血液从左心房开始

血液从左心房开始
血液从左心房开始

1.血液从左心房开始,经过什么部位最后回到左心房?

血液循环分为体循环和肺循环

肺循环:右心室--肺动脉--肺中的毛细管网--肺静脉--左心房

体循环:左心室--主动脉--身体各处的毛细管网---上下腔静脉--右心房

血液循环路线:左心室→(此时为动脉血)→主动脉→各级动脉→毛细血管(物质交换)→(物质交换后变成静脉血)→各级静脉→上下腔静脉→右心房→右心室→肺动脉→肺部毛细血管(物质交换)→(物质交换后变成动脉血)→肺静脉→左心房→最后回到左心室,开始新一轮循环

2. 2.心室收缩期包括哪两个时期?

等容收缩期以及快速、减慢射血期。

(1)等容收缩期心室开始收缩,室内压尚低于主动脉压,半

月辨仍处于关闭状态,心室成为一个封闭腔。虽然心室收缩,但心

室容积没有改变,故称等容收缩期,约0.05s左右。

(2)射血期等容收缩期间室内压升高超过主动脉压时,半月瓣被冲开,等容收缩期结

束,进入射血期。射血期最初1/3左右时间内,由心室射入主动脉的血量很大(约占每搏输出量的2/3),流速亦很快,心室容积明显缩小,室内压继续上升达峰值,这段时期为快速射血期,历时0.1s。随后,心室内压开始下降,射血速度逐渐减慢,称为减慢射血期,此时心室内压虽已略低于主动脉压,但因血液具有较大动能,依其惯性逆着压

力梯度继续流入主动脉,心室容积继续缩小。此期为0.15s。

3.

4.3。心室舒张期包括哪两个时期?

包括等容舒张期和快速、减慢充盈期。

(1)等容舒张期心室肌开始舒张后,室内压下降,主动脉内血液向心室方向返流,推

动半月瓣关闭;此时室内压仍高于房内压,房室瓣依然处于关闭状态,心室又成为封闭腔。心室肌舒张,室内压急速大幅度下降,但容积并未改变。自半月瓣关闭直到室内压下降低于房内压,房室瓣开启时为止,这段时期称为等容舒张期,历时约0.06-0.08s

(2)充盈相当心室压降到低于房内压时,房室瓣开启,心室充盈开始,血液顺着房—

室压力梯度快速流人心室,称此期间为快速充盈期,历时约0.11s左右。这期间流入心室的血液约占总充盈量的2/3。随后,血液以较馒的速度继续流人心室,心室容积进一步增加,称为减慢充盈期,历时约0.22s。然后进入下一个心动周期。

5.4。心室收缩期什么瓣膜关闭或打开,在什么时候关闭或打开?

等容收缩期,半月瓣关闭,到快速射血期时打开。

什么是半月瓣?奔奔有图告诉你。

6.

7. 5.心室舒张期什么瓣膜关闭或打开,在什么时候关闭或打开?

房室瓣等容舒张期关闭,快速充盈期打开。

什么是房室瓣?

就是二尖瓣和三尖瓣

6.瓣膜关闭不全的概念?

7.瓣膜狭窄的概念?

8.心脏瓣膜听诊区?

二尖瓣区:心尖部,位于左锁骨中线内侧第5肋间处。

主动脉瓣区:有两个听诊区,胸骨右缘第二肋间及胸骨左缘第三、四肋间,后者为第二听诊区。

肺动脉瓣区:在胸骨左缘第二肋间处。

三尖瓣区:在胸骨体下端近剑突稍偏右或稍偏左处。

8.9.心脏听诊的内容?

1 )心率(Heart rate )

2 )心律(Cardiac rhythm ):是否整齐

早搏(Premature beat )房颤(Atrial fibrillation )

3 )心音(Cardiac sound ):S 1 、S 2 、S 3 、S 4

S 1 与S 2 的辨认及意义

S 1 与S 2 的特点

异常心音:

心音增强、减弱、病理性S 1 、S 2 (S 1 ↓,P 2 ↑)

10.心音和杂音有什么区别?

心脏杂音是指在心音与额外心音之外,在心脏收缩或舒张时血液在心脏或血管内产生端流所致的室壁,瓣膜或血管振动所产生的异常声音。

11.心音包括哪几个部分?

在一个心动周期中,由于心肌收缩、瓣膜启闭、血液以一定的速度对心血管壁产生加压和减压作用,以及形成的涡流等因素引起的机械振动,通过周围组织传到胸壁。如将听诊器置于胸壁的相应听诊区,就可以听到声音,称为心音。第一心音发生在收缩期,是房室瓣关闭及相伴随的心室壁振动而形成的,音调低而持续较长,约0.10~0.12s ,是心室收缩开始的标志。第二心音发生在舒张期,与主动脉辨及肺动脉瓣关闭时振动有关,音调高而短促,约0.08~0.10s,它标志着心室舒张的开始。

12.杂音形成机制?

心脏杂音是指在心音与额外心音之外,在心脏收缩或舒张时血液在心脏或血管内产生端流所致的室壁,瓣膜或血管振动所产生的异常声音。

正常血流呈层流状态,不发出声音,当血流加速,异常血流通道或血流管径异常以及血黏度改变等均可使层流转变为湍流,或旋涡而冲击心壁,大血管壁,瓣膜,腱索等使之振动而在相应部位产生杂音。

1、血流加速:运动高热,甲亢、贫血

2、瓣膜开放口径或大血管通道狭窄:二尖瓣狭窄

3、瓣膜关闭不全

4、异常血流通道:室间隔缺损,动脉导管未闭

5、心脏内异物或异常结构:心室内腱索,乳头肌断裂

6、大血管瘤样扩张:动脉瘤

13.额外心音与杂音相同么?

