纳米光子软件MODE Solutions介绍

纳米光子软件MODE Solutions介绍
纳米光子软件MODE Solutions介绍

波导光学器件模式求解和传播设计分析软件

MODE Solutions

一公司及软件简介

MODE Solutions软件由加拿大Lumerical Solutions公司出品。该公司成立于2003年,总部位于加拿大温哥华。用户用该公司软件已发表大量高影响因子论文,并被许多国际著名大公司和学术团队所使用。

MODE Solutions是精确多功能的模式求解和传播用来设计和分析波导光学器件的软件,它能求解:

1 共型网格、有限差分模式计算引擎可以求解任意波导结构

--直、弯波导,电介质波导、表面等离子体波导、反谐振波导、光子晶体光纤等

2 二维半基于FDTD的传播引擎可以快速地给出平面波导的计算结果

--全方向Omni-directional引擎可以计算那些BPM技术无法设计的器件如谐振腔

--多系数材料模型可以拟合众多色散材料

二软件特点

1 MODE Solutions是模拟平面波导器件的强力工具

--2.5D FDTD 引擎快速给出精确结果

--多系数材料模型MCMs 准确处理色散材料

--使用多核/多处理器的计算引擎

--内置的优化算法可以很快给出优化设计结果

2模式分析给出近场结果

--适合各种波导

--模式分析提供:

*近场电、磁场、强度和坡印庭矢量

*微弯损耗计算

*远场分析

33简便获得波导的频率响应

--有效折射率或传播常数随频率/波长的变化

--损耗随频率/波长的变化

--色散

--群折射率

--群延迟

4模式重叠计算

--重叠积分

--耦合效率,如高斯光束与一个波导模式的耦合

--优化波导模式1(或光束)相对于波导模式2的位置以获得最大耦合效率

5纳米光学设计者需要的关键特点

--全矢量算法

--渐变/非均匀网格,共形网格

--准确的材料色散模型

--设计的参数化和优化算法

--多台计算机同时计算

--强大的文本程式

--模式计算引擎Eigensolver

*色散、群速度、群折射率等

*模重叠和功率耦合效率

--传播计算引擎Propagator

*2.5D 全方向传播计算

*多核多节点并行计算

*仿真动态可生成影像

?所有图片版权均属于Lumerical,您可以直接访问https://www.360docs.net/doc/d73768767.html,/。

微纳光子学

微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。 最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。此设计方法还能有效的抑制噪声光的反馈。同时,科研人员利用耦合模方法验证了这种设计方法的可行性。这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。 “新兴光器件及集成技术专题报告会”上发布《纳米光子学对光子技术更新换代的重要作用》精彩演讲。报告摘要;从上世纪70年代开始,光子学进入微光子学阶段,经过40年的研究,现在已经比较成熟。以半导体激光器为重点的研究已经逐渐转向对激光控制问题的研究和激光应用的研究。同时,光子技术已经进入光电子技术阶段,其特点是研究开发以电控光、光电混合的器件和系统。光电子技术已经逐步占领了电子技术原有的阵地。它的应用领域已经扩大到人类社会生活的各方面,如光通信与光网,平板显示、半导体照明、光盘存储、数码相机等。光电子产业迅速发展壮大起来。在经济发达国家,光电子产业的总产值已经可以与电子产业相比,甚至超过电子产业。近十年来,国际学术界开始大力发展纳光子学及其技术,使光电子技术与纳米技术相结合,对现有光电子技术进行升级改造。 与国际上科技发达的国家相比,目前我国微纳光子学的研究还不算落后,这从我国在微纳光子学领域发表的论文数量和投稿的杂志级别就可看出。但是我国的光子学研究论文大部分是理论方面的,大多数是跟踪国外的。由于国内缺乏先进的科学实验平台,特别是缺乏制备微纳光子学材料和器件的工艺条件,实验方面的论文比较少(除了少数与国外合作研究的论文),创新的思想无法得到实验验证。微光子学方面的情况尚且如此,在纳光子学方面,由于对仪器、设备、工艺和技术的要求更高,与国外的差距正在加大。 在光电子技术方面,由于国际经济的全球化和我国的改革开放形势,吸引跨国公司将制造、加工基地向我国转移。21世纪初光电子企业的大公司纷纷落户我国。而且大量资金投向我国沿海经济发达地区(如广东、上海和京津地区),建立起一大批中外合资或独资企业。但是这些外国企业或技术人员,控制着产业的高端技术,对我国实行技术垄断,使我国的光电子技术至今还处于“下游”,成为外向加工企业。大多数光电子企业采用这样的生产模式:购买国外的芯片进行器件封装,或者购买国外的器件进行系统组装。目前我国光电子企业严重缺乏核心技术和自主知识产权,无法抵御国际经济危机,面临着很大的风险。 为了加快我国的微纳光子学与相关光子技术的发展,我国应该集中投入一部分资金,凝聚一批高水平研究人才,在某些光电子企业集中的地区,依托光子学研究有实力的单位,采用先进的管理模式,建设我

