Transverse Photon Spectrum from QGP Fluid

合集下载

英国“钻石”同步辐射光源(DIAMOND)

英国“钻石”同步辐射光源(DIAMOND)

英国“钻石”同步辐射光源(DIAMOND)2010-08-10 | 文章来源: | 浏览次数: 659 |【大中小】璀璨夺目的“钻石”光源英国第一台第三代同步辐射光源DIAMOND坐落于英国南牛津郡(South Oxfordshire)迪德科特镇(Didcot)。

它的名字来源有两种说法:一种说法是该项目的发起人迈克普尔(Mike Poole)由DIpole And Multipole Output for the Nation at Daresbury(国家在达斯伯里的偶极和多极输出)的缩写构思了DIAMOND这个名字;另一种说法是DIAMOND表达了同步辐射光既硬(指“硬”X射线的电磁波谱区)又明亮,就像“钻石”。

不管哪种说法更准确,与法国“太阳”光源(SOLEIL)相比,英国“钻石”光源(DIAMOND)的名字毫不逊色,DIAMOND 光源就像钻石那样璀璨夺目。

DIAMOND光源的紫外线和X射线具有远非常规光源可比的品质和亮度,其亮度为医用X光机的1千亿倍,科技工作者用它将能更深入地研究物质、材料及生物样品的基本结构。

利用同步辐射技术开展的科学实验,可望在生物技术、医学、环境和材料研究中取得突破性进展。

英国南牛津郡的迪德科特镇DIAMOND光源鸟瞰2002年,英国政府批准建造DIAMOND光源,其辐射能量及光束性能首先被优化为高能的欧洲同步光源ESRF的补充。

它的主要目标是生成高亮度、高强度的可调光源,建成英国第一的研究基地,开展不同学科领域交叉学科的研究。

DIAMOND是40多年来英国投资兴建的最重要的大科学装置和最大的民用科研基地,由英国科学和技术设施委员会STFC的中心实验室研究理事会CCLRC( Council for the Central Laboratory of the Research Councils)与英国最大的生物医学研究慈善机构——威康信托基金会(Wellcome Trust)共同建设,双方各投资86%和14%。

光电子技术作业解答

光电子技术作业解答

赖老师的课到期中考试为止一共有9次作业,依次分别由冯成坤、饶文涛、黄善津、刘明凯、郑致远、黄瑜、陈奕峰、周维鸥和陆锦洪同学整理,谨此致谢!作业一:1、桌上有一本书,书与灯至桌面垂直线的垂足相距半米。

若灯泡可上下移动,灯在桌上面多高时,书上照度最大?(假设 灯的发光强度各向通性,为I0) 解:设书的面积为dA ,则根据照度的定义公式:dAd I dA d E 0Ω==φ (1)其中Ωd 为上图所示的立体角。

因而有:2/32222)h (L hdA h L cos dA d +⋅=+⋅=Ωθ (2) 将(2)式代入(1)式得到:2/3220)h (L hI E += (3) 为求最大照度,对(3)式求导并令其等于零,0dhdE= 计算得:m 221h =因而,当高度为m 221时书上的照度最大。

2、设He-Ne 激光器中放电管直径为1mm ,发出波长为6328埃的激光束,全发散角为θ=10-3rad ,辐射通量为3mW ,视见函数取 V(6328)=0.24,求: (1)光通量,发光强度,沿轴线方向的亮度?(2)离激光器10米远处观察屏上照明区中心的照度?(3)若人眼只宜看一熙提的亮度,保护眼镜的透射系数应为多少? 解:(1)光通量:lm 49.010324.0638V K 3m v =⨯⨯⨯=Φ⋅⋅=Φ-θ 发光强度:cd 1024.64d d I 52vv ⨯≈Φ=ΩΦ=θπ 亮度:211235m /cd 1059.7)10(41024.6dAcos dI L ⨯≈⨯⨯==-πθ轴(2)由题意知,10米远处的照明区域直径为: m 101010L D 23--=⨯=⋅=θ从而照度为:lx 9.6238)10(4149.0D 4E 222v=⨯⨯=Φ=-ππ(3)透射率:81141026.11095.710L 1T -⨯≈⨯==轴(熙提)作业二1、说明蓝色火焰与黄色火焰的色温谁高,为什么? 答:色温是用黑体的温度来标度普通热辐射源的温度。