不同。额外心音指在S1和S2之外,额外出现的病理性附加音。大多数额外心音为1个,与S1、S2共同构成三音律;少数额外心音为2个,与S1、S2共同构成四音律。按其出现的时期不同,可分为收缩期额外心音和舒张期额外心音。14.描述一个杂音要包括那些内容?

常见心脏病的心音改变

二尖瓣狭窄:心尖区,隆隆样舒张期杂音。

二尖瓣关闭不全:心尖区,3/6级以上较粗糙的吹风样杂音。

主动脉关闭不全:心尖部第一心音减弱;主动脉瓣区第二心音减弱或消失;主动脉瓣区及第二听诊区(主动脉)可听到叹气样舒张期杂音,并可传导。

主动脉瓣狭窄:主动脉瓣区可听到粗糙而高调的收缩期杂音,且向颈动脉及锁骨下动脉传导。

PDA:胸骨左缘第二肋间处有连续性机器样杂音。

房缺:胸骨左缘第二肋间收缩期杂音,肺动脉瓣区第二音亢进。

室缺:胸骨左缘第三、四肋间有粗糙的收缩期杂音,肺动脉瓣区第二音亢进。肺动脉瓣狭窄:胸骨左缘第二肋间处有粗糙的收缩期杂音,肺动脉瓣区第二心音减弱或消失

奔奔还是把一些难缠的东西汇总一下,方便记忆。

心脏听诊口诀

·正常心音:

第一心音低而长,心尖部位最响亮;一二之间间隔短,心尖搏动同时相。

第二心音高而短,心底部位最响亮;二一之间间隔长,心尖搏动反时相。

·窦性心动过速:

贫血甲亢和发热,心炎心衰和休克;情绪激动和运动,肾上腺素心率过。

·窦性心动过缓:

颅内高压阻黄疸,甲低冠心心肌炎;药物影响心得安,体质强壮心率缓。

·两心音同时增强:

常人运动或激动,两个心音同时增;高血压病贫血症,甲亢发热亦相同。

·第一心音增强:

室大未衰热甲亢,早搏“用药”一音强;二尖瓣窄“拍击性”,房室阻滞“大炮样”。

·第二心音增强:

P2增强二尖瓣窄,肺气肿和左心衰。左右分流先心病,肺动脉压高起来,动脉硬化亦常在。

·第一心音减弱:二主瓣膜不全闭,心衰炎梗一音低。

·第二心音减弱:动脉瓣漏或狭窄,动脉压低二音衰。

·钟摆律:

钟摆胎心律严重,心肌炎梗心肌病。

·第一心音分裂:

一音分裂心尖清,电延右束阻滞症;肺动高压右心衰,机械延迟而形成。

·第二心音分裂:

通常分裂有特点,最长见于青少年;呼气消失吸明显。

·窦性心律不齐:

窦性心律稍不齐,心音正常成周期;吸气加快呼气慢,健康儿童非疾病。

·早搏:

期前收缩称早搏,室性早搏为最多;房性交界共三种,心电图上易分说。

·心房颤动:

房颤特点三不一,快慢不一律不齐;强弱不等无规律,脉率定比心率低。

·生理性杂音:

生理杂音级别小,柔和吹风不传导;时间较短无震颤,儿童多见要牢记。

·二尖瓣关闭不全:

二尖瓣漏有特点,粗糙吹风呈递减;三级以上缩期占,左腋传导左卧清,吸气减弱呼明显。

·二尖瓣狭窄:

二尖瓣窄杂音断,舒张隆隆低局限;一音亢进P2强,开瓣音响伴震颤。

·主动脉狭窄:

主动脉窄有特点,粗糙缩鸣拉锯般;递增递减颈部传,A2减弱伴震颤。

·主动脉瓣关闭不全:

主瓣不全有特点,舒张叹气呈递减;胸骨下左心尖传,二区较清前倾声,呼末屏气易听见。

·肺动脉瓣狭窄:

肺瓣狭窄有特点,粗糙缩鸣属先天;杂音递增又递减,P2减弱伴震颤。

·肺动脉瓣相对性关闭不全:

肺瓣舒杂有特点,杂音多为相对性;柔和吹风卧吸清,二尖瓣窄常合并。

·三尖瓣相对性关闭不全:

三尖瓣区有缩鸣,杂音性质似吹风;多数相对关不全,极少数为器质性。

·房间隔缺损:

房缺杂音有特点,胸骨左缘二肋间;缩期杂音吹风般,P2分裂多无颤。·室间隔缺损:

室缺杂音有特点,胸骨左缘三四间;响亮粗糙缩鸣音,常伴收缩期震颤。·动脉导管未闭:

连续杂音有特征,粗糙类似机器声;动脉导管未闭时,胸左二肋附近听。·心包摩擦音:

连续杂音有特征,注意鉴别胸摩擦;前倾屏气易听见,心梗包炎尿毒加9.

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

流体力学发展简史.

流体力学发展简史 流体力学作为经典力学的一个重要分支,其发展与数学、力学的发展密不可分。它同样是人类在长期与自然灾害作斗争的过程中逐步认识和掌握自然规律,逐渐发展形成的,是人类集体智慧的结晶。 人类最早对流体力学的认识是从治水、灌溉、航行等方面开始的。在我国水力事业的历史十分悠久。 4000多年前的大禹治水,说明我国古代已有大规模的治河工程。 秦代,在公元前256-前210年间便修建了都江堰、郑国渠、灵渠三大水利工程,特别是李冰父子领导修建的都江堰,既有利于岷江洪水的疏排,又能常年用于灌溉农田,并总结出“深淘滩,低作堰”、"遇弯截角,逢正抽心"的治水原则。说明当时对明槽水流和堰流流动规律的认识已经达到相当水平。 西汉武帝(公元前156-前87)时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止了黄土的塌方。 在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水,或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。 古代的铜壶滴漏(铜壶刻漏)--计时工具,就是利用孔口出流