纳米材料学

1. 团簇:一般指由几~几百个原子的聚集体系,尺寸≤1nm.其结构多样化,呈线状,网状,层状,洋葱状,骨架状…… 2. 人造原子:是指包含一定数量的真正原子的量子点,准一维的量子棒,准二维的量子盘以及~100nm 的量子器件 3. 同轴纳米电缆: 4. 介孔固体: 5. 介孔复合体: 6. 纳米结构: 7. 自组织合成和分子自组织合成: 8. 阵列体系的模板合成: 9. 纳米碳管及其分类:是由碳原子组成的Φ:几~几十nm,长约几十nm~μm 的管子,侧边为六边型,顶端为五边型封顶.有单壁碳管和多壁碳管,多壁管还分为单臂,锯齿形和手性. 10. 光吸收带蓝移和红移:与大块材料相比,纳米微粒的吸收带移向短波方向,是由于尺寸下降,能隙变宽;还有由于纳米微粒颗粒小,大的表面张力使晶格畸变,晶格常数变小.红移可能是由于粒子表面形成的偶极层的库仑作用引起的红移大于粒子尺寸的量子限域效应引起的蓝移,还可能是表面形成束缚激子导致发光. 11. 超顺磁性:铁磁纳米微粒尺寸小到一定临界值,就不再服从居里-外斯定律,呈顺磁性. 12. 磁性液体(结成和特点) 13. 沉淀法和共沉淀法:包含一种或多种离子的可溶性盐溶液,当加入沉淀剂后,或于一定温度下使溶液水解,形成不溶性氢氧化物或盐类从溶液中析出,并将溶液中原有的阴离子洗去,经热分解即得到所需的氧化物粉料. 含多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法,分为单相共沉淀和混合物共沉淀. 14. 均相沉淀法:通过控制溶液中的沉淀剂浓度,使之缓慢地增加,则使溶液中的沉淀处于平衡状态,且沉淀能在整个溶液中均匀出现,这种方法称为均相沉淀. 15. 金属醇盐水解法:利用一些金属有机醇盐能溶于有机溶剂并可能发生水解,生成氢氧化物或氧化物沉淀的特性,制备细粉料的一种方法. 16. 纳米微粒的尺寸,结构和形貌特征:1~100nm;一般呈球型,还有其他与制备方法密切相关的其他形状;结构一般与大颗粒相同,但颗粒内部,特别是表面层晶格畸变,有时会出现与大颗粒差别很大的情况. 17. 什么是久保理论?它的基本点是什么?该理论的优缺点是什么?是关于金属粒子电子性质的理论,将超微粒子靠近费米面附近的电子状态看作是受尺寸限制的简并电子气,并进一步假设它们的能级为准粒子态的不连续能级,且忽略相互作用,得到的电子能级分布优于等能级间隔模型;还认为从超微粒子中取走或放入一个电子都是困难的,超微粒子是电中性的.久保理论解释了超微粒子在EPR,磁化率,比热等方面的量子尺寸效应,但对外界条件以及自旋-轨道相互作用对电子能级分布的影响没有考虑. 18. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致的声,光,电磁,热力学的新特性. 表面效应:纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例,使得表面原子具有高的活性,极不稳定,很容易与其他原子结合. 宏观量子隧道效应:一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有贯穿势垒的能力,称为宏观量子隧道效应. 库仑堵塞与量子隧穿: 介电限域效应:当粒子的尺度下降到可与激子的玻尔半径相比拟时,屏蔽效应被减小,而颗粒间的库仑作用得到增强,导致ε增加,激子束缚能增加等效应. 19. 纳米微粒的基本热学特征:纳米微粒的熔点,开始烧结温度和晶化温度均比常规粉体低很多.由于颗粒小,纳米微粒的表面能高,比表面原子数多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料,因此纳米粒子熔化所需增加的内能小得多,熔点急剧下降.纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利与界面中的孔洞收缩,因此在较低温度下烧结就能达到致密化的目的. 20. 纳米微粒超顺磁性,高矫顽力,低T C 产生的原因:超顺磁性的起源:由于小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规律变化,结果导致超顺磁性的出现.纳米微粒尺寸高于超顺磁临界尺寸时呈现的高矫顽力,有一致转动模式和球链反转磁化模式.一致转动磁化:每个粒子就是一个单磁畴,要使这个磁铁去掉磁性,需要每个粒子整体的磁矩反转,这需要很大的反向磁场.由于小尺寸效应和表面效应而导致纳米粒子的本征和内禀的磁性变化,因此具有较低的居里温度. 21. 纳米材料往往呈现出常规粗晶不具有的发光现象,原因是什么?常规粗晶的结构存在平移对称性,由平移对称性产生的选择定则禁介使得它不能发光.当小到一定程度时,平移对称性消失.载流子的量子限域效应. 22. 如何分散纳米粒子?(1)加入反絮凝剂形成双电层.即选择恰当的电解质做分散剂,使纳米粒子表面吸引异电离子形成双电层,通过双电层之间库排斥作用使粒子之间发生团聚的引力大大降低,实现纳米微粒分散的目的.