奥数常见裂项法经典裂项试题和裂项公式(修订)

奥数常见裂项法经典裂项试题和裂项公式(修订)
奥数常见裂项法经典裂项试题和裂项公式(修订)

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求1(1) n n +型分数求和 分析:因为111n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1 n n n n =-++ (二) 用裂项法求 1()n n k +型分数求和 分析:1() n n k +型。(n,k 均为自然数) 因为11111()[]()()() n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111()()n n k k n n k =-++ (三) 用裂项法求() k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=() k n n k + 所以 () k n n k +=11n n k -+

(四) 用裂项法求2()(2) k n n k n k ++型分数求和 分析: 2()(2) k n n k n k ++(n,k 均为自然数) 211()(2)()()(2)k n n k n k n n k n k n k =-+++++ (五) 用裂项法求1()(2)(3) n n k n k n k +++型分数求和 分析:1()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ (六) 用裂项法求 3()(2)(3)k n n k n k n k +++型分数求和 分析:3()(2)(3) k n n k n k n k +++(n,k 均为自然数) 311()(2)(3)()(2)()(2)(3) k n n k n k n k n n k n k n k n k n k =-++++++++ 记忆方法: 1.看分数分子是否为1; 2.是1时,裂项之后需要整体×首尾之差分之一; 3.不是1时不用再乘; 4.裂项时首尾各领一队分之一相减。

裂项相消法

裂项相消法 焦洁 一、学习目标: 1、理解裂项相消法思想。 2、使用裂项相消法解决特殊数列求和问题。 3、在自学与探究中体验数学方法的形成过程。 二、教学重点与难点 裂项相消法的应用与计算过程 三、教学过程 思考与讨论: 什么数列可用裂项相消法求和? 如何裂项?你有好的方法吗? 如何相消?你能发现其中的规律吗? 利用裂项相消法求和的一般步骤是什么? () 1-n n 14313212111++?+?+? :例 预设情景一:学生在看到问题后就认识到要裂项 直接提问学生要怎么拆?思考拆的对不对,怎样验证? (逆运算,通分) 预设情景二:学生不知道要裂项,而要把分母相乘,再通分 经简单计算发现让学生体会到这种方式巨大的计算量,请学生思考为什么通分,引导学生通过其他方法来减少项数,观察原式,继而寻找规律,引导学生把 ()分出来变成两项。和中的分出来变成两项,和中的分出来变成两项,和中的1 111131************++??n n n n 对三个分数3 1 21 321?进行观察,由于分母不相同不易比较,于是通分变成如下3 22 323 321???,再观察不难发现,后两式相减即为前式。于是总结出裂项的方法()1 1-11131-21321+=+=?n n n n ,。

思考拆的对不对,怎样验证 (逆运算,通分) 把每一项都拆开,观察特点,一负一正相抵消。 问题:n 1能不能消,1 1+n 能不能消,为什么。 回顾解题过程,总结解题步骤:1、裂项 (加检验) 2、消 3、找余项 ()()12n 1-2n 17 515313112+++?+?+? :例 让学生先自己完成,分享结果,提问大家是不是如下拆法31-11311=?,要求 同学检验,强调检验的重要性。 问题:怎么拆?怎么拆?8 31521?? 总结:分母之间差几就在前面乘几分之一 合作交流 ○1你能证明1 11)1(1+-=+n n n n 吗? ○2猜想:() 21+n n =_____________________ 验证: =+-211n n ___________________ 结论:=+) 2(1n n ____________________ ○3一般地: () k n n +1=________________ 巩固提高

小学奥数裂项公式汇总

小学奥数裂项公式汇总文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即 b a ?1形式的,这里我们把较小的数写在前面,即 a < b ,那么有: (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: 二、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: (1) a b b a b b a a b a b a 11+=?+?=?+ (2)a b b a b a b b a a b a b a +=?+?=?+2222 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或 凑整 三、整数裂项基本公式 (1))1()1(3 1)1(......433221+-=?-++?+?+?n n n n n (2) )1()1)(2(4 1)1()2(......543432321+--=?-?-++??+??+??n n n n n n n (3) )1()1(3 1)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(4 1)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=? 裂项求和部分基本公式 1.求和: 1 )1(1......541431321211+=+++?+?+?+?=n n n n S n 证:1 111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n 2.求和:1 2)12)(12(1971751531311+=+-++?+?+?+?=n n n n S n