使铜壶的水位变化来计算时间的。说明当时对孔口出流已有相当的认识。 北宋(960-1126)时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船闸相比,约早三百多年。 明朝的水利家潘季顺(1521-1595)提出了"筑堤防溢,建坝减水,以堤束水,以水攻沙"和"借清刷黄"的治黄原则,并著有《两河管见》、《两河经略》和《河防一揽》。 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。 欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者 阿基米德(Archimedes,公元前287-212),在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。 著名物理学家和艺术家列奥纳德达芬奇(Leonardo.da.Vinci,1452-1519)设计建造了一小型水渠,系统地研究了物体的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水流等问题。 斯蒂文(S.Stevin,1548-1620)将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)在流体静力学中应用了虚位移原理,并首先提出,运动物体的阻力随着流体介质密度的增大和速度

心脏的解剖结构及生理(含彩图)

心脏的解剖结构及生理 一、心脏的位置 心脏是整个血液循环中推动血液流动的泵。心脏的位置位于胸骨体和第2-6肋软骨后方、胸椎第5-8椎体前方的胸腔中纵隔内,2/3部分居左侧胸腔,1/3部分在右侧。 二、心脏内部解剖 心脏由心肌细胞构成,有瓣膜及四个腔。心尖部主要由左心室构成,心底部由大动脉、静脉组成。心脏的四个腔包括:左心房、左心室、右心房、右心室。右心房室之间的瓣膜称三尖瓣,左心房室之间的瓣膜是二尖瓣。右心室与肺动脉之间的瓣膜称肺动脉瓣,左心室与主动脉之间的瓣膜称主动脉瓣。瓣膜的功能是防止心房和心室在收缩或舒张时出现

血液反流。在左右心房及心室间有肌性房间隔和室间隔,使左右心之间互不相通。右心房血液的流入口有上、下静脉;右心房的血液出口为肺动脉;左心房血液的流入口为肺静脉;左心室的血液流出口为主动脉。 心包可分为几层:纤维心包,是最外层的坚韧结缔组织囊;内膜,也称浆膜,包括脏 层和壁层。脏层紧贴心脏, 也称为心脏的心外膜层, 壁层位于脏层和纤维心包 的中间。心包腔(脏层心 包和壁层心包中间的腔 膜)内可容纳10-30ml的 心包液,这些液体可起到

润滑及减轻心脏收缩时产生的摩擦力的作用。 三、心脏的传导系统 心脏的传导系统由特殊分化的心肌细胞组成,主要功能是产生并传导激动,维持心脏正常的节律。心肌细胞具有兴奋性、传导性、自律性和收缩性。传导系统包括:窦房结、结间束、房室交界区、房室束、左右束支及浦肯野纤维。心脏窦房结的自律性最高,是正常人心脏的起搏点,其后自律性高低排列依次为房室交界区、房室束、左右束支及浦肯野 纤维。 四、冠状动脉解剖及冠脉血液循环

心脏解剖笔记:右房右室篇 - 丁香园

心脏解剖笔记:右房右室篇- 丁香园 心脏解剖是心血管医生的重要基础知识之一,掌握心脏形态解剖有利于理解心脏瓣膜病、心肌病、先心病等疾病。我们心电图中的心梗定位、室早、室速、预激旁道的大体定位、房扑房颤的折返机理这些都离不开心脏解剖学知识。近十几年来随着二维超声、心脏CTA、心脏磁共振、PCI、射频消融、腔内电生理这些新兴诊治项目的开展,在心脏解剖学层面上对心血管医生提出了更高的要求,有些既往经典解剖上本来不十分重要的部位被赋予了新的内涵,随着心血管新兴的诊治进展很多新的解剖名词也应运而生,既往解剖知识已经不能满足目前心血管进展的要求,所以我们对心脏的解剖学知识不能再停留在既往系统解剖学的层面,需要在心脏大体解剖、心脏血管造影解剖、心脏断层切面解剖、心脏超声切面解剖这四个层面海、陆、空全方位剖析心脏解剖。丁香园心血管时间的虫哥说图系列将用这四个章节内容,把心脏解剖与临床应用最密切的知识点介绍给大家,以开启一扇了解心脏解剖与临床之门,艰辛而又充满乐趣的心血管探索之路还要靠大家自己去远征,希望这些零星散落的路标,能让各位在心血管探索之路上少走些弯路。现在就开启《心脏解剖笔记:右房右室篇》。先上两副图,大家热热身,解剖名词都已经标注,相信大家都很熟悉,不再展开。照例,

这个不是亮点,下面才是虫哥要告诉大家的心得——正确的心脏空间观。正确的心脏空间观犹如正确的人生观,行走江湖,人生观错了,他就很容易走上歪门邪道,同样,在心脏解剖中没有正确的心脏空间观,就会在心脏断层解剖、超声解剖、血管造影解剖上走很多弯路。所以在虫哥说图篇的开始不惜浓墨重彩,为大家解读一个正确的心脏空间观。心脏空间观说到底也很简单,一句话:从正确的视觉角度理解心脏视觉成像。LAO 30° 不会出现RAO 45°的血管成像,心脏断层平面不会出现四腔前面的形态,心脏前后位不会出现左前斜位成像。说来简单但是事实上人是经常犯思维定式的错误。小明的爸爸有3 个儿子, 老大叫大毛, 老二叫二毛, 老三叫什么?三毛!错,他叫小明!这就是思维定式。同样左、右在我们思维潜意识里被赋予的对称的概念:左手、右手,左脚、右脚,左眼、右眼,对称是吧,而中和间被赋予居中的概念—鼻中隔,中央沟,正中线。心脏分为左房、右房,左室、右室,当中有房间隔、室间隔----- 这个就潜意识里给我们对称的暗示,但是从正面视觉角度上看心脏的左房右房,左室右室,表现的相当不给力,不但形态上不对称,连位置都不对称。无图无真相,那好上图。选择一个屌丝,脱光,取菜刀一把,在双乳头连线的高度,与水平面呈30 度角度,手起刀落(记住要干净利落不能拖泥带水),就是如上视觉效果。这个就是心脏最漂亮切面——心脏四腔切面,