(2)加表(界)面活性剂包裹颗粒.使其吸附在粒子表面,形成微胞状态,由于活性剂的存在而产生了粒子间的排斥力,使得粒子间不能接触,从而防止团聚体的产生. 23. 低压气体中蒸发法的基本原理是什么?影响纳米粒子尺寸的因素是什么?是在低压的氩,氦等惰性气体中加热金属,使其蒸发后形成超微粒(1~1000nm)或纳米微粒.加热源又以下几种:电阻加热法;等粒子喷射法;高频感应法;电子束法;极光法. 可通过调节惰性气体压力,蒸发物质的分压即蒸发温度或速率,或惰性气体的温度来控制纳米微粒的尺寸. 24. 溅射法制备纳米微粒的基本原理:用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar 气(40~250Pa),两电极间施加的电压范围为0.3~1.5kV .由于两电极间的辉光放电使Ar 离子形成,在电场的作用下Ar 离子冲击阴极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来.粒子的大小及尺寸分布主要取决于两电极间的电压,电流和气体压力. 25. 水热法制备纳米微粒方法的基本点:水热反应是高温高压下在水(水溶液)或蒸汽等流体中进行有关化学反应的总称.水热氧化;水热沉淀;水热合成;水热还原;水热分解;水热结晶. 26. 溶胶-凝胶法制备纳米粒子的基本原理与过程:基本原理是将金属醇盐或无机盐经水解,然后使溶质聚合凝胶化,再将凝胶干燥,焙烧,最后得到无机材料.过程包括:(1)溶胶的制备:一使先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散称原始颗粒;另一种方法使由同样的盐溶液出发,通过对沉淀过程的仔细控制,使首先形成的颗粒不致团聚为大颗粒而沉淀,从而直接得到胶体凝胶.(2)溶胶-凝胶转化:溶胶中含有的大量的水,凝胶化过程中,体系失去流动性,形成一种开放的骨架结构.途径有二:一是化学法,通过控制溶胶中的电解质浓度来实现凝胶化;二是物理法,迫使胶颗粒间相互靠近,克服斥力,实现凝胶化.(3)凝胶干燥:一定条件下(如加热)使溶剂蒸发,得到粉料,干燥过程中凝胶结构变化很大. 27. 常用的评估纳米粒子直径的方法有哪些?测量原理及运用的范围.(1)透射电镜观察法:用此方法测得的颗粒粒径,不一定是一次颗粒,往往是由更小的晶体或非晶,准晶微粒构成的纳米级微粒.这是因为在制备电镜观察用的样品时,很难使它们全部分散成一次颗粒.(2)X 射线衍射线宽法:是测定微粒晶粒度的最好方法.晶粒度<100nm.(3)比表面积法:通过测定粉体单位重量的比表面积S w ,假设颗粒呈球形,则颗粒直径w S d ρ/6=.容量法:测定已知量的气体在吸附前后的体积差,进而得到气体的吸附量;重量法:直接测定固体吸附前后的重量差,计算吸附气体的量.(4)X 射线小角散射法:假定粉体粒子为均匀形状,大小,利用X 射线衍射中倒易点阵原点(000)结点附近的相干散射现象,计算求出粒度分布和平均尺寸.颗粒约几~几十nm.(5)Raman 散射法:通过测量Raman 谱中某一晶峰在纳米晶体和常规晶体中的偏移来得到纳米晶粒的平均粒径. 28. 纳米固体基本构成及分类:基本构成十纳米微粒以及它们之间的分界面(界面).按小颗粒结构状态可分为纳米晶体,纳米微晶,纳米准晶材料;按小颗粒键的形式可分为纳米金属,纳米离子晶体,纳米半导体,纳米陶瓷材料;由单相微粒构成的固体称为纳米相材料,每个纳米微粒本身由两相构成(一种相弥散于另一种相中)的成为纳米复相材料.纳米复合材料大致包括三种类型:一是0-0复合,即不同成分,不同相或者不同种类的纳米粒子复合而成的纳米固体;二是0-3复合,即把纳米粒子分散到常规的三维固体中;三是0-2复合,即把纳米粒子分散到二维薄膜材料中,又分均匀弥散和非均匀弥散. 29. 为什么纳米固体具有高比热,高热膨胀系数?体系的比热主要由熵贡献,在温度不太低的情况下,电子熵可以忽略,体系熵主要由振动熵和组态熵贡献.纳米结构材料的界面结构原子分布比较混乱,界面体积百分比大,因而纳米材料熵丢比热的贡献比常规粗晶材料大的多.固体的热膨胀与晶格非线形振动有关.纳米晶体在温度发生变化时,非线形热振动可分为两个部分,一时晶内的非线形热振动,二时晶界组分的非线形热振动,往往后者的非线形振动更为显著,可以说占体积百分数很大的界面对纳米晶热膨胀的贡献起主导作用. 30. 为什么纳米相材料在较宽的温度范围内具有好的热稳定性,而金属易长大?简述提高纳米相材料热稳定性的方法.因为金属纳米晶体晶粒生长激活能小,在热激活下,相对与纳米相材料晶粒易于长大,故热稳定温区较窄.提高热稳定性(1)降低界面迁移的驱动力.如果没有驱动力,则正向和反相运动的几率是相同的;在驱动力下使势垒产生不对称的偏移,就显示晶界的迁移.界面能量高及界面两侧相邻两晶粒的差别大有利于晶界迁移.纳米材料晶粒为等轴晶,粒径均匀,分布窄,保持纳米材料各向同性就会大大降低界面迁移的驱动力.(2)晶界结构弛豫.高能的晶界并不一定首先引起晶界迁移.晶界结构弛豫所需要的能量小于