硕第二讲光合作用课件.ppt

硕第二讲光合作用课件.ppt
硕第二讲光合作用
蛋白复合体在类囊体膜上的分布特点
硕第二讲光合作用
蛋白复合体在类囊体膜上的分布特点
PSⅡ:主要基粒片 层的堆叠区 PSⅠ与ATPase: 非堆叠区 Cytb6/f复合体分 布较均匀。意义? ➢利于电子传递、 H+的转移和ATP 合成
硕第二讲光合作用
为什么说叶绿体不是光合作用的独立单位?
猝灭:由于某种原因引起荧光水平的降低. 光化学猝灭:光化学反应引起 非光化学猝灭:热耗散等
色素发射荧光的能量与用于光合作用的能量是相互竞争的, 这就是叶绿素荧光常常被认作光合作用效能指标的依据, 被认为是光合作用的内探针(无损伤)。
硕第二讲光合作用
以荧光形式发射出来的光能是很少的,还不到吸收 的总光能的3%。
硕第二讲光合作用
活体荧光诱导曲线应用
保水剂(Kg/cm2)对干旱胁迫下刺槐叶绿素a荧光动力 学参数的影响
硕第二讲光合作用
活体荧光诱导曲线应用(荧光日变化)
发生明显的光抑制
硕第二讲光合作用
活体荧光诱导曲线应用
发生明显的光抑制
硕第二讲光合作用
第三节 电子传递和光合磷酸化
一、电子传递:
1.光合链:
在弱的光下,光合机构吸收的光能大约97%被用于光 化学反应,2.5%转变成热散失,0.5%被变成荧光发射出来;
在很强的光下,全部PSII反应中心关闭时,吸收的 光能95%-97%被变成热,而2.5%-5.0%被变成荧光发射。
硕第二讲光合作用
叶绿素荧光分析
叶绿素荧光分析具有直观,测定手续简便,获得结果迅 速,反应灵敏,可以定量,对植物无破坏、干扰少的特点。
可以用于叶绿体、叶片,也可以遥感用于群体、群落。 它既是室内光合基础研究的先进工具,也是室外自然条件 下诊断植物体内光合机构运转状况、分析植物对逆境响应 机理的重要方法。

高斯谢尔模型光束在EIT原子气体中的传输特性研究

高斯谢尔模型光束在EIT原子气体中的传输特性研究
许森东 , 徐弼军 , 陆 璇 辉
( 1 . 浙江科技 学院 理 学院 , 浙江 杭 州 3 1 0 0 2 3 ; 2 . 浙 江大学 光 学所 , 浙江 杭 州 3 1 0 0 2 7 ) 摘 要 :为 了研 究高斯一 谢 尔模 型( GS M) 光 束在 电磁 感应透 明( E I T ) 材料 中的传 输特 性 , 利 用矩 阵光 学
e l e c t r o ma g n e t i c ll a y i n d u c e d t r a n s pa re n c y a t o mi c v a p o r ,t he a n a l y i t c a l e x p r e s s i o n wa s o b t a i n e d f o r t he
e x m p a l e s s h o w ha t t b o h t he t s p e c ra t l d e n s i t y a n d t h e s p e c ra t l d e g r e e o f c o h e r e n c e o f he t GS M b e m a c a n
i n d u c e d t ra n s p a r e n c y a t o mi c v a p o r b a s e d o n t he m a t r i x o p t i c s t he o r y, d i f f r a c i t o n i n t e g r a l t he o y a r nd
的调控 光传 输的 方法和技 术 , 同 时 该 发 现 也 为 控 制 部 分 相 干 光 的谱 密度 和 相 干 度 提 供 了一 种 新 方 法 。
关键 词 :电磁 感应 透 明 ; 拉 比频 率 ; 谱 密度 ; 谱 相 干度