重大流体力学实验1(流体静力学实验)

《流体力学》实验报告 开课实验室:年月日 学院年级、专业、班姓名成绩 课程名称流体力学实验 实验项目 名称 流体静力学实验 指导教 师 教师 评语教师签名: 年月日 一、实验目的 1、验证静力学的基本方程; 2、学会使用测压管与U形测压计的量测技能; 3、理解绝对压强与相对压强及毛细管现象; 4、灵活应用静力学的基本知识进行实际工程测量。 二、实验原理 流体的最大特点是具有易动性,在任何微小的剪切力作用下都会发生变形,变形必将引起质点的相对运动,破坏流体的平衡。因此,流体处于静止或处于相对静止时,流体内部质点之间只体现出压应力作用,切应力为零。此应力称静压强。静压强的方向垂直并指向受压面,静压强大小与其作用面的方位无关,只与该点位置有关。 1、静力学的基本方程静止流体中任意点的测压管水头相等,即:z + p /ρg=c 在重力作用下, 静止流体中任一点的静压强p也可以写成:p=p + ρg h 2、等压面连续的同种介质中,静压强值相等的各点组成的面称为等压面。质量力只为重力时, 静止液体中,位于同一淹没密度的各点的静压强相等,因此再重力作用下的静止液体中等压面是水平面。若质量有惯性时,流体做等加速直线运动,等压面为一斜面;若流体做等角速度旋转运动,等压面为旋转抛物面。 3、绝对压强与相对压强流体压强的测量和标定有俩种不同的基准,一种以完全真空时绝对压强 为基准来计量的压强,一种以当地大气压强为基准来计量的压强。

三、使用仪器、材料 使用仪器:盛水密闭容器、连通管、U 形测压管、真空测压管、通气管、通气阀、截止阀、加 压打气球、减压阀 材 料:水、油 四、实验步骤 1、熟悉一起的构成及其使用方法; 2、记录仪器编号及各点标高,确立测试基准面; 测点标高a ?=1.60CM b ?=-3.40CM c ? =-6.40CM 测点位能a Z =8.00CM b Z = 3.00CM c Z =0.00CM 水的容重为a=0.0098N/cm 3 3、测量各点静压强:关闭阀11,开启通气阀6,0p =0,记录水箱液面标高0?和测管2液面标高2?(此时0?=2?);关闭通气阀6和截止阀8,开启减压放水阀11,使0p > 0,测记0?及2?(加压3次);关闭通气阀6和截止阀8,开启减压放水阀11,使0p < 0(减压3次,要求其中一次,2?< 3?),测记0?及2?。 4、测定油容量 (1)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,加压打气球7,使0p > 0,并使U 形测压管中的油水界面略高于水面,然后微调加压打气球首部的微调螺母,使U 形测压管中的油水界面齐平水面,测记0?及2?,取平均值,计算 0?-2?=H 1。设油的容重为r ,为油的高度h 。由等压面原理得:01p =a H=r h (1.4) a 为水的容重 (2)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,开启放水阀11减压,使U 形管中的水面与油面齐平,测记0?及2?,取平均值,计算0?-2?=H 2。得:02p =-a H 2=(r-a)h (1.5) a 为水的容重 式(1.4)除以式(1.5),整理得:H 1/ H 2=r/(a-r) r= H 1a/( H 1+ H 2)

风湿性心脏病左心房血栓脱落造成冠状动脉栓塞1例

.122? 风湿性心脏病左心房血栓脱落造成冠状动脉栓塞1例王凯孔祥荣李林柴武军 病人女,60岁。突发心前区压榨样疼痛。大汗,伴恶 心、呕吐5h。心电图显示V2~V。导联ST段弓背向上抬高 0.2—0.4mV。心肌酶轻度升高(肌酸激酶同工酶4.5 ng/ml,肌钙蛋白l0.14ng/IIll)。既往风湿性心脏病二尖瓣 狭窄伴关闭不全病史28年,心房颤动病史23年,17年前行 二尖瓣球囊扩张术,2年前有脑梗塞病史,遗留右侧肢体偏 瘫。查体:房颤心律,心尖部町闻及2/Ⅵ级收缩期吹风样杂 音及中度舒张期隆隆样杂音。诊断为急性广泛前壁心肌梗 死。 给予抗凝扩张冠状动脉治疗,症状逐渐缓解。急查心脏 超声显示风心病二尖瓣狭窄(瓣口0.9em2),左心房51mm, 左心室53mm,射血分数0.30,肺动脉收缩压41mlnHg (1himHg=0.133kPa),左心房未见附壁血栓。lh后心电 图sT段回到基线,但是病人精神差,血压85/50mmHg。急 行冠状动脉造影柃杏,显示左主干末端和i分又处大血栓?病例报告? (图1),远端TIMl2级,右冠未见异常;考虑为风湿性心脏 病,左心房附壁血栓脱落栓塞于冠状动脉,病人血流动力学 不稳定,继续介入治疗处理左主十病变风险大。急诊于2010 年2月体外循环下行左冠状动脉取栓术、二尖瓣生物瓣置换 术。术中常规体外循环,阻断升主动脉后,主动脉根部顺行 及冠状静脉窦逆行灌注HTK液进行心肌保护,主动脉根部 横切口,使用St(2.7mm)脑科吸引器头连接负压吸引,伸入 左冠状动脉开口,探查触碰到栓子后借助负压将其吸入并带 出冠状动脉开口。町见栓子约3mmX10mrn左右(图2),呈 暗红色,质韧;经过右心房一房间隔切口探查可见左心房后 壁及左心耳处心房壁有薄层机化的附壁血栓,与心房壁紧 贴,表面粗糙,无新鲜附擘血栓;二尖瓣置换27。生物瓣。手 术顺利,术后10h脱离呼吸机,住ICU36h。术后10天出院。 栓子病理显示混合性血栓(图3)。 图I冠状动脉造影显示左主干末端和三分叉处大血栓图2脑科吸引器头负压吸出暗红色,质韧栓子 3㈣×10innl图3栓子显示为混合性血栓HEx4 讨论二尖瓣狭窄合并房颤时容易产生左心房血栓,新近形成的左心房血栓易于脱落并造成体循环动脉栓塞,其中2/3为脑动脉,其次为股动脉和内脏(脾、肾和肠系膜)动脉栓塞,而冠状动脉栓塞很少见。 该病例栓子为混合性血栓,质地比较硬韧,溶栓治疗效 DOI:10。3760/ema.j.isan.1001-4497.2011.02.022 作者单位:300192天津市第一中心医院心血管外科果差;栓塞于左主干,PCI治疗困难且风险大,治疗方式应当首选外科手术。我们采用8F脑科吸引器头连接负压吸引很容易地将栓子吸出,避免了对冠状动脉的损伤和冠状动脉旁路移植要求;事实上吸引器头可以进入到前降支和回旋支主干的中段,可以确认冠状动脉通畅和无残余栓子,是一种很巧妙的冠状动脉取栓的方法。 (收稿日期:2010-03-311万方数据