数列求和-裂项法

数列求和 ------裂项相消法 引例:教材P47 什么是裂项相消法?什么时候使用? 思考1: 变式: 思考2:在裂项的过程中,是怎样把项裂开的?关键是什么?怎样相互抵消的? 1.???? 求数列的前n 项和.11111,,,,,13243546n(n +2)222222224142434 2.,,,,,.41142143141n n n ?????-?-?-?- 求数列的前项和222235721 3..(12)(23)(34)[(1)]n n S n n +=++++???+ 求和∑求和:k n n k+1k k=12 4.S =(2-1)(2-1)2n n a a =若数列{},,可以用裂项相消法求数列前n 项和?11n(n +)

小结:什么是裂项相消法?什么时候使用裂项相消法?在使用的过程当中应当注 意什么?裂项相消法运用的数学思想是什么? 你是否有新的感受呢?请用一句话总结一下前面的内容。 思维拓展: 思考3:裂项相消法最大的成功--实现了消项,运用错位相减法也是消项,是不 是可以考虑用裂项法相消法可以求等比数列的和吗?可以求{}g 等差等比的和吗?试试看。 在等比数列{}(1)n a q 1中, 试一试:用裂项相消法 练习: 2*1122:{},().(1) 1111(2) .(1)(1)(1)3n n n n n a n S n n n N a n a a a a a a =+∈+++<+++ 例题数列的前项和为求;证明:对一切正整数,有2335721.2222n n n S +=++++ 求和211111-=++++L n n S a a q a q a q 211111-=++++L n n n qS a q a q a q a q 1(1)1-=-n n a q S q 11 (1)-=-n n q S a a q 121321* {},,,,,2.(){}(21)3()(){}.n n n n n n n n n n a a a a a a a a a a n b n N b n T a -----?=∈ 已知数列满足:是首项、公差均为的等差数列 Ⅰ求数列的通项公式; Ⅱ令,求数列的前项和

整数裂项,小学奥数整数裂项公式方法 讲解

整数裂项,小学奥数整数裂项公式方法讲解 在小学奥数中有一些非常长的整数算式,仅仅用一般的运算法 则满足不了计算要求,这时候我们要找式子中各乘式之间的规律, 把各乘式裂项,前后抵消,从而简化计算。规律和之前G老师讲过的分数裂项法十分类似。 先看一道整数裂项的经典例题: 【例1】1x2+2x3+3x4+4x5+……98x99+99x100 分析:题中计算式共有99个乘法式子相加,如果一个一个计算下来,恐怕一个下午就过去了,G老师告诉同学们,遇见这种复杂的计算式,一定是有规律的,数学重点考查的是思维。 能不能想办法把乘法式子换成两个数的差,再让其中一些项抵 消掉,就像分数裂项的形式,最后只剩下头和尾呢? 1x2=(1x2x3-0x1x2)÷3; 2x3=(2x3x4-1x2x3)÷3; 3x4=(3x4x5-2x3x4)÷3; ……

99x100=(99x100x101-98x99x100)÷3; 规律是不是找着了? 原式=(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5- 2x3x4+……+99x100x101-98x99x100)÷3 =99x100x101÷3 =333300 整数裂项法就是将整数乘积化成两个乘积差的形式,这个差也 不是随便乘一个数,而是要根据题目中各项数字公差来确定的。 比如在例1中,1x2和2x3这两项,1与2,2与3的的差都是1,我们就在1x2这一项乘以(2+1),再减去(1-1)x1x2;2x3这一项,也化成[2x3x(3+1)-(2-1)x2x3]……这样就刚好可以前后项互相抵消,然后再除以后延与前伸的差[(3+1)-(2-1)]。 整数裂项法应用: 式中各项数字成等差数列,将各项后延一位,减去前伸一位, 再除以后延与前伸的差。 【例2】1x3+3x5+5x7+……+95x97+97x99

奥数裂项法(含答案)

奥数裂项法 同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。 (一)阅读思考 例如1 3 1 4 1 12 -=,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把 这个例题推广到一般情况,就有一个很有用的等式: 11 1 1 11 1 1 1 1 n n n n n n n n n n n n n n - += + + - + = +- + = + ()() ()() 即11 1 1 1 n n n n - + = + () 或 1 1 11 1 n n n n () + =- + 下面利用这个等式,巧妙地计算一些分数求和的问题。【典型例题】 例1. 计算: 1 19851986 1 19861987 1 19871988 1 19941995? + ? + ? ++ ? …… + ?+ ? + 1 19951996 1 19961997 1 1997 分析与解答: 1 19851986 1 1985 1 1986 1 19861987 1 1986 1 1987 1 19871988 1 1987 1 1988 1 19941995 1 1994 1 1995 ? =-? =-? =- ?=- …… 1 19951996 1 1995 1 1996 1 19961997 1 1996 1 1997 ? =- ? =- 上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。