稳定的高功率激光系统在高级引力波探测器中的应用

稳定的高功率激光系统在高级引力波探测器中的应用

Stabilized high-power laser system forthe gravitational wave detector advancedLIGOP.Kwee,1,∗C.Bogan,2K.Danzmann,1,2M.Frede,4H.Kim,1P.King,5J.P¨o ld,1O.Puncken,3R.L.Savage,5F.Seifert,5P.Wessels,3L.Winkelmann,3and B.Willke21Max-Planck-Institut f¨u r Gravitationsphysik(Albert-Einstein-Institut),Hannover,Germany2Leibniz Universit¨a t Hannover,Hannover,Germany3Laser Zentrum Hannover e.V.,Hannover,Germany4neoLASE GmbH,Hannover,Germany5LIGO Laboratory,California Institute of Technology,Pasadena,California,USA*patrick.kwee@aei.mpg.deAbstract:An ultra-stable,high-power cw Nd:Y AG laser system,devel-oped for the ground-based gravitational wave detector Advanced LIGO(Laser Interferometer Gravitational-Wave Observatory),was comprehen-sively ser power,frequency,beam pointing and beamquality were simultaneously stabilized using different active and passiveschemes.The output beam,the performance of the stabilization,and thecross-coupling between different stabilization feedback control loops werecharacterized and found to fulfill most design requirements.The employedstabilization schemes and the achieved performance are of relevance tomany high-precision optical experiments.©2012Optical Society of AmericaOCIS codes:(140.3425)Laser stabilization;(120.3180)Interferometry.References and links1.S.Rowan and J.Hough,“Gravitational wave detection by interferometry(ground and space),”Living Rev.Rel-ativity3,1–3(2000).2.P.R.Saulson,Fundamentals of Interferometric Gravitational Wave Detectors(World Scientific,1994).3.G.M.Harry,“Advanced LIGO:the next generation of gravitational wave detectors,”Class.Quantum Grav.27,084006(2010).4. B.Willke,“Stabilized lasers for advanced gravitational wave detectors,”Laser Photon.Rev.4,780–794(2010).5.P.Kwee,“Laser characterization and stabilization for precision interferometry,”Ph.D.thesis,Universit¨a t Han-nover(2010).6.K.Somiya,Y.Chen,S.Kawamura,and N.Mio,“Frequency noise and intensity noise of next-generationgravitational-wave detectors with RF/DC readout schemes,”Phys.Rev.D73,122005(2006).7. B.Willke,P.King,R.Savage,and P.Fritschel,“Pre-stabilized laser design requirements,”internal technicalreport T050036-v4,LIGO Scientific Collaboration(2009).8.L.Winkelmann,O.Puncken,R.Kluzik,C.Veltkamp,P.Kwee,J.Poeld,C.Bogan,B.Willke,M.Frede,J.Neu-mann,P.Wessels,and D.Kracht,“Injection-locked single-frequency laser with an output power of220W,”Appl.Phys.B102,529–538(2011).9.T.J.Kane and R.L.Byer,“Monolithic,unidirectional single-mode Nd:Y AG ring laser,”Opt.Lett.10,65–67(1985).10.I.Freitag,A.T¨u nnermann,and H.Welling,“Power scaling of diode-pumped monolithic Nd:Y AG lasers to outputpowers of several watts,”mun.115,511–515(1995).11.M.Frede,B.Schulz,R.Wilhelm,P.Kwee,F.Seifert,B.Willke,and D.Kracht,“Fundamental mode,single-frequency laser amplifier for gravitational wave detectors,”Opt.Express15,459–465(2007).#161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 1061712. A.D.Farinas,E.K.Gustafson,and R.L.Byer,“Frequency and intensity noise in an injection-locked,solid-statelaser,”J.Opt.Soc.Am.B12,328–334(1995).13.R.Bork,M.Aronsson,D.Barker,J.Batch,J.Heefner,A.Ivanov,R.McCarthy,V.Sandberg,and K.Thorne,“New control and data acquisition system in the Advanced LIGO project,”Proc.of Industrial Control And Large Experimental Physics Control System(ICALEPSC)conference(2011).14.“Experimental physics and industrial control system,”/epics/.15.P.Kwee and B.Willke,“Automatic laser beam characterization of monolithic Nd:Y AG nonplanar ring lasers,”Appl.Opt.47,6022–6032(2008).16.P.Kwee,F.Seifert,B.Willke,and K.Danzmann,“Laser beam quality and pointing measurement with an opticalresonator,”Rev.Sci.Instrum.78,073103(2007).17. A.R¨u diger,R.Schilling,L.Schnupp,W.Winkler,H.Billing,and K.Maischberger,“A mode selector to suppressfluctuations in laser beam geometry,”Opt.Acta28,641–658(1981).18. B.Willke,N.Uehara,E.K.Gustafson,R.L.Byer,P.J.King,S.U.Seel,and R.L.Savage,“Spatial and temporalfiltering of a10-W Nd:Y AG laser with a Fabry-Perot ring-cavity premode cleaner,”Opt.Lett.23,1704–1706 (1998).19.J.H.P¨o ld,“Stabilization of the Advanced LIGO200W laser,”Diploma thesis,Leibniz Universit¨a t Hannover(2009).20. E.D.Black,“An introduction to Pound-Drever-Hall laser frequency stabilization,”Am.J.Phys.69,79–87(2001).21.R.W.P.Drever,J.L.Hall,F.V.Kowalski,J.Hough,G.M.Ford,A.J.Munley,and H.Ward,“Laser phase andfrequency stabilization using an optical resonator,”Appl.Phys.B31,97–105(1983).22. A.Bullington,ntz,M.Fejer,and R.Byer,“Modal frequency degeneracy in thermally loaded optical res-onators,”Appl.Opt.47,2840–2851(2008).23.G.Mueller,“Beam jitter coupling in Advanced LIGO,”Opt.Express13,7118–7132(2005).24.V.Delaubert,N.Treps,ssen,C.C.Harb,C.Fabre,m,and H.-A.Bachor,“TEM10homodynedetection as an optimal small-displacement and tilt-measurement scheme,”Phys.Rev.A74,053823(2006). 25.P.Kwee,B.Willke,and K.Danzmann,“Laser power noise detection at the quantum-noise limit of32A pho-tocurrent,”Opt.Lett.36,3563–3565(2011).26. A.Araya,N.Mio,K.Tsubono,K.Suehiro,S.Telada,M.Ohashi,and M.Fujimoto,“Optical mode cleaner withsuspended mirrors,”Appl.Opt.36,1446–1453(1997).27.P.Kwee,B.Willke,and K.Danzmann,“Shot-noise-limited laser power stabilization with a high-power photodi-ode array,”Opt.Lett.34,2912–2914(2009).28. ntz,P.Fritschel,H.Rong,E.Daw,and G.Gonz´a lez,“Quantum-limited optical phase detection at the10−10rad level,”J.Opt.Soc.Am.A19,91–100(2002).1.IntroductionInterferometric gravitational wave detectors[1,2]perform one of the most precise differential length measurements ever.Their goal is to directly detect the faint signals of gravitational waves emitted by astrophysical sources.The Advanced LIGO(Laser Interferometer Gravitational-Wave Observatory)[3]project is currently installing three second-generation,ground-based detectors at two observatory sites in the USA.The4kilometer-long baseline Michelson inter-ferometers