·新课标Ⅱ,理12)已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 ( ) A .23B .12C .13D.14(2018·新课标Ⅲ,理6)直线20x y ++=分别与轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣ (2018·新课标Ⅲ,理11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为( )AB .2C D(2017·新课标Ⅰ,10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10(2017·新课标Ⅱ,9)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B D(2017·新课标Ⅲ,5)已知双曲线C :()2222:10,0x y C a b a b -=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ). A .221810x y -= B .22145x y -=C .22154x y -= D .22143x y -= (2017·新课标Ⅲ,10)已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ).A B CD .13(2016·新课标Ⅰ,5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0((2016·新课标Ⅰ,10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8(2016·新课标Ⅱ,4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-C D .2(2016·新课标Ⅱ,11)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )AB .32C D .2(2016·新课标Ⅲ,11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE 的中点,则C 的离心率为A. 13B. 12C. 23D. 34(2015·新课标Ⅰ,5)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )(A )( (B )( (C )( (D )( (2015·新课标Ⅱ,7)过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A .B .8C .D .10(2015·新课标Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2CD (2014·新课标Ⅰ,4)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3 C D .3m(2014·新课标Ⅰ,10)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .2 (2014·新课标Ⅱ,10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( )ABC .6332D .94(2013·新课标Ⅰ,4)已知双曲线C :2222=1x y a b-(a >0,b >0),则C 的渐近线方程为( )A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x (2013·新课标Ⅰ,10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + (2013·新课标Ⅱ,11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( ) A.24y x =或28y x =B.22y x =或28y x =C.24y x =或216y x =D.22y x =或216y x =(2013·新课标Ⅱ,12)已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A.(0,1)B.1(1)2C.1(1]3D.11[,)32(2012·新课标Ⅰ,4)设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34D .45(2012·新课标Ⅰ,8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8(2012·新课标Ⅱ,4)设F 1,F 2是椭圆E : 12222=+b y a x )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( ) A.21B.32 C.43 D.54 (2012·新课标Ⅱ,8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=34,则C 的实轴长为( ) A.2 B. 22 C. 4 D. 8 (2011·新课标Ⅰ,7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A (B (C )2 (D )3(2011·新课标Ⅱ,7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )ABC .2D .3二、填空题(2018·新课标Ⅲ,理16)已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.(2017·新课标Ⅰ,15)已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________. (2017·新课标Ⅱ,16)已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .(2016·新课标Ⅲ,16)已知直线l :30mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D 两点,若AB =,则||CD =__________.(2015·新课标Ⅰ,14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014·新课标Ⅱ,6)设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.(2011·新课标Ⅰ、Ⅱ,14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 . 三、解答题(2018·新课标Ⅰ,理19)设椭圆2212x C y +=:的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为()20,.⑴当l 与x 轴垂直时,求直线AM 的方程; ⑵设O 为坐标原点,证明:OMA OMB =∠∠.(2018·新课标Ⅱ,理19)设抛物线2:4C y x =的焦点为F ,过F 且斜率为()0k k >的直线l 与C 交于A B ,两点,8AB =.(1)求l 的方程;(2)求过点A B ,且与C 的准线相切的圆的方程.(2018·新课标Ⅲ,理20)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.⑴证明:12k <-;⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.(2017·新课标Ⅰ,20)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2017·新课标Ⅱ,20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(2016·新课标Ⅰ,20)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.(2016·新课标Ⅱ,20)已知椭圆E:2213x yt+=的焦点在x轴上,A是E的左顶点,斜率为k (k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.(2016·新课标Ⅲ,20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(2015·新课标Ⅰ,20)在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.(2015·新课标Ⅱ,20)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.(2014·新课标Ⅰ,20)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.(2014·新课标Ⅱ,20)设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b . .(2013·新课标Ⅰ,20)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.(2013·新课标Ⅱ,20)平面直角坐标系xOy中,过椭圆2222:1(0)x yM a ba b+=>>右焦点F的直线x y+交M于,A B两点,P为AB的中点,且OP的斜率为1 2 .(Ⅰ)求M的方程;(Ⅱ),C D为M上的两点,若四边形ACBD的对角线CD AB⊥,求四边形ACBD面积的最大值.(2012·新课标Ⅰ、Ⅱ,20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.(2011·新课标Ⅰ、Ⅱ,20)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r , MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.2011年—2018年新课标全国卷理科数学试题分类汇编12.解析几何一、选择题(2018·新课标Ⅰ,理8) 设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .8【答案】D 解析:焦点F (1,0), 直线l , 2224(2)(2)3333y x x x =+=+=+,242433y xy x ⎧=⎪⎨=+⎪⎩,得2540x x -+=,解得121214,24x x y y ==⎧⎧⎨⎨==⎩⎩,所以M (1,2),N (4,4). (0,2)(3,4).8FM FN FM FN ===,故选D.(2018·新课标Ⅰ,理11)已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C.D .4【答案】B 解析:因为双曲线221,(2,0)3x y F -=,所以渐近线方程为y x =±,倾斜角分别为30,150, 所以60MON ∠=, 不妨设90MNO ∠=,所以30,30OMN FON ∠=∠=,因为2OF =,所以在Rt FON ∆中,cos3022ON OF =⋅=⨯=, 所以在Rt MON ∆中,tan 6033MN ON =⋅==.【基本解法2】由题意可得渐近线方程为y x=±,可分别求出M 和点N 的坐标;2)y x y x ⎧=⎪⎨⎪=-⎩,可得32x y ⎧=⎪⎪⎨⎪=⎪⎩3(,2M .2)y x y x ⎧=⎪⎨⎪=-⎩,可得3x y =⎧⎪⎨=⎪⎩M .所以在MN=3=,故选B(2018·新课标Ⅱ,理5)双曲线()2222100x y a b a b-=>,>)A.y = B.y = C.y = D.y x = 【答案】A 解析:由于()2222100x y a b a b -=>>,可知:该双曲线的渐近线方程为b y x a =±.已知离心率e =(ce a=),设a t =,则c =,由222c a b =+可知:b,故双曲线的渐近线方程为y =。

相关文档
最新文档