2016年硅光子领域新进展及发展趋势

2016年硅光子领域新进展及发展趋势 硅光子技术是基于硅材料,利用现有CMOS工艺进行光器件的开发和集成的新一代技术,在光通信,数据中心,超级计算以及生物,国防,AR/VR技术,智能汽车与无人机等许多领域将扮演极其关键的角色。美欧等国在硅光子领域已经有十多年的投入和积累,并业已形成了产业优势。Light Counting的测,仅硅光子在光通信领域的产品市场五年内就将达到10亿美元以上。未来一二十年内,硅光子技术的市场更将远远超过这一数字。有专家认为,现在市场上虽然硅光子的商用产品还不多,但是很可能厂商只是在等待别人先发布或是在评估不同的技术。现在只是爆发前的静默期。以下为2016年以来,硅光子领域的一些进展情况:1、Ciena收购Tera Xion磷化铟和硅光子资产 2016年1月,Ciena公司和私有企业Tera Xion表示双方已经达成了一项协议,即Ciena将收购这家加拿大公司的高速电子元器件(High-Speed Photonics Components,HSPC)资产。Ciena 将支付大约4660万加元(约3200万美元)收购以下资产,包括磷化铟和硅光子技术以及潜在的知识产权(IP)。 Tera Xion在光网络市场最初是以其可调色散补偿器闻名。2013年,Tera Xion通过收购COGO Optronics的调制器资产跨足相干接收机和调制器领域。在该领域,Tera Xion开发出400Gbps 应用的磷化铟调制器。Tera Xion还开始发展硅光子;在ECOC2015展会上,该公司发表了一篇论文,表示它正在开发一款基于硅光子的针对PAM4传输的调制器。 对于这些模块,Ciena未透露是否有所规划。Ciena发言人Nicole Anderson在回复Lightwave 的一封邮件咨询时表示:“对于如何应用我们收购的这些资产,目前还没有细节。简单来说,这是一次战略性收购,是为了更好的掌控我们的WaveLogic芯片组,增强我们在调制格式能力方面的灵活性,以便公司继续展示从数据中心互连到跨太平洋海底链接等全方位应用方面的领先的性价比。” 与此同时,TeraXion总裁兼CEO Alain-Jacques Simard表示,出售HSPC资产只是让公司变回一家在色散补偿和各种滤波技术方面的专业公司。公司还将在光纤激光器和光传感应用方面保持活跃。 2、NeoPhotonics推出硅光子QSFP28光模块激光器 光学组件和模块供应商NeoPotonics宣布,推出了基于硅光子QSFP28组件的1310纳米和1550纳米大功率激光器以及激光器阵列。 NeoPotonics表示,该非制冷激光器和阵列将应用于数据中心光收发器。包括基于各种多源协议(MSAs)的光模块,例如CWDM4、CLR4以及PSM-4等。每种多源协议(MSAs)都需要磷化铟DFB激光器的支持。 该激光器支持的功率为40mW至60mW,温度范围也较广。 NeoPotonics表示已经与全球服务器和存储端到端连接解决方案的领先供应商Mellanox Technologies合作,共同开发能通过倒装芯片技术粘合至Mellanox公司光学引擎的激光器阵列。最终研发出了一款高容量、低成本电子式100G PSM4光模块组件。 3、Mellanox发布首个200Gb/s硅光子设备 世界领先的高性能计算、数据中心端到端互连方案提供商Mellanox在OFC 2016(美国光纤通讯展览会)上展示了全新的50Gb/s硅光子调制器和探测器。它们是Mellanox LinkX系列200Gb/s和400Gb/s电缆和收发器中的关键组件。本次展示的突破性成果对于InfiniBand和以太网互连基础设施具有里程碑意义,让端到端的HDR 200Gb/s解决方案成为可能。Mellanox公司商务拓展和互连产品部执行副总裁Amir Prescher表示:“硅光子技术是200Gb/s InfiniBand和以太网网络的使能技术。QSFP56模块可将下一代交换机的前置面板密度提升一

纳米材料学总结

《纳米材料》 一、名称解释 纳米材料:指在三维空间中至少有一维处于纳米尺度范围(1-100)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。久保理论:关于金属粒子电子性质的理论,是针对金属超微颗粒面附近电子能级状态分布而提出的。 量子尺寸效应: 自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。 团簇:由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。 二、简答 列举几个材料或化学类的期刊;列举说明几种表征手段;列举几个研究纳米材料的研究小组 三、纳米材料不同于其它材料的物理化学性质; 四、列举几种材料的制备方法 五、抑制团聚的措施 六、光催化原理 光催化剂纳米粒子在一定波长的光线照射下受激发生成电子-空穴对(当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子()和空穴()),空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化-还原作用,能将绝大多数的有机物氧化至最终产物二氧化碳和水,甚至对一些无机物也能彻底分解。 第二章纳米微粒的基础 1. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象。 2. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或者透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小。 3. 表面效应:纳米微粒尺寸小,表面能大,表面原子配位不足,活性强。 4. 宏观量子隧道效应:微观粒子具有贯穿势垒的能力。 第三章纳米微粒结构与物理性质