have an anticipated tenfold better sensitivity than theirfirst-generation counterparts (Inital LIGO)and will presumably reach a strain sensitivity between10−24and10−23Hz−1/2.One key technology necessary to reach this extreme sensitivity are ultra-stable high-power laser systems[4,5].A high laser output power is required to reach a high signal-to-quantum-noise ratio,since the effect of quantum noise at high frequencies in the gravitational wave readout is reduced with increasing circulating laser power in the interferometer.In addition to quantum noise,technical laser noise coupling to the gravitational wave channel is a major noise source[6].Thus it is important to reduce the coupling of laser noise,e.g.by optical design or by exploiting symmetries,and to reduce laser noise itself by various active and passive stabilization schemes.In this article,we report on the pre-stabilized laser(PSL)of the Advanced LIGO detector. The PSL is based on a high-power solid-state laser that is comprehensively stabilized.One laser system was set up at the Albert-Einstein-Institute(AEI)in Hannover,Germany,the so called PSL reference system.Another identical PSL has already been installed at one Advanced LIGO site,the one near Livingston,LA,USA,and two more PSLs will be installed at the second #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10618site at Hanford,WA,USA.We have characterized the reference PSL and thefirst observatory PSL.For this we measured various beam parameters and noise levels of the output beam in the gravitational wave detection frequency band from about10Hz to10kHz,measured the performance of the active and passive stabilization schemes,and determined upper bounds for the cross coupling between different control loops.At the time of writing the PSL reference system has been operated continuously for more than18months,and continues to operate reliably.The reference system delivered a continuous-wave,single-frequency laser beam at1064nm wavelength with a maximum power of150W with99.5%in the TEM00mode.The active and passive stabilization schemes efficiently re-duced the technical laser noise by several orders of magnitude such that most design require-ments[5,7]were fulfilled.In the gravitational wave detection frequency band the relative power noise was as low as2×10−8Hz−1/2,relative beam pointingfluctuations were as low as1×10−7Hz−1/2,and an in-loop measurement of the frequency noise was consistent with the maximum acceptable frequency noise of about0.1HzHz−1/2.The cross couplings between the control loops were,in general,rather small or at the expected levels.Thus we were able to optimize each loop individually and observed no instabilities due to cross couplings.This stabilized laser system is an indispensable part of Advanced LIGO and fulfilled nearly all design goals concerning the maximum acceptable noise levels of the different beam pa-rameters right after installation.Furthermore all or a subset of the implemented stabilization schemes might be of interest for many other high-precision optical experiments that are limited by laser noise.Besides gravitational wave detectors,stabilized laser systems are used e.g.in the field of optical frequency standards,macroscopic quantum objects,precision spectroscopy and optical traps.In the following section the laser system,the stabilization scheme and the characterization methods are described(Section2).Then,the results of the characterization(Section3)and the conclusions(Section4)are presented.ser system and stabilizationThe PSL consists of the laser,developed and fabricated by Laser Zentrum Hannover e.V.(LZH) and neoLASE,and the stabilization,developed and integrated by AEI.The optical components of the PSL are on a commercial optical table,occupying a space of about1.5×3.5m2,in a clean,dust-free environment.At the observatory sites the optical table is located in an acoustically isolated cleanroom.Most of the required electronics,the laser diodes for pumping the laser,and water chillers for cooling components on the optical table are placed outside of this cleanroom.The laser itself consists of three stages(Fig.1).An almostfinal version of the laser,the so-called engineering prototype,is described in detail in[8].The primary focus of this article is the stabilization and characterization of the PSL.Thus only a rough overview of the laser and the minor modifications implemented between engineering prototype and reference system are given in the following.Thefirst stage,the master laser,is a commercial non-planar ring-oscillator[9,10](NPRO) manufactured by InnoLight GmbH in Hannover,Germany.This solid-state laser uses a Nd:Y AG crystal as the laser medium and resonator at the same time.The NPRO is pumped by laser diodes at808nm and delivers an output power of2W.An internal power stabilization,called the noise eater,suppresses the relaxation oscillation at around1MHz.Due to its monolithic res-onator,the laser has exceptional intrinsic frequency stability.The two subsequent laser stages, used for power scaling,inherit the frequency stability of the master laser.The second stage(medium-power amplifier)is a single-pass amplifier[11]with an output power of35W.The seed laser beam from the NPRO stage passes through four Nd:YVO4crys-#161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10619power stabilizationFig.1.Pre-stabilized laser system of Advanced LIGO.The three-staged laser(NPRO,medium power amplifier,high power oscillator)and the stabilization scheme(pre-mode-cleaner,power and frequency stabilization)are shown.The input-mode-cleaner is not partof the PSL but closely related.NPRO,non-planar ring oscillator;EOM,electro-optic mod-ulator;FI,Faraday isolator;AOM,acousto-optic modulator.tals which are longitudinally pumped byfiber-coupled laser diodes at808nm.The third stage is an injection-locked ring oscillator[8]with an output power of about220W, called the high-power oscillator(HPO).Four