流体力学结课论文

谈流体力学的研究内容及发展简史 流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机 械运动规律及其实际应用的技术科学,在许多工业部门中都有着广泛应 用,航空工业中飞机的制造离不开空气动力学;造船工业部门要用到水 动力学,与土建类各专业有着更加密切的关系,了解流体动力学的研究 内容及发展简史对学习流体力学知识具有的一定的引导作用,为以后的 学习铺设台阶,引起学习的兴趣。 流体力学的研究内容 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都 可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。 大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70% 是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等) 乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的 应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动 学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力 学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛 顿流体力学等。 在流体力学中为简化计算,对流体模型做出了假设:质量守恒;动量 守恒;能量守恒。 在流体力学中常会假设流体是不可压缩流体,也就是流体的密 度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会 假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为 非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子), 则在边界处流体的速度为零。 流体的主要物理性质: 1、流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。液体 有一定的体积,存在一个自由液面;气体能充满任意形状的容器,无一 定的体积,不存在自由液面。 2、流体的连续介质模型 微观:流体是由大量做无规则运动的分子组成的,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右的分子,相邻分子间的距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右的分子,相邻分子间的距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用的一切特征尺度和特征时间都

流体力学流体的受力分析

(流体力学)流体的受力分析 第一部分? 流体的受力分析 (一) 静力学的研究内容 研究流体在外力作用下处于静止状态时的力学规律。通过受力分析可知:静力学主要是获得静止状态下的压强,即静压强。进一步把面积考虑进去,获得与流体相互作用的固体壁面所受到时的流体作用力。 (二) 控制体的选择 1. 控制体的定义 流场中,用几何边界所围成的固定空间区域称为控制体,它是流体力学的研究对象. 流体静力学中,把控制体又称为隔离体. (三) 流体的受力 控制体中流体质点的受力总体上可分为表面力和质量力两类. 1. 表面力(Surface Force) (1) 定义 通过接触界面作用于控制体中流体质点上的力称为表面力,又称之为接触力.如一容器内盛有水,其中壁面对所盛流体的约束力及作用于液体自由表面的大气压力等都均属于表面力 (3) 实质 ?? 虽然质量力属于“力”的概念,而加速度属于“运动”的概念,但单位质量的质量力就是加速度,在这里"动"与"力"合二为一. (四) 静止状态及静止状态时的受力分析 1. 静止状态 (1) 含义

相对于所选定的坐标系,流体不移动、不转动及不变形,称为静止状态或平衡状态。 (2) 分类 A. 绝对静止:相对于惯性坐标系,如地面,流体处于静止状态; B. 相对静止:相对非惯性坐标系,流体处于静止状态。 2. 静止状态时的受力分析 (1) 表面力:流体处于静止状态时,内部无相对运动,则流体内部各处切应力为零,流体不呈现出黏性,即表面力中只存在压强。 (2) 质量力:若处于重力场下,单位质量力为重力加速度;若还处于惯性力场下,则单位质量力还应包括惯性加速度等。一般不考虑电磁场作用。 (五) 静压强 1. 含义 流体处于静止状态下所受到的压强,称为静压强,区别于流体运动状态下的所谓动压强。 2. 实质 静压强实际上是流体所受的表面力中的法向应力。 (六) 静压强特性 1. 存在性与方向性。静止流体所受表面力中只存在静压强,其方向总是垂直于作用面,并指向流体内法线方向。 [注意]? 液体自由表面上的表面张力是例外。 2. 各向等值性。静止流体中任一点的压强值在空间各方位上,其大小均相等,它只与该点空间位置有关。

左心房是痛,右心房是爱

左心房是痛,右心房是爱 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 夜很深了,依旧是一个人对着冰凉的屏幕敲打着键盘,敲击着只有自己能懂的凌乱文字;依旧是听着忧伤的音乐;依旧无法梳理烦乱的心绪。一切都是依旧,只是今夜,心里多了一种叫痛的滋味!我的心房被分成了两瓣.左心房是痛,右心房是爱!四周静悄悄的一片,没有风声,没有雨声!什么都没有,唯一能听到的就是音乐声交织着键盘声和着我的心跳声!为何自己还要停留在此?只是一种习惯吗? 自己也许是真的习惯了在文字里放纵,也许是真的习惯了等候,也许真的是习惯了徘徊…… 静静的等着,安静的陪伴着,远远的凝望着。每个时刻,我都会有不一样的心情,或欢喜,或惆怅,或沮丧,或失落,或悲伤!而所有的所有都只是因为你的一声叹息,一句话语,一个表情或一个动作。总不明白,对于我,你给予的是一份什么样的爱?习惯的放你自由,习惯的给你一片空间,习惯了不让我们的爱受到约束。所以,你的很多事情我都不去探究,很多事情我都不去问!害怕你的冷漠,害怕你的沉默,