分会场十三微纳米光子学

分会场十三:微纳米光子学 主席:吴一辉(中国科学院长春光学精密机械与物理研究所) 李铁(中国科学院上海微系统与信息技术研究所) 特邀报告1:半导体太赫兹光频梳 黎华,中国科学院上海微系统与信息技术研究所,博士生导师,研究 员。2009年博士毕业于中国科学院上海微系统与信息技术研究所, 然后分别在德国慕尼黑工业大学、日本东京大学、法国巴黎七大材料 与量子现象实验室开展博士后研究工作,2015年回国工作,2016年 获得中国科学院“百人计划”A类择优支持。主要研究方向为太赫兹 量子级联激光器及其光频梳、锁模激光器、太赫兹成像及高分辨光谱 技术等。在Advanced Science、Optica、Applied Physics Letters、Optics Express等期刊上发表50余篇论文,曾获“2015中国中国电子学会优秀科技工作者”,“上海市自然科学二等奖”(排名第三)、德国“洪堡”学者奖学金、日本JSPS奖学金等。担任科技部973计划课题负责人、国家自然科学基金面上项目(2项)负责人、KJW 项目(2项)负责人等。 报告摘要: 太赫兹(THz)波(频率范围:0.1-10 THz; 1 THz=1012 Hz)位于红外光和微波之间,在国防安全、生物医疗、空间等领域具有潜在应用。由于缺乏高效THz辐射源和探测器,THz波还没有被完全认知,所以其被称为THz间隙(“terahertz gap”)。在1-5 THz 频率范围内,基于半导体电泵浦的光子学器件THz量子级联激光器(quantum cascade laser, QCL)在输出功率和效率方面比电子学和差频器件高,是关键的THz辐射源器件。本报告主要介绍我们在高性能THz核心器件以及半导体光频梳方面的研究进展。在高性能核心器件方面,我们突破分子束外延生长和半导体工艺技术,研制出高功率(1.2 W)、低发散角(2.4°)、宽频率范围THz QCL器件并实现THz高速探测和多色成像。基于高性能半导体THz QCL器件,成功实现THz QCL光频梳以及双光梳。克服传统THz光谱仪在测量时间和光谱分辨率方面的缺陷,开发出基于THz QCL双光梳的紧凑型高分辨实时光谱检测系统,为将来实现新一代THz光谱仪奠定基础。

纳米材料学教案

《纳米材料》教学大纲 一、课程基本信息 课程编号:2 中文名称:纳米材料 英文名称:Nano-materials 适用专业:化学工程与工艺 课程类别:专业选修课 开课时间:第5学期 总学时:32 总学分:2 二、课程简介(字数控制在250以内) 《纳米材料》是化学工程与工艺专业的一门专业选修课,本课程系统地讲授各类纳米材料的概念、制备方法、结构和性能特征以及表征技术和方法,在此基础上,对其发展前景进行了展望。通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 三、相关课程的衔接 与相关课程的前后续关系。 预修课程(编号):高等数学B1(210102000913)、高等数学B2(210102000713)、物理化学A1(2)、物理化学A2(2),无机化学(A1)(2)、无机化学(A2)(2)。 并修课程(编号):无特别要求 四、教学的目的、要求与方法 (一)教学目的 通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 (二)教学要求 掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状,对未来发展前景有一定的认识。

(三)教学方法 本课程遵循科学性、系统性、循序渐进、少而精和理论联系实际的教学原则,结合最新的研究成果着重讲述有关纳米材料的基本理论、理论知识的应用。本课程以课堂讲授教学为主,教学环节还包括学生课前预习、课后复习,习题,答疑、期末考试等。 五、教学内容(实验内容)及学时分配 (1学时) 第一章绪论(2学时) 1、教学内容 1.1纳米科技的基本内涵 1.2纳米科技的研究意义 1.3纳米材料的研究历史 1.4纳米材料的研究范畴 1.5纳米化的机遇与挑战 2、本章的重点和难点 本章重点是纳米科技与纳米材料的基本概念。 第二章纳米材料的基本效应(2学时) 1、教学内容 2.1 小尺寸效应 2.2 表面效应 2.3 量子尺寸效应 2.4宏观量子隧道效应 2.5 库仑堵塞与量子隧穿效应 2.6 介电限域效应 2.7 量子限域效应 2.8 应用实例 2、本章的重点和难点 重点:纳米材料的表面效应、小尺寸效应及量子尺寸效应。难点:宏观量子隧道效应。 第三章零维纳米结构单元(4学时) 1、教学内容 3.1 原子团簇