Nd:Y AG crystals are used as the active media. Each is longitudinally pumped by sevenfiber-coupled laser diodes at808nm.The oscillator is injection-locked[12]to the previous laser stage using a feedback control loop.A broadband EOM(electro-optic modulator)placed between the NPRO and the medium-power amplifier is used to generate the required phase modulation sidebands at35.5MHz.Thus the high output power and good beam quality of this last stage is combined with the good frequency stability of the previous stages.The reference system features some minor modifications compared to the engineering proto-type[8]concerning the optics:The external halo aperture was integrated into the laser system permanently improving the beam quality.Additionally,a few minor designflaws related to the mechanical structure and the optical layout were engineered out.This did not degrade the output performance,nor the characteristics of the locked laser.In general the PSL is designed to be operated in two different power modes.In high-power mode all three laser stages are engaged with a power of about160W at the PSL output.In low-power mode the high-power oscillator is turned off and a shutter inside the laser resonator is closed.The beam of the medium-power stage is reflected at the output coupler of the high power stage leaving a residual power of about13W at the PSL output.This low-power mode will be used in the early commissioning phase and in the low-frequency-optimized operation mode of Advanced LIGO and is not discussed further in this article.The stabilization has three sections(Fig.1:PMC,PD2,reference cavity):A passive resonator, the so called pre-mode-cleaner(PMC),is used tofilter the laser beam spatially and temporally (see subsection2.1).Two pick-off beams at the PMC are used for the active power stabilization (see subsection2.2)and the active frequency pre-stabilization,respectively(see subsection2.3).In general most stabilization feedback control loops of the PSL are implemented using analog electronics.A real-time computer system(Control and Data Acquisition Systems,CDS,[13]) which is common to many other subsystems of Advanced LIGO,is utilized to control and mon-itor important parameters of the analog electronics.The lock acquisition of various loops,a few #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10620slow digital control loops,and the data acquisition are implemented using this computer sys-tem.Many signals are recorded at different sampling rates ranging from16Hz to33kHz for diagnostics,monitoring and vetoing of gravitational wave signals.In total four real-time pro-cesses are used to control different aspects of the laser system.The Experimental Physics and Industrial Control System(EPICS)[14]and its associated user tools are used to communicate with the real-time software modules.The PSL contains a permanent,dedicated diagnostic instrument,the so called diagnostic breadboard(DBB,not shown in Fig.1)[15].This instrument is used to analyze two different beams,pick-off beams of the medium power stage and of the HPO.Two shutters are used to multiplex these to the DBB.We are able to measurefluctuations in power,frequency and beam pointing in an automated way with this instrument.In addition the beam quality quantified by the higher order mode content of the beam was measured using a modescan technique[16].The DBB is controlled by one real-time process of the CDS.In contrast to most of the other control loops in the PSL,all DBB control loops were implemented digitally.We used this instrument during the characterization of the laser system to measure the mentioned laser beam parameters of the HPO.In addition we temporarily placed an identical copy of the DBB downstream of the PMC to characterize the output beam of the PSL reference system.2.1.Pre-mode-cleanerA key component of the stabilization scheme is the passive ring resonator,called the pre-mode-cleaner(PMC)[17,18].It functions to suppress higher-order transverse modes,to improve the beam quality and the pointing stability of the laser beam,and tofilter powerfluctuations at radio frequencies.The beam transmitted through this resonator is the output beam of the PSL, and it is delivered to the subsequent subsystems of the gravitational wave detector.We developed and used a computer program[19]to model thefilter effects of the PMC as a function of various resonator parameters in order to aid its design.This led to a resonator with a bow-tie configuration consisting of four low-loss mirrors glued to an aluminum spacer. The optical round-trip length is2m with a free spectral range(FSR)of150MHz.The inci-dence angle of the horizontally polarized laser beam is6◦.Theflat input and output coupling mirrors have a power transmission of2.4%and the two concave high reflectivity mirrors(3m radius of curvature)have a transmission of68ppm.The measured bandwidth was,as expected, 560kHz which corresponds to afinesse of133and a power build-up factor of42.The Gaussian input/output beam had a waist radius of about568µm and the measured acquired round-trip Gouy phase was about1.7rad which is equivalent to0.27FSR.One TEM00resonance frequency of the PMC is stabilized to the laser frequency.The Pound-Drever-Hall(PDH)[20,21]sensing scheme is used to generate error signals,reusing the phase modulation sidebands at35.5MHz created between NPRO and medium power amplifier for the injection locking.The signal of the photodetector PD1,placed in reflection of the PMC, is demodulated at35.5MHz.This photodetector consists of a1mm InGaAs photodiode and a transimpedance amplifier.A piezo-electric element(PZT)between one of the curved mirrors and the spacer is used as a fast actuator to control the round-trip length and thereby the reso-nance frequencies of the PMC.With a maximum voltage of382V we were able to change the round-trip length by about2.4µm.An analog feedback control loop with a bandwidth of about 