害怕你生气,害怕你杳无音讯!也许只是因为自己太在乎…… 遇上你,是命中注定的。你的真挚俘虏了我的心,我想没有什么东西比这更致命。你的灿烂笑脸,让我怦然心动;你的睿智幽默,让我嫣然一笑;你的温柔体贴,让我幸福甜蜜;你的安慰鼓励,让我豁达从容。一直为你痴迷,为你欢喜为你忧愁,为你柔情似水,我义无反顾地爱上了你,我沉醉于爱情的美好当中。 可哪里出了错?如今,不再感到你的心是在为我感动,只能感到你的冷漠越来越浓。那让我沉醉的笑容,也已经逃得无影无踪。是你变了吗?我的影子嘲笑着我的人好傻。是你变了吗?我已经跟不上你的步伐。是你变了吗?我已经不明白你的想法,已经不再看见你眼中的牵挂。没有你的日子里,我独自细数着曾经的回忆,拥抱着只有自己一个人的爱情,我的期盼,还在沉睡的梦中飞扬,可怜自己还一直为你钟情。多想问你:我付出的一切你就这样否决了吗?还是你把爱情当成了游戏? 我再也寻觅不到你的身影,我已经失去了你的踪迹。对你,我已无能为力,我已彻底绝望。今生如此的相遇,是你决定了我的伤心。是上天注定了这段情,是宿命冲破现实距离,我不该看你的眼神,不该多爱

肺动脉压和左心房压监测

肺动脉压和左心房压监测 第一节肺动脉压监测 早于1949年就有报道肺毛细血管“嵌压”能反映左心室充盈压。1970年Swan和Ganz等首先研制了顶端带胶囊的多腔、不透X线的聚氯乙烯导管,在床边经静脉插入右房,顶端气囊充气后,使导管顺血流漂入右室、肺动脉及其分支,使其嵌楔在肺小动脉上,测定肺小动脉楔压(PAWP),同时还可测定中心静脉压(CVP)、右房压(RAP)、右室压(RVP)、肺动脉压(PAP)。除测压外,肺动脉导管(PAC)还可进行心排血量、混合静脉血氧饱和度、右心功能监测及肺动脉造影、小儿心导管术、心内膜起搏等。 近年来重危病人应用肺动脉导管技术获得血流动力学资料已占45%~58%。至今大量临床研究仍不能证实应用肺动脉导管技术能提高重危病人的存活率,但就个体而言,床边心血管临测技术可早期诊断,提供俣理的治疗方案,减少并发症发生率。肺动脉导管操作本身可引起严重的并发症如肺动脉栓塞、出血和梗死等。因此,在重危病人监测时,应严格掌握适应症,提高操作技术,临术医师应熟悉各项血流动力学指标的意义,并以此来判断心血管功能,以提高治疗效果,降低并发症发生率及死亡率。 一、生理基础 (一)肺小动脉楔压的生理意义 肺小动脉楔压(PAWP)系指心导管插入肺动脉的小分支,导管顶端和肺微血管静脉腔之间形成自同通道时所测得的压力。PAWP应符合3

项标准:①在嵌楔部位所取得的血液标本,必需是完全氧饱和血;②嵌楔后的肺动脉位相图形应变为与左心房曲线相似;③平均嵌楔压应小于肺动脉平均压及肺动脉舒张压。如果病人伴有肺内分流或作用呼气末正压时,则所压得的血液标本的饱和度不一定为100%,故目前仅用后两项标准。 PAWP的正常值为0.67~2.0kPa(5~15mmHg).因肺微血管和肺静脉床、左心房及左心室成一共同腔室,因而PAWP亦可代表左室舒张末压(LVEDP)。但在收缩前期因二尖瓣开始关闭,故PAWP与左心室舒张末压可不相等。在左心房收缩力增强或左心室顺应性降低的情况下,左心室舒张末压可超过左心室平均舒张压及PAWP,而高达2.5kPa.在慢性充血性心力衰竭,左心室平均舒张压显著增高时,其与PAWP 亦密切相关,但在急性心肌梗死患者,由于心室顺应性降低,左心室容量虽仅轻度增大,而左心室舒张末压与PAWP的差别可能明显。然而,平均PAWP一般能相当正确地反映整个循环系统的情况,当其增高达2.7kPa以上时,已有左心功能异常;若高达4.0kPa或以上时,则出现肺水肿。当平均PAWP在1.6~2.4kPa时,左心室肌的伸展最适度。在心排血量正常时,若PAWP在正常范围的1.1~1.6kPa之间,提示心室功能良好;在低血心排血量或在有循环障碍征象时,若PAWP ≤1.1kPa,则提示有相对性血容量不足,需增加左心室的充盈量,以保证足够的循环作功。 当进行容量负荷试验时,常以中心静脉压作为肺充血危险性的指标。中心静脉压虽与右心功能状态明显相关,但在很多病理状态下,

血液从左心房开始

1.血液从左心房开始,经过什么部位最后回到左心房? 血液循环分为体循环和肺循环 肺循环:右心室--肺动脉--肺中的毛细管网--肺静脉--左心房 体循环:左心室--主动脉--身体各处的毛细管网---上下腔静脉--右心房 血液循环路线:左心室→(此时为动脉血)→主动脉→各级动脉→毛细血管(物质交换)→(物质交换后变成静脉血)→各级静脉→上下腔静脉→右心房→右心室→肺动脉→肺部毛细血管(物质交换)→(物质交换后变成动脉血)→肺静脉→左心房→最后回到左心室,开始新一轮循环 2. 2.心室收缩期包括哪两个时期? 等容收缩期以及快速、减慢射血期。 (1)等容收缩期心室开始收缩,室内压尚低于主动脉压,半 月辨仍处于关闭状态,心室成为一个封闭腔。虽然心室收缩,但心 室容积没有改变,故称等容收缩期,约0.05s左右。 (2)射血期等容收缩期间室内压升高超过主动脉压时,半月瓣被冲开,等容收缩期结 束,进入射血期。射血期最初1/3左右时间内,由心室射入主动脉的血量很大(约占每搏输出量的2/3),流速亦很快,心室容积明显缩小,室内压继续上升达峰值,这段时期为快速射血期,历时0.1s。随后,心室内压开始下降,射血速度逐渐减慢,称为减慢射血期,此时心室内压虽已略低于主动脉压,但因血液具有较大动能,依其惯性逆着压