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

石墨烯光子学和光电子学

Nature Photonic | VOL 4 | SEPTEMBER 2010 Graphene photonics and optoelectronics F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari 石墨烯在光学和电子学方面的丰富的特性引起了广泛关注。除灵活性、鲁棒性和环境稳定性之外,石墨烯还具有高移动性和光透明性。目前的研究焦点是其基础物理和电子器件。但是,我们认为其真正的潜力在于光子学和光电子学方面,其独特的光学和电子性质的结合可以得到充分利用,甚至在没有带隙的情况下,利用狄拉克电子的线性色散也能实现超宽带可调谐性。最近的一些研究成果显示了石墨烯在光子学和光电子学方面的兴起,从太阳能电池和发光器件到触摸屏、光电探测器和超快激光器。 1、引言 电子在石墨烯二维结构中运动时,其能量和动量之间满足线性关系,从而表现为无质量的狄拉克费米子[1-3]。因此,石墨烯的二维带电粒子气的电子特性可由相对论狄拉克方程来描述(而不是有着有效质量的非相对论薛定谔方程[1,2]),其类似于粒子的载流子具有零 质量和约为1610-?s m 的等效的“光速”。 石墨烯具有各种为二维狄拉克费米子所特有的输运现象,如特定整数和分数量子霍尔效应[4,5],甚至当载流子的浓度趋于零时[1],也具有约为h e /42 的“最低”电导率,以及Berry ’s 相所带来的具有π相移的Shubnikov –de Haas 振荡[1]。在悬浮样品中观测到的迁移率(μ)高达112610--s V cm 。将此特性与室温下的近弹道输运相结合,使石墨烯在纳米电子材料方面有潜在的应用[6,7],特别是在高频方面[8]。 石墨烯也有显著的光学性质。例如,尽管它仅有单原子厚度,但具有光学可视性[9,10]。其透射率(T )可根据细微结构的参数来表示[11]。狄拉克电子的线性色散带来了宽带方面的应用。由于泡里阻塞而观测到饱和吸收[12,13]。非均衡载流子导致热照明[14,17]。化学和物理处理也能导致发光[18,21]。上述这些性质使石墨烯成为了理想的光子和光电材料。 2、电子和光学特性 2.1 电子特性 单层石墨烯(SLG )的电子结构可用紧束缚哈密顿算符来描述[2,3]。由于键和反键σ-带在能量上完全分离(>10ev 在布里渊区中心Γ),可在半经验计算中将其忽略,仅保留剩

纳米材料科学与技术

聚合物基纳米复合材料的研究进展 摘要:本文总结了聚合物基纳米复合材料的研究进展,主要涉及纳米复合材料的制备方法、性能介绍和应用情况等方面,对聚合物基纳米复合材料的合成技术方法、不同的类型和相应性能特点进行了重点分析。对于聚合物基纳米复合材料,纳米填料的分散性、与聚合物基体的界面性能以及基体的性质都是影响其物理、热性能、机械等性能的重要参数。最后,简要介绍了目前在聚合物基纳米复合材料研究领域存在的问题,并对中国在该领域的未来发展以及纳米复材的产业化应用提出了相关建议。 关键词:纳米复合材料;聚合物;进展 Progress in Polymer Nanocomposites Development Abstract:This article summarizes some of the highlights of newest development in polymer nanocomposites research. It focuses on the preparation, properties and applications of polymer nanocomposites. The various manufacturing techniques, analysis of kinds of polymer nanocomposites and their applications have been described in detail. In the case of polymer nanocomposites, filler dispersion, intercalation/exfoliation, orientation and filler-matrix interaction are the main parameters that determine the physical, thermal, transport, mechanical and rheological properties of the nanocomposites. Finally, the recent situation of research in polymer nanocomposites was introduced and some constructive suggestions were proposed about the industrialization of polymer nanocomposites in China. Keywords:nanocomposites; polymer; progress

纳米光子学综述

关于《纳米光子学》的基本介绍 关键词: 序言 纳米光子学,被定义为纳米技术和光子学的融合学科,是一个新兴的前沿学科。它为基础研究提供了挑战,也为新技术提供了机遇。纳米光子学在市场上已经取得了一定的影响。它是一个多学科交叉的研究领域,为物理学,化学,应用科学,工程学和生物学,以及生物医学技术创造了机遇。 对于不同的人而言,纳米光子学的意义有所不同,在各自的情况下,纳米光子学的定义都显得非常地狭隘片面。一些书籍和综述里包含了纳米光子学的多个方面以供选择。然而,随着时代的发展,有必要出一本关于纳米光子学的专著来提供一个统一综合的体系。本书迎合了这个需要,就纳米光子学提供了统一的,全方位的描述,以满足各个不同学科读者的需要。本书的目的是为这个涉及面广泛的学科提供必要基础知识,以使各个学科的学者都能迅速掌握最低限度的,必要的知识背景用以研究和发展纳米光子学。作者希望本书既能够作为教育与培训的教科书,也可以作为帮助集光学,光子学和纳米技术于一身的领域研究和发展所需要的参考书。本书的另一个目的是引起研究人员,产业部门和企业促进合作的兴趣,在这个新兴科学上,能够制定出多学科交叉的工程,促使随之产生的技术能够发展和转化。 本书包含了集纳米技术,光子学和生物学于一体的理论知识和各种应用。每章开头的引言介绍了读者能从该章获取的知识。每章结尾的知识要点是需要深刻理解的知识,也可以作为前面所陈述内容的回顾。 纳米光子学—纳米技术领域的研究热点 纳米光子学是一个激动人心的崭新的前沿领域,在这里全世界的研究者们尽情发挥着他们的想象力和创造力。它在纳米范围内处理光与物质的相互作用。纳米光子学作为纳米科技新的分支,向基础研究提出了挑战,并为新技术的诞生创造了机遇。人们对纳米科学方面的兴趣来自于已经实现了的费曼的著名言论——“在底层还有很多的空间”(Feyman,1961,“There’s Plenty of Room at the Bottom”)。他指出如果能将一毫米的长度在十亿分之一米的纳米范围内进行分割,可以想象将会有多少片段和组分可进行操控和处理。 我们生活在一个“纳米热”的时代。纳米方面的一切都被认为是极其令人振奋和有价值的。许多国家已经对纳米技术展开积极的研究。2002年,美国国家研究委员会出版了关于美国国家纳米技术计划的详细报告(NRC Report,2002)。虽然不能断言纳米技术对每个问题都能提供一个较好的解决方法,但纳米光子学仍然创造出足以令人振奋的机会并使新技术成为可能,关键的因素是纳米光子学是在一个比光波长还要短的范围内处理光与物质的相互作用,以及它们的应用。撰写本书的目的是想通过对纳米光子学的介绍激发起更多人对这个新领域的兴趣。为了方便起见,书中列举的例子尽可能出自我们研究所开展的激光,光