1 198519861 198619871 198719881 199519961 19961997 11997?+ ?+ ?++ ?+ ?+ … =-+-+-++-+-+=119851198611986119871198711988119951199611996 119971199711985 …… 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分 数可以相互抵消,从而使计算简化的方法,我们称为裂项法。 例2. 计算:1111211231 123100 +++++++ ++++…… 公式的变式 1122 1+++= ?-…n n n () 当n 分别取1,2,3,……,100时,就有 112121122 23 11232 34 112342 45 1121002 100101 = ?+=?++=?+++= ?+++= ?… 1111211231 12100212 223234299100 21001012112 1231341991001100101211212131314 199 1 100 1100 1101 211101 + ++ +++++++=?+?+?++?+ ?=??+?+?++?+ ?=?-+-+ -++ - + - =?- ……………()() ()

裂项相消法

裂项相消法 数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和 方法称为裂项相消法。适用于类似1n n c a a +???? ?? (其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等。用裂项相消法求和,需要掌握一些常见的 裂项方法: (1) ()1111n n k k n n k ?? =- ?++?? ,特别地当1k =时,()11111n n n n =-++ (2 1 k = ,特别地当1k = =例1、数列{}n a 的通项公式为1 (1) n a n n =+,求它的前n 项和n S 解:1231n n n S a a a a a -=+++++L ()() 1111112233411n n n n = +++++???-+L =111111 11112233411n n n n ??????????-+-+-++-+- ? ? ? ? ?-+?????????? L 1111 n n n =- = ++ 小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同. L L 的前n 项和n S . 例题2:(2015安徽,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;

(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n. (1)由题设知a1·a4=a2·a3=8,

(完整word版)小学奥数之裂项

这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如: (1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)] (3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)] (4)1/(√a+√b)=[1/(a-b)](√a-√b) (5)n·n!=(n+1)!-n! 公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构) 1、分组法求数列的和:如an=2n+3n 2、错位相减法求和:如an=n·2^n 3、裂项法求和:如an=1/n(n+1) 4、倒序相加法求和:如an=n 5、求数列的最大、最小项的方法: ①an+1-an=……如an=-2n2+29n-3 ②(an>0)如an= ③an=f(n)研究函数f(n)的增减性如an=an^2+bn+c(a≠0) 6、在等差数列中,有关Sn的最值问题——常用邻项变号法求解: (1)当a1>0,d<0时,满足{an}的项数m使得Sm取最大值. (2)当a1<0,d>0时,满足{an}的项数m使得Sm取最小值. 在解含绝对值的数列最值问题时,注意转化思想的应用。 对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。而裂项法就是一种行之有效的巧算和简算方法。通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求 1 (1) n n +型分数求和 分析:因为 111n n -+=11 (1)(1)(1) n n n n n n n n +-= +++(n 为自然数) 所以有裂项公式: 111 (1)1 n n n n =- ++ 【例1】 求 111 ......101111125960+++???的和。 111111111 ()()......()101111125960106012 =-+-++-= -= (二) 用裂项法求 1 () n n k +型分数求和 分析: 1 () n n k +型。(n,k 均为自然数) 因为 11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 。所以1111()()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? 111111*********()()()()()25727929112111321315= -+-+-+-+- 111111********* [()()()()()][]2577991111131315251515 =-+-+-+-+-=-= (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k -+ 【例3】 求 2222 (1335579799) ++++????的和 1111111198 (1)()()......( )13355797999999 =-+-+-++-=-= (四) 用裂项法求 2()(2) k n n k n k ++型分数求和 分析: 2()(2)k n n k n k ++(n,k 均为自然数) 则 211 ()(2) ()()(2) k n n k n k n n k n k n k = - +++++ 【例4】 计算: 4444 (135357939597959799) ++++???????? 11111111()()......()()133535579395959795979799 1132001397999603 =-+-++-+-????????=-= ?? (五) 用裂项法求 1 ()(2)(3) n n k n k n k +++型分数求和 分析: 1 ()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111 ()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ 【例5】 计算:111 ......1234234517181920+++ ????????? 1111111 [()()......()] 3123234 2343451718191819201111139[]312318192020520 =-+-++-????????????=--=???? (六) 用裂项法求 3()(2)(3) k n n k n k n k +++型分数求和 分析: 3()(2)(3) k n n k n k n k +++(n,k 均为自然数)