7kHz is used to stabilize the PMC resonance frequency to the laser frequency.In addition,the electronics is able to automatically bring the PMC into resonance with the laser(lock acquisition).For this process a125ms period ramp signal with an amplitude cor-responding to about one FSR is applied to the PZT of the PMC.The average power on pho-todetector PD1is monitored and as soon as the power drops below a given threshold the logic considers the PMC as resonant and closes the analog control loop.This lock acquisition proce-#161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10621dure took an average of about65ms and is automatically repeated as soon as the PMC goes off resonance.One real-time process of CDS is dedicated to control the PMC electronics.This includes parameters such as the proportional gain of the loop or lock acquisition parameters.In addition to the PZT actuator,two heating foils,delivering a maximum total heating power of14W,are attached to the aluminum spacer to control its temperature and thereby the roundtrip length on timescales longer than3s.We measured a heating and cooling1/e time constant of about2h with a range of4.5K which corresponds to about197FSR.During maintenance periods we heat the spacer with7W to reach a spacer temperature of about2.3K above room temperature in order to optimize the dynamic range of this actuator.A digital control loop uses this heater as an actuator to off-load the PZT actuator allowing compensation for slow room temperature and laser frequency drifts.The PMC is placed inside a pressure-tight tank at atmospheric pressure for acoustic shield-ing,to avoid contamination of the resonator mirrors and to minimize optical path length changes induced by atmospheric pressure variations.We used only low-outgassing materials and fabri-cated the PMC in a cleanroom in order to keep the initial mirror contamination to a minimum and to sustain a high long-term throughput.The PMCfilters the laser beam and improves the beam quality of the laser by suppress-ing higher order transverse modes[17].The acquired round-trip Gouy phase of the PMC was chosen in such a way that the resonance frequencies of higher order TEM modes are clearly separated from the TEM00resonance frequency.Thus these modes are not resonant and are mainly reflected by the PMC,whereas the TEM00mode is transmitted.However,during the design phase we underestimated the thermal effects in the PMC such that at nominal circu-lating power the round-trip Gouy-phase is close to0.25FSR and the resonance of the TEM40 mode is close to that of the TEM00mode.To characterize the mode-cleaning performance we measured the beam quality upstream and downstream of the PMC with the two independent DBBs.At150W in the transmitted beam,the circulating power in the PMC is about6.4kW and the intensity at the mirror surface can be as high as1.8×1010W m−2.At these power levels even small absorptions in the mirror coatings cause thermal effects which slightly change the mirror curvature[22].To estimate these thermal effects we analyzed the transmitted beam as a function of the circulating power using the DBB.In particular we measured the mode content of the LG10and TEM40mode.Changes of the PMC eigenmode waist size showed up as variations of the LG10mode content.A power dependence of the round-trip Gouy phase caused a variation of the power within the TEM40mode since its resonance frequency is close to a TEM00mode resonance and thus the suppression of this mode depends strongly on the Gouy phase.We adjusted the input power to the PMC such that the transmitted power ranged from100W to 150W corresponding to a circulating power between4.2kW and6.4kW.We used our PMC computer simulation to deduce the power dependence of the eigenmode waist size and the round-trip Gouy phase.The results are given in section3.1.At all circulating power levels,however,the TEM10and TEM01modes are strongly sup-pressed by the PMC and thus beam pointingfluctuations are reduced.Pointingfluctuations can be expressed tofirst order as powerfluctuations of the TEM10and TEM01modes[23,24].The PMC reduces thefield amplitude of these modes and thus the pointingfluctuations by a factor of about61according to the measuredfinesse and round-trip Gouy phase.To keep beam point-ingfluctuations small is important since they couple to the gravitational wave channel by small differential misalignments of the interferometer optics.Thus stringent design requirements,at the10−6Hz−1/2level for relative pointing,were set.To verify the pointing suppression effect of the PMC we used DBBs to measure the beam pointingfluctuations upstream and downstream #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10622Fig.2.Detailed schematic of the power noise sensor setup for thefirst power stabilizationloop.This setup corresponds to PD2in the overview in Fig.1.λ/2,waveplate;PBS,polar-izing beam splitter;BD,glassfilters used as beam dump;PD,single element photodetector;QPD,quadrant photodetector.of the PMC.The resonator design has an even number of nearly normal-incidence reflections.Thus the resonance frequencies of horizontal and vertical polarized light are almost identical and the PMC does not act as polarizer.Therefore we use a thin-film polarizer upstream of the PMC to reach the required purity of larger than100:1in horizontal polarization.Finally the PMC reduces technical powerfluctuations at radio frequencies(RF).A good power stability between9MHz and100MHz is necessary as the phase modulated light in-jected into the interferometer is used to sense several degrees of freedom of the interferometer that need to be controlled.Power noise around these phase modulation sidebands would be a noise source for the respective stabilization loop.The PMC has a bandwidth(HWHM)of about 560kHz and acts tofirst order as a low-passfilter for powerfluctuations with a-3dB corner frequency at this frequency.To verify that the suppression