光通信硅光子学

会 员 委 班 金 习 基 讲 学 理 科 物 然 验 自 实 家 部 国 学 理 数
硅基光子学的新进展
Recent Progresses of Si-Based Photonics SiSi-Based
Three Major Inventions in Optics
Laser Laser Low-loss Optical Fiber Low-loss Optical Fiber Semiconductor photonic Devices Semiconductor photonic Devices
余 金 中
Jinzhong YU
Three “T” of Information Society “T” 信息社会中的三“T” 信息社会中的三“T”
中国科学院半导体研究所
Institute of Semiconductors, Chinese Academy of Sciences P. O. Box 912, Beijing 100083, CHINA E-mail: jzyu@https://www.360docs.net/doc/d73768767.html,
12 “T”: tera (1012 ) 1. Calculation rate of computer 计算机计算速度 1T bit/sec. 2. Transmission rate of optical fiber communication 光纤通信传输速度 1T bit/sec. 3. Recordation density of optical disc 2 光盘记录密度 1T bit/inch2
2006-7-26
4
OUTLINE
Moore’s Law Moore’s
Itanium? 2 Processor Itanium? 2 Processor Itanium?
1. Introduction 2. Si-based light emitter
Microprocessor transistor count
Source: Intel Source: Intel
1,000,000,000 1,000,000,000
a. Stimulated emission from Si nanostructure b. CW Raman Si Laser a. SiGe/Si MQW RCE photodetector b. SOI-based InGaAs photodetector a. Optical modulator b. Optical filter c. Optical switch
100,000,000 100,000,000 10,000,000 10,000,000
3. Si-based photodetector
Pentium? III Processor Pentium? III Processor Pentium?
Pentium? 4 Pentium? 4 Pentium? Processor Processor
Pentium? Processor Pentium? Processor Pentium?
Pentium? II Processor Pentium? II Processor Pentium?
386? Processor 386? Processor 386?
486? DX Processor 486? DX Processor 486?
1,000,000 1,000,000 100,000 100,000 10,000 10,000 1,000 1,000
4. SOI optical wave guiding devices
8086 8086
286 286
4004 4004
8080 8080
8008 8008
5. Summary
1970 1970
1980 1980
1990 1990
2000 2000
2010 2010
2006-7-26
2
2006-7-26
nd ~ 1 Billion transistors by 2nd half of decade
5
光子学
Tree Feature Sizes of Moore’s Law Moore’s
从物理学的角度看,光子学是研究光子的产生和运动特 性、光子同物质的相互作用及其应用的一门前沿学科。 从工程技术的角度看,光子学是研究作为信息和能量载体 所赋予的特性、运动行为及其应用的一门工程技术。
信息光子学
固体光子学
在信息领域,将光子看作信息载体,研究光子的产生和运 动特性,这种专门研究光子的信息功能和应用的新型科学 便是信息光子学。 专门以固体材料为介质,研究光子载体在固体介质中的产 生、运动、控制、操作,研究光子同固体物质的相互作用 及其应用,这种专门研究固体中的光子性能的新型科学便 是固体光子学。
半导体光子学:以半导体材料为介质的光子学。研 究半导体中光的产生、传输、控制和探测特性。
2006-7-26
3
2006-7-26
6
1