第讲简便计算四——裂项相消法

第5讲 简便计算(四)—— 列项相消法(拆分法) 一:裂项相消法(拆分法):把一个分数拆成两个或两个以上分数相减或相 加的形式,然后再进行计算的方法叫做裂项相消法,也叫拆分法。 二:列项相消公式 (1)111(n 1)1 n n n =-++ (2) ()11k n n k n n k =-++ (3)1111()(n )n k n n k k =-?++ (4) ()()()()()1111121122n n n n n n n ??=-? ? ?+++++?? (5)11a b a b a b +=+? (6)22a b b a a b a b +=+? 三:数列 (1)定义:按一定的次序排列的一列数叫做数列。 (2)数列中的每一个数叫做这个数列的项。依次叫做这个数列的第一项(首项)、第二 项、、、、、、第n 项(末项)。 (3)项数:一个数列中有几个数字,项数就是几。 四:等差数列 (1)定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。而这个常数叫做等差数列的公差。 (2)等差数列的和=(首项+末项)×项数÷2 (3)等差数列的项数=(末项-首项)÷公差+1 (4)等差数列的末项=首项+公差×(项数-1) 三:经典例题 例1、111111112233445566778 ++++++??????? (例1、例2、例3的运算符号都是加号相连,分母都可以分解为两个连续正整数的积可用公式111(n 1)1 n n n =-++)

例2、1111111 261220304256 ++++++ 例3、 111111111 1+3+5+7+9+11+13+15+17+19 612203042567290110 例4、 111111 133557799111113 +++++ ?????? 例5、11111 315356399 ++++例6、 11111 1+3+5+7+9 315356399

小学奥数裂项公式汇总

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ?1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11 b a a b b a --=? (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: ???? ?? +?+-+?=+?+?)2()1(1)1(1 21)2()1(1 n n n n n n n ???? ?? +?+?+-+?+?=+?+?+?)3()2()1(1 )2()1(1 31)3()2()1(1n n n n n n n n n n 二、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: (1) a b b a b b a a b a b a 1 1+=?+?=?+ (2)a b b a b a b b a a b a b a +=?+?=?+2 2 22 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或 凑整 三、整数裂项基本公式 (1))1()1(31 )1(......433221+-=?-++?+?+?n n n n n

(2) )1()1)(2(4 1)1()2(......543432321+--= ?-?-++??+??+??n n n n n n n (3) )1()1(3 1)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1( (4) )2)(1()1(4 1)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=? 裂项求和部分基本公式 1.求和: 1 )1(1......541431321211+=+++?+?+?+?=n n n n S n 证:1 111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n 2.求和:12)12)(12(1971751531311+=+-++?+?+?+?= n n n n S n 证:1 2)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-= n n n n n S n 3.求和:13)13)(23(11071741411+=+-++?+?+?= n n n n S n 证:)1 31231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

奥数裂项法(含答案)

— 奥数裂项法 同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。 (一)阅读思考 例如1 3 1 4 1 12 -=,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积, 把这个例题推广到一般情况,就有一个很有用的等式: 11 1 1 11 1 1 1 1 n n n n n n n n n n n n n n - += + + - + = +- + = + ()() ()() : 即11 1 1 1 n n n n - + = + () 或 1 1 11 1 n n n n () + =- + 下面利用这个等式,巧妙地计算一些分数求和的问题。【典型例题】 例1. 计算: 1 19851986 1 19861987 1 19871988 1 19941995? + ? + ? ++ ? …… + ?+ ? + 1 19951996 1 19961997 1 1997 分析与解答:" 1 19851986 1 1985 1 1986 1 19861987 1 1986 1 1987 1 19871988 1 1987 1 1988 1 19941995 1 1994 1 1995 ? =-? =-? =- ?=- …… 1 19951996 1 1995 1 1996 1 19961997 1 1996 1 1997 ? =-? =-

上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。 11985198611986198711987198811995199611996199711997 ?+?+?++?+?+… =-+-+-++-+-+=119851198611986119871198711988119951199611996119971199711985 …… 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。 例2. 计算:1111211231123100 + ++++++++++…… : 公式的变式 11221+++=?-…n n n () 当n 分别取1,2,3,……,100时,就有 11212 112223 1123234 11234245 1121002100101 =?+=?++=?+++=?+++=? (111121123112100) 2122232342991002100101 21121231341991001100101 211212131314199110011001101 211101++++++++++=?+?+?++?+?=??+?+?++?+?=?-+-+-++-+-=?-……………()()()