of RF powerfluctuations is suffi-cient to fulfill the design requirements,we measured the relative power noise up to100MHz downstream of the PMC with a dedicated experiment involving the optical ac coupling tech-nique[25].In addition the PMC serves the very important purpose of defining the spatial laser mode for the downstream subsystem,namely the input optics(IO)subsystem.The IO subsystem is responsible,among other things,to further stabilize the laser beam with the suspended input mode cleaner[26]before the beam will be injected into the interferometer.Modifications of beam alignment or beam size of the laser system,which were and might be unavoidable,e.g., due to maintenance,do not propagate downstream of the PMC tofirst order due to its mode-cleaning effect.Furthermore we benefit from a similar isolating effect for the active power and frequency stabilization by using the beams transmitted through the curved high-reflectivity mirrors of the PMC.2.2.Power stabilizationThe passivefiltering effect of the PMC reduces powerfluctuations significantly only above the PMC bandwidth.In the detection band from about10Hz to10kHz good power stability is required sincefluctuations couple via the radiation pressure imbalance and the dark-fringe offset to the gravitational wave channel.Thus two cascaded active control loops,thefirst and second power stabilization loop,are used to reduce powerfluctuations which are mainly caused by the HPO stage.Thefirst loop uses a low-noise photodetector(PD2,see Figs.1and2)at one pick-off port #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10623of the PMC to measure the powerfluctuations downstream of the PMC.An analog electronics feedback control loop and an AOM(acousto-optic modulator)as actuator,located upstream of the PMC,are used to stabilize the power.Scattered light turned out to be a critical noise source for thisfirst loop.Thus we placed all required optical and opto-electronic components into a box to shield from scattered light(see Fig.2).The beam transmitted by the curved PMC mirror has a power of about360mW.This beam isfirst attenuated in the box using aλ/2waveplate and a thin-film polarizer,such that we are able to adjust the power on the photodetectors to the optimal operation point.Afterwards the beam is split by a50:50beam splitter.The beams are directed to two identical photode-tectors,one for the control loop(PD2a,in-loop detector)and one for independent out-of-loop measurements to verify the achieved power stability(PD2b,out-of-loop detector).These pho-todetectors consist of a2mm InGaAs photodiode(PerkinElmer C30642GH),a transimpedance amplifier and an integrated signal-conditioningfilter.At the chosen operation point a power of about4mW illuminates each photodetector generating a photocurrent of about3mA.Thus the shot noise is at a relative power noise of10−8Hz−1/2.The signal conditioningfilter has a gain of0.2at very low frequencies(<70mHz)and amplifies the photodetector signal in the im-portant frequency range between3.3Hz and120Hz by about52dB.This signal conditioning filter reduces the electronics noise requirements on all subsequent stages,but has the drawback that the range between3.3Hz and120Hz is limited to maximum peak-to-peak relative power fluctuations of5×10−3.Thus the signal-conditioned channel is in its designed operation range only when the power stabilization loop is closed and therefore it is not possible to measure the free running power noise using this channel due to saturation.The uncoated glass windows of the photodiodes were removed and the laser beam hits the photodiodes at an incidence angle of45◦.The residual reflection from the photodiode surface is dumped into a glassfilter(Schott BG39)at the Brewster angle.Beam positionfluctuations in combination with spatial inhomogeneities in the photodiode responsivity is another noise source for the power stabilization.We placed a silicon quadrant photodetector(QPD)in the box to measure the beam positionfluctuations of a low-power beam picked off the main beam in the box.The beam parameters,in particular the Gouy phase,at the QPD are the same as on the power sensing detectors.Thus the beam positionfluctuations measured with the QPD are the same as the ones on the power sensing photodetectors,assuming that the positionfluctuations are caused upstream of the QPD pick-off point.We used the QPD to measure beam positionfluctuations only for diagnostic and noise projection purposes.In a slightly modified experiment,we replaced one turning mirror in the path to the power sta-bilization box by a mirror attached to a tip/tilt PZT element.We measured the typical coupling between beam positionfluctuations generated by the PZT and the residual relative photocurrent fluctuations measured with the out-of-the-loop photodetector.This coupling was between1m−1 and10m−1which is a typical value observed in different power stabilization experiments as well.We measured this coupling factor to be able to calculate the noise contribution in the out-of-the-loop photodetector signal due to beam positionfluctuations(see Subsection3.3).Since this tip/tilt actuator was only temporarily in the setup,we are not able to measure the coupling on a regular basis.Both power sensing photodetectors are connected to analog feedback control electronics.A low-pass(100mHz corner frequency)filtered reference value is subtracted from one signal which is subsequently passed through several control loopfilter stages.With power stabilization activated,we are able to control the power on the photodetectors and thereby the PSL output power via the reference level on time scales longer than10s.The reference level and other important parameters of these electronics are controlled by one dedicated real-time process of the CDS.The actuation or control signal of the electronics is passed to an AOM driver #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10624。