力梯度继续流入主动脉,心室容积继续缩小。此期为0.15s。 3. 4.3。心室舒张期包括哪两个时期? 包括等容舒张期和快速、减慢充盈期。 (1)等容舒张期心室肌开始舒张后,室内压下降,主动脉内血液向心室方向返流,推 动半月瓣关闭;此时室内压仍高于房内压,房室瓣依然处于关闭状态,心室又成为封闭腔。心室肌舒张,室内压急速大幅度下降,但容积并未改变。自半月瓣关闭直到室内压下降低于房内压,房室瓣开启时为止,这段时期称为等容舒张期,历时约0.06-0.08s (2)充盈相当心室压降到低于房内压时,房室瓣开启,心室充盈开始,血液顺着房— 室压力梯度快速流人心室,称此期间为快速充盈期,历时约0.11s左右。这期间流入心室的血液约占总充盈量的2/3。随后,血液以较馒的速度继续流人心室,心室容积进一步增加,称为减慢充盈期,历时约0.22s。然后进入下一个心动周期。

经食道超声心动图在左心房存在血栓条件下的

经食管超声心动图在风湿性心脏病及合并症介入治疗中的应用 伦知见 [摘要] 目的经食道超声心动图(TEE)可清晰显示左心房及心耳部轮廓及其内的血流情况,能确切判定左心房及心耳部血栓的精确部位、大小、形状、附壁状态、有无活动度。能正确评估风湿性二尖瓣及其它瓣膜病变损害的程度,对术前判定二尖瓣球囊瓣膜成形术(PBMV)的适应症及在左心房存在血栓条件下的PBMV具有重要的应用价值。方法术中在TEE监视引导下,引导导丝和导管避开左心耳及附近左房壁的血栓,即刻评定球囊扩张的效果,预防并发症的发生。结果在左房及耳部存在机化性血栓、直径(φ)≤1.0 cm的左心耳孤立性低回声宽基底的附壁血栓,行PBMV术未出现栓塞并发症;房间隔缺损伴风心病二尖瓣狭窄(Lutembacher综合征)先行PBMV术,后用Amplatzer伞对房间隔缺损进行封堵获得成功。对妊娠合并风湿性二尖瓣狭窄、老年性风湿性二尖瓣狭窄行PBMV术,疗效满意。结论 TEE为PBMV在术前适应症的判定及术中提供了新的监测手段,在左房存在血栓条件下,使PBMV术由禁忌症变成相对适应症,缩短了病程,提高了介入性手术治疗的安全性、精确性和成功率。 [关键词] 经食管超声心动图描记术;左心房;血栓; 二尖瓣球囊瓣膜成形术. Application of transesophageal echocardiography guided interventional therapy in patients with rheumatoid heart disease and complications Lun Zhi-jian Yishui Central Hospital , Linyi , Shandong 276400 , China

(流体力学)流体的受力分析

(流体力学)流体的受力分析第一部分? 流体的受力分析 (一) 静力学的研究内容 研究流体在外力作用下处于静止状态时的力学规律。通过受力分析可知:静力学主要是获得静止状态下的压强,即静压强。进一步把面积考虑进去,获得与流体相互作用的固体壁面所受到时的流体作用力。 (二) 控制体的选择 1. 控制体的定义 流场中,用几何边界所围成的固定空间区域称为控制体,它是流体力学的研究对象. 流体静力学中,把控制体又称为隔离体. (三) 流体的受力 控制体中流体质点的受力总体上可分为表面力和质量力两类. 1. 表面力(Surface Force) (1) 定义 通过接触界面作用于控制体中流体质点上的力称为表面力,又称之为接触力.如一容器内盛有水,其中壁面对所盛流体的约束力及作用于液体自由表面的大气压力等都均属于表面力 (3) 实质 ?? 虽然质量力属于“力”的概念,而加速度属于“运动”的概念,但单位质量的质量力就是加速度,在这里"动"与"力"合二为一. (四) 静止状态及静止状态时的受力分析 1. 静止状态 (1) 含义

相对于所选定的坐标系,流体不移动、不转动及不变形,称为静止状态或平衡状态。 (2) 分类 A. 绝对静止:相对于惯性坐标系,如地面,流体处于静止状态; B. 相对静止:相对非惯性坐标系,流体处于静止状态。 2. 静止状态时的受力分析 (1) 表面力:流体处于静止状态时,内部无相对运动,则流体内部各处切应力为零,流体不呈现出黏性,即表面力中只存在压强。 (2) 质量力:若处于重力场下,单位质量力为重力加速度;若还处于惯性力场下,则单位质量力还应包括惯性加速度等。一般不考虑电磁场作用。 (五) 静压强 1. 含义 流体处于静止状态下所受到的压强,称为静压强,区别于流体运动状态下的所谓动压强。 2. 实质 静压强实际上是流体所受的表面力中的法向应力。 (六) 静压强特性 1. 存在性与方向性。静止流体所受表面力中只存在静压强,其方向总是垂直于作用面,并指向流体内法线方向。 [注意]? 液体自由表面上的表面张力是例外。 2. 各向等值性。静止流体中任一点的压强值在空间各方位上,其大小均相等,它只与该点空间位置有关。