分数裂项求和

学生曹一诺学校年级六年级科目数学 教师陈作谦日期16年4月24日时段15:00-17:00 次数第一次课题 分数裂项求和 教学重点难点重点:清楚掌握几种简单的裂项求和的方法及其解答过程。难点:能判断所处题目的特点,并用其对应的方法进行解答。 教学步骤及教学内容一、作业检查: 平时成绩中上,卓师的小升初模拟试题测试结果,数学为46分二、课前热身: 与学生探讨小升初的意义,互动中令学生明白考试的应对方式。 三、内容讲解: 先做几个题目: (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? , (2)求 2222 ...... 1335579799 ++++ ???? 的和 这种题目就是分数裂项求和的运用。 分数裂项求和,分成减法裂项和加法裂项: 减法裂项就是:分母化成两个数的积,分子化成这两个数的差;加法裂项就是:分母化成两个数的积,分子化成这两个数的和。 (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? ,

解:原式= +?+?+?7 55 -7533-5311-3……+11 99-11? =( + ??+??+??)7 55-757()533-535()311-313 ……+( 11911 ?-11 99?) )11 191()7151()5131()3111(-+??+-+-+-= 11 191715151313111-+??+-+-+-= 11 111-= 11 10= (2)求 2222 (1335579799) ++++????的和 解:原式=+?+?+?7 55-75 33-53 11-3……+99 9797-99? 1111111 (1)()()......() 3355797991 1999899 =-+-+-++-=-= 再看一道例题: 例1:计算:72 17561542133011209127651-+-+-+ - 解:原式=98988787767665655454434332321?+-?++?+-?++?+-?++?+- )()()()()()()(9 1818171716161515141413131211+-+++-+++-+++-= 9 18 18 17 17 16 16 15 15 14 14 13 13 12 11--++--++--++--= 9 11-=

高中一年级数学必修5数列经典例题(裂项相消法)

2.(2014?模拟)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和. 解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6有a32=9a42,∴q2=. 由条件可知各项均为正数,故q=. 由2a1+3a2=1有2a1+3a1q=1,∴a1=. 故数列{a n}的通项式为a n=. (Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣, 故=﹣=﹣2(﹣) 则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣, ∴数列{}的前n项和为﹣. 7.(2013?)正项数列{a n}满足﹣(2n﹣1)a n﹣2n=0. (1)求数列{a n}的通项公式a n; (2)令b n=,求数列{b n}的前n项和T n. 解:(1)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0, 可有(a n﹣2n)(a n+1)=0 ∴a n=2n. (2)∵a n=2n,b n=, ∴b n= = =, T n= =

=. 数列{b n}的前n项和T n为. 6.(2013?)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n. 解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:, 解有a1=1,d=2. ∴a n=2n﹣1,n∈N*. (Ⅱ)由已知++…+=1﹣,n∈N*,有: 当n=1时,=, 当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合. ∴=,n∈N* 由(Ⅰ)知,a n=2n﹣1,n∈N*. ∴b n=,n∈N*. 又T n=+++…+, ∴T n=++…++, 两式相减有:T n=+(++…+)﹣ =﹣﹣ ∴T n=3﹣.

小学奥数裂项公式汇总

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ?1形式的,这里我们把较小的数写在前面,即 a < b ,那么有: (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: 二、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: (1) a b b a b b a a b a b a 1 1 +=?+?=?+ (2)a b b a b a b b a a b a b a +=?+?=?+2 2 2 2 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或 凑整 三、整数裂项基本公式 (1))1()1(31 )1(......433221+-=?-++?+?+?n n n n n (2) )1()1)(2(41 )1()2(......543432321+--=?-?-++??+??+??n n n n n n n (3) )1()1(31 )2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41 )3)(2)(1(41 )2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=? 裂项求和部分基本公式 1.求和: 1)1(1 (541) 431 321 211+=+++?+?+?+?=n n n n S n 证:111 1)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n

小学奥数裂项公式汇总

裂项运算常用公式 、分数“裂差”型运算 1 (1) 对于分母可以写作两个因数乘积的分数,即 —形式的,这里我们把较小的数写在前面, a b 即a v b ,那么有: 1 111、 ( ) a b baa b (2) 对于分母上为3个或4个连续自然数乘积形式的分数,即有: 1 1 1 1 n (n 1) (n 2) 2 n (n 1) (n 1) (n 2) 1 1 1 1 n (n 1) (n 2) (n 3) 3 n (n 1) (n 2) (n 1) (n 2) (n 3) 、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: 裂和型运算与裂差型运算的对比: (1) a b a b ] 1 abababba (2) b 2 a 2 b 2 a b a b a b b a

裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”

分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或凑整三、整数裂项基本公式 1 (n 1) n (n 1)n(n 1) 3 ⑵ 1 2 3 2 3 4 3 4 5 (n 2) (n 1) n 1 -(n 2)( n 1)n(n 1 ) 4 ⑶n(n 1) 2 n(n 1)(n 2) Bn 3 1)n(n 1) n(n 1) r 2 n ⑷n(n 1)( n 2) 1 n(n 4 1)(n 2)(n 3) ^(n 4 1)n(n 1)( n 2) ⑸n n! (n 1)! n! 裂项求和部分基本公式 1.求和:S n 1 1 1 1 1 n 1 2 2 3 3 4 4 5 n(n 1) n 1 证 :S n 1 (1 2) 1 1 1 1 1 1 (2 1)(3 2 (1 1) 1 1 1 n ( )1 ' n n 1 n 1 n 1 2.求和:S n 1 3 3 5 5 7 7 9 (2n 1)( 2 n 1) 2n 1

分数裂项求和标准个性化教案

分数裂项求和标准个性化 教案 This manuscript was revised on November 28, 2020

两数之差。 直接裂项 加法裂项:分母分成两数之积,分子为两数之和。 变形裂项:先变形为直接裂项。 【典型例题】 例1 计算: 观察:直接裂项2 11121121-=?= 312132161-=?= 4131431121-=?= ............. =201()()=?1 ( )-( ) ( )()=?= 1 301( )-( ) 解:原式 = 651 541431321211?+ ?+?+?+? = 1-61 5151414131312121-+-+-+-+ = 1-61 = 6 5 例2 计算:72 17561542133011209127651-+-+-+- 观察:直接裂项3121323265+=?+= 4 1314343127+=?+= 920==?+54545141+ ............... ()() 1156 30+==?( )+( ) ( )( ) 1367 42 += =?( )+( ) 解:原式)()()()()()()(9 18 18 17 17 16 16 15 15 14 14 13 13 12 11+-+++-+++-+++-= 例3. +?+?+?7 52532312 (1192) 变形裂项: ..............

解:原式)11 1 91 ()715 1()5 13 13 111- ++-+-+-= ()( 例4 1111111 248163264128 +++ +++ 观察前一个数是后一个数的2倍,“补一退一” 解:原式128 1 1281128164132116181 4 12 1- +++++ ++=)( 例5 1 101 18116114112122222-+ -+-+-+- 由)()(22b a b a b a +?-=-知,可以将原式变形为: 解:原式11 91 971751531311?+ ?+?+?+?= 牛刀小试: 【我能行】 1. +?+?+?1999 19981199819971199719961……+ 200220011 ?+20021 2.521?+851?+1181?+……+29 261? 分数裂项求和方法总结 (一) 用裂项法求 1 (1)n n +型分数求和 分析:因为11 1n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111 (1)1 n n n n =-++ 【例1】 求111 (101111125960) +++ ???的和。 (二) 用裂项法求1 () n n k +型分数求和 分析:1 ()n n k +型。(n,k 均为自然数) 因为11111 ()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111 () ()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ?????

高一数学必修5数列经典例题(裂项相消法)

2.(2014?成都模拟)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6, (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和. 解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6有a32=9a42,∴q2=. 由条件可知各项均为正数,故q=. 由2a1+3a2=1有2a1+3a1q=1,∴a1=. 故数列{a n}的通项式为a n=. (Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣, 故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣, ∴数列{}的前n项和为﹣. 7.(2013?江西)正项数列{a n}满足﹣(2n﹣1)a n﹣2n=0. (1)求数列{a n}的通项公式a n; (2)令b n=,求数列{b n}的前n项和T n. 解:(1)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0, 可有(a n﹣2n)(a n+1)=0 ∴a n=2n. (2)∵a n=2n,b n=, ∴b n===, T n===. 数列{b n}的前n项和T n为. 6.(2013?山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n. (Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解: 解有a1=1,d=2. ∴a n=2n﹣1,n∈N*. (Ⅱ)由已知++…+=1﹣,n∈N*,有: 当n=1时,=, 当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合. ∴=,n∈N* 由(Ⅰ)知,a n=2n﹣1,n∈N*.

相关文档
最新文档