纳米光子学1-余

1表面等离子激元(SPPs): 定义:是在金属表面区域的一种自由电子和光子相互作用的形成的电磁模。 性质:1.在垂直于界面的方向场强呈指数衰减;2.能够突破衍射极限;3.具有很强的局域场增强效应;4.只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。激发方式:(1)波导结构:利用波导边界处的倏逝波激发表面等离子体波,使波导中的光场能量耦合到表面等离子体波中。在实际的研究中,常采用光纤做波导,剥去光纤某段的包层,再镀上金属;(2)棱镜耦合:包括两种,一种是Kretschmann 结构,另一种是Otto 结构。Kretschmann 结构适用于金属薄膜,入射光以大于全反射角的角度入射,利用棱镜的高折射率进行波矢补偿,类似于油浸透镜的原理。2sin spp p k n p q l =;对于较厚的金属膜,Otto 结构比较适合。在该结构中,虽然全反射棱镜和金属膜之间有很小的空气间隙(近场区域),仍可在金属和空气间隙的界面上激发SPPs。(3)光栅耦合:利用光栅引入一个额外的波矢量的增量实现波矢量的匹配。(4)近场耦合:对于粗糙表面,不需要任何额外的结构设计,表面粗糙的衍射效应就可以提供在金属膜表面激发SPPs 所需的波矢补偿即直接的光照射便激发SPPs。(5)NSOM 激发:用一个尺寸小于波长的探针尖在近场范围内去照射金属表面,由于探针尖尺寸很小,从探针尖出来的光会包含波矢量大于SPPs 矢量的分量,这样就能够实现波矢量的匹配。(6)采用强聚焦光束,利用高数值孔径的显微目镜可直接接触到介质层,在介质层与目镜之间涂上匹配油层,高数值孔径能够提供足够大的入射角,实现波矢量匹配,从而激发出表面等离子体波。 2金属电介质界面表面等离子色散关系的物理意义: 1/2m d m d c εεωβεε??=??+??,β为传播常数。m ε表示金属或者半导体介质相对介电常数;d ε表示电介质相对介电常数。其实部和虚部为:1/2d mr r d mr c εεωβεε??=??+??,3/222()mi d mr i mr d mr c εεεωβεεε??=??+?? 物理意义:等离子体中存在的波的频率和波矢之间的关系需满足色散关系,而色散关系完全确定给定条件下等离子体中可能存在的波的全部性质。SPP 色散关系可以完全描述SPP 的光特性,是进行SPP 相关研究的基本理论基础。 3任选一种表面等离子激元应用,简述原理。 表面等离子传感器(图) 偏振光入射到金属薄膜上,经聚焦若入射角度满足()()2121arcsin εωωεωωθ+=,产生SP 激发,SP 与n 有敏感的关系,下面是流体通道,内放有特殊物质,从而折射率n 变化,即θ也变化,角度的变化反应n 变化,从而确定生物组织是否变化。 4光子晶体的基本概念(带隙成因与电子材料的区别) 概念:是一种介电常数周期性调制的微结构材料,尺度为波长量级,具有光子带隙特性的人造周期性电介质结构,是1987年美国贝尔研究中心的Eyablono witch 和普林斯的S.John 分别独立提出了光子晶作的概念。 光子带隙:在一定频率范围内的光子在光子晶体的范围内的某些方向上是禁止传播的。完全带隙,在一定频率范围内,任何偏振与传播方向的电磁波都被严格禁止,这种情况只有在三维晶体中才能实现。光子晶体特性:①抑制自发辐射:带隙中密度力零,自发辐射几乎为零,这也抑制了自发辐射②光子局域化,光子晶体原有的对称性遭到破坏时,即有了缺陷,在光子晶体中禁带就可能出现频宽极窄的缺陷态或域态。与缺陷频率符合的光子会被局限在缺陷位置,而不能向空间传播。 与半导体的区别:半导体:原子周期性排列,原子尺度自然结构,控制电流。1950年电子技术革命。光子晶体:介电常数周期性变化,尺度波长量级,人工结构,控制电磁波传播,现在光学新领域。 与电子材料的区别:①电子和光子具有不同波,可见光400-700nm,电子0.1nm②电子系统遵循薛定谔方程???E )r (V u 2h 22=+??,光子系统依照亥姆霍兹方程()()0E r c E E 22=????+??εω③带隙成因不同:电子在周期场中传播时由于会受到周期势场的布拉格散射会形成能带结绝,带与带之间可能存在带隙,电子波的能量如果落在带隙中,传播是禁止的,电磁波在周期性介质材料中传播时,由于受到调制而形成光子能带结构,频率落在带隙内的电磁波不能通过介质,而被全部反射,即形成光子带隙。 (图) 自然界的光子晶体: 蛋白石:一种天然宝石,以乳白色居多,不同角度观赏呈不周颜色,具有七彩缤纷的外观。成因:含SiO2地下水渗入岩缝沉积形成,沉积1CM3的蛋白石约需10000年。应用:已有多种基于光子晶体的全新光子学器被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路。高晶质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体近期在国际上的应用进一步深化,具体表现在:1、与纳米技术结合,用于制造微米级的激光硅基。2、与量子点结合,使得原子和光子的相互作用影响材的性质,从而达到减小吸收等作用。3、光子晶体的光纤应用。 5微腔的品质因子,精细度,自由电子谱宽度。 光学微腔是一种尺寸在微米量级或者亚微米量级的光学谐振腔。它利用在折射率不连续的界面上的反射全反射散射或衍射效应,至少在一个方面将光限制在一个很小的区域。 最简单模型:(C-J 2模型,即单膜场与二原子能级作用,可给出解析解) )a a a (g a a W 2 W H R d ++++++?=σσ理想腔:无损振荡—Rabi 实际:Dumped 振荡。 三种典型的微腔:1、F-P 腔:Q 不高,模式体积大。2、回单壁模式微腔:轴对称,内反射对光控制,Q 很高,容易集成。3、光子晶体微腔:引入缺陷,Q 高,模式体积小。(画图,公式)

相关文档
最新文档