流体力学的发展趋势

流 体 力 学 的 发 展 趋 势 21162P21 吕鹏 2012.3

定义 流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 重要性 上上个世纪在运河河道中发现的孤立波在60年代得到了彻底的解决,既推动了力学和数学的发展,也迅速导致在其它学科如光学、声学中发现类似的现象。现在孤立波(光学中称孤立子)已成了光通信的基石。上世纪60年代,为探索为何基于流体力学方程的数值天气预报只能准确到很少几天,通过简化这组方程之后,得到了现在已十分著名的L o r e n z方程。数值计算表明,它的解对初值十分敏感,以致一定时间之后,其值变得几乎完全不可预测的了。这一发现开辟了混沌研究新领域,奠定了非线性科学的基础。这一事实还说明,流体力学方程(N S方程)的内涵十分深邃,对它的了解还远不是充分的。水波中各种波的非线性作用的研究,也丰富了非线性科学的内容。凡此种种,显示出了本世纪流体力学在科学发展中的作用。流体力学在工程技术中的作用,更是有目共睹的。飞机的飞行速度得以超过声速,是空气动力学发展的结果。人类登月的成功,大型

火箭和航天飞机的实现,需要解决成千上万个前所未有的难题,而力学问题往往首当其冲。为此形成了高超声速气动力学,物理化学流体力学,稀薄气体力学等一系列新的分支学科,并极大地推动了计算科学的发展。为解决喷气机的噪声问题,提出了流体噪声理论,它完全不同于经典的声学理论。各种高速、高机动性和高敏捷性的军用飞机和安全、舒适的大型民航机的研制成功,同样需要流体力学提供的新思想和新成果。70年代兴起的海上采油工业,若没有流体力学的研究成果为依据,设计、建造单台价值超过10亿美元的海上采油平台是不可能的。巨型船舶、高性能潜艇及各种新型船舶的研制中,流体力学问题仍是首先要加以解决的。其它如地下油气开采也得益于流体力学的指导。大型水利枢纽的设计和建造,离开了水力学是不可能的。各种大型建筑物,如火电站的冷却塔和大跨度桥梁等遭风载破坏的教训,引起了力学和工程界的密切关注,形成了风工程这门新的学科。大型汽轮机、燃气轮机及涡喷发动机等现代动力机械的研制,提出了许多新的流体力学问题,形成了独特的翼栅及内流理论,其中还伴有高温、化学反应、多相等复杂因素,总而言之,没有流体力学的发展,本世纪的许多工程技术,特别是高新技术的发展是不可能的。流体力学在取得巨大进展的同时,也留下了一些仍待解决的问题。不尽快地将它们解决,必然对科学及工程技术的进一步发展带来困难。同时,技术的发展是无止境的。仅就交通运输为例,无论是空中、水上水下,还是陆地上的交通工具都在朝着更大、更快、更安全、更舒适的方向发展,新问题将层出不穷。第一个大问题是湍流。本世纪初,

流体力学的发展简史

流体力学的发展简史 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。 对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,法国皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系--伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。 普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。 20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。 机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。

流体力学发展历史

流体力学发展历史 270BC Archimedes(287BC-212BC) Buoyancy 1644 E.Torricellie(1608-1647)’s Barometer 1650 B.Pascal(1623-1662) Principle 1662 B.Boyle(1627-1681) Boyle ’s Law 玻意尔-马略特定律:体积与压力成反比 1668 E.Mariotte(1620-1684) Hydrostatics 1678 I.Newton(1642-1723)’s Law on viscosity 1732 H.Pitot(1695-1771) Pitot ’s tube 批脱管 1738 Daniel Bernoulli(1706-1782) Conservation of Energy(Bernoulli Equation) 1752 J.Le.R.D ’Alermbert(1717-1783) D ’Alermber Paradox 1755 L.Eulor(1707-1783) Euler Equations 1777 C.Bossut(1730-1814) First Experiments in water tank 1802 J.L.Gray-Lussac(1778-1850) Gray-Lussac ’s Law P RT ρ= 1809 G.Cayley(1773-1858) Notion on Aviation 1822 C-L-M-H Navier(1785-1836) Fomuler of N-S Equation 1823 F.B.J Fourrier(1768-1830) Laws on Heat Conductivity 1834 J.C Rissell(?-1881) Solitary Wave 1839 GH.L Hagen(1797-1854) 1840 J.L.M.Poissenille(1797-1869) Hagen- Poissenille Flow 1845 H.Von Helmhotz(1821-1894) Vortex Dynamics 1845 G.G.Stokes(1819-1903) N-S Equation 1860 Hemholtz ’s Theorem on Velocity Decomposition 1878 Lord, Reyleigh(1842-1919) Theory on Lifting(Magnus Effect) 1883 O.Reynolds(1842-1919) Experiment on Transition from Laminar to Turbulent 1887 E.Mach(1838-1916) Mach Number 1895 D.J.Kortewey, KDV Equation 1901 H.Beriard ’s Converction 1902 N.E.Joukovsky(1847-1921) Joukovsky ’s Theory on lift 1902 M.W.Kutta(1867-1944) Kutta ’s Condition 1903 飞机上天 1904 KA.Tsiorkovsky(1857-1935) First Cosmic Speed(Priciple for Rockets) 1905 Prandtl Supersonic Wind Tunnel(M=1.5) 1912 Th.von K ’arman(1881-1963) K ’arman V ortex Street 1921 G.I.Taylor(1848-1951) Taylor ’s Vortices 1940 周培源(1902-1993) Modle Theory for Turbulent 1941 钱学森(1911-)& von K ’arman K ’arman-Tsien Formula 流体力学大事年表 公元前3世纪 阿基米德(287-212BC )发现浮力定律(阿基米德原理);发明 阿基米德螺旋提水机; 1644 托里拆里(E.Torricelli,1608-1647)制成气压计;导出小孔出 流公式;

相关文档
最新文档