地球物理专业英语常用单词

地球物理专业英语常用单词

raypath:射线路径ray tracing:射线追踪real time:实时record section记录剖面reflection coefficient:反射系数reflection survey:反射法勘探refraction:折射refraction survey:折射法勘探refraction wave:折射波:residual normal moveout:剩余正常时差reverberation:交混回响reverse migration:逆偏移Ricker wavelet:雷克子波rms velocity均方根速度R-wave:瑞雷波。

scattering:散射secondary wave次波SEG A,SEG B,or SEG C 标准磁带格式seismic:地震的seismic discontinuity:地震不连续面seismic-electric effect:震电效应seismic survey:地震勘探seismogram:震相图seismograph: 地震仪,地震检波器seismologist:地震学家,地震工作者seismology地震学shear modulus:剪切模量shear wave:剪切波shotpoint:炮点shotpoint gap:炮点间隙S/N:信噪比。

Snell's law:斯奈尔定律sparker: 电火花震源spherical divergence 球面扩散stack叠加Ground mixing地面混波Instrument mixing 仪器混波Vertical stacking 垂直叠加Uphole stacking井口时间叠加Common-depth-point(CDP) stacking共深度点叠加Common-offset stacking 同炮检距叠加Velocity filtering 速度滤波Coherency filtering / Auto-picking 相干滤波/自动拾取D iversity stacking 相异叠加Automigrating自动偏移stacking velocity:叠加速度Stoneley wave:斯通利波streamer:海上拖缆S-wave:S-波synthetic seismogram:合成地震记录tangential wave:切向波trace equalization:道均衡trace gather:道选排,道集trace integration:道积分,道综合transformed wave:变换波trough:波谷velocity analysis:速度分析velocity filter:速度滤波velocity inversion: 速度反转velocity spectrum:速度谱velocity survey 速度测量wave equation:波动方程wave form:波形wavefront:波阵面wave impedance:波阻抗wide-angle reflection:广角反射Young's modulus:杨氏模量zero-phase:零相位Zoeppritz's equations:佐普里兹方程acoustic log 声波测井amplitude log:声幅测井borehole gravimeter:井下重力仪borehole log 测井曲线calibrate 校正densilog密度测井density log:密度测井dip log地层倾角测井dipmeter地层倾角测井electrical log:电测井gamma-gamma log:伽马-伽马测井gamma-ray log:γ射线测井induction log:感应测井microlog微电阻率测井neutron log:中子测井radioactivity log:放射性测井sonic log:声波测井spectral log 能谱测井velocity log:声速测井well log:钻井记录,测井Ampere’s law:安培定律angular frequency:角频率Anomaly:异常anticline:背斜array:排列autocorrelation:自相关background:背景值band-limited function:频截函数band-pass:带通band-reject filter:带阻滤波器bandwidth:带宽base of weathering:低速带底面boundary condition:边界条件boundary-value problem:边值问题byte:字节characteristic value:Eigenvalue特性值/特征值Complex number 复数contour:等值线contour interval:等值线间隔convolution:褶积crust:地壳curl:旋度db:Decibel.分贝。

卫星海洋学

海洋遥感技术1、选择填空(20分)2、名词解释(8个*2=16分)3、简答题(5道,40分)4、计算题、综合题。

计算题好像说是一道题,分值老师讲的不是很清楚,我也听不清楚。

一、填空题1、传感器的扫描方式:交叉轨道扫描,推扫式扫描,混合式扫描,圆锥式扫描等。

2、(第四章)1997年美国发射的装载着宽视场海洋观测传感器SeaWiFS的SeaStar 卫星,SeaStar卫星的循环周期(recurrent period)是③,传感器SeaWiFS完成全球覆盖的重复周期为②,每个重复周期(repeat period)包含29个轨道周期,每个轨道周期(orbit period)为1.648小时。

在低纬度地区,SeaWiFS 的再访问时间(revisit period)是②;在高纬度地区,SeaWiFS的再访问时间(revisit period)是①。

(选择:①1天;②2天;③16天;④35天)3、(第八章)MODIS热红外通道辐亮度L i通过__③___ 与该通道的黑体温度T i相联系;MODIS热红外通道的黑体温度T i通过__④___ 与海表面温度相联系。

(选择:①基尔霍夫定律,②经验公式,③普朗克定律,④瑞利-金斯定律)4、(第九章)平静海面的微波亮温T通过_④+⑤__ 与海面发射率e相联系,海面发射率e通过__①__ 与菲涅耳反射率ρ相联系,菲涅耳反射率ρ通过__②__ 与相对电容率εr相联系,相对电容率εr 通过__③__ 与海表面温度和盐度相联系。

(选择:①基尔霍夫定律,②菲涅耳公式,③德拜方程,④瑞利-金斯定律,⑤发射率定义)5、(第九章)天线的半功率波束宽度与_②_成正比,与_①_成反比。

(选择:①天线的孔径D,②电磁波的波长λ,③观测的天顶角)6、(第九章)微波辐射计SSM/I反演风速的两种算法(包括SSM/I-GSW算法和SSM/I-GSWP算法)在风速小于15m/s条件下反演精度达到_①_。

[指南]专业词汇(天体物理)

专业词汇(天体物理)1、Galactic background γ-ray radiation 银河γ背景辐射2、active galactic nuclei 活动星系核3、radio survey 射电巡天4、ultraviolet fluxes 紫外流量5、Roche-lobe overflow 洛希瓣超流6、abnormal redshift 反常红移7、absorption cross section 吸收截面8、acceleration mechanism 加速机制9、general electric synchrotron 广义电同步加速10、screening effect 屏蔽效应11、visible spectrum 可见光谱12、celestial matter 宇宙物质13、broad emission-line 宽发射线14、narrow emission-line 窄发射线15、planetary nebulae 行星状星云16、isotropic antenna 各向同性天线17、Seyfert galaxy 赛弗特星系18、ultraviolet continuum 紫外连续谱19、bolometric luminosity 光度20、variable time scale 可变时标21、continuum emission 连续辐射22、power law 幂率23、non-thermal 非热24、blazar spectra blazar光谱25、polarization 偏振26、doppler broadened 多普勒展宽27、碰撞激发 collisional excitation28、photoionization 光致电离29、horizon of the universe 宇宙视界30、Coulomb collision 库仑碰撞31、Coulomb coupling 库仑耦合32、Born approximation 玻恩近似33、absolute magnitude 绝对星等34、absolute parallax 绝对视差35、overmassive object 超大质量天体36、gravitational wave 引力波37、gravitational-wave astronomy 引力波天文学38、error distribution 误差分布39、chromatic aberration 色差40、characteristic function 特征函数41、CGRO 康普顿γ射线天文台(Compton Gamma-Ray Observatory)42、central lobe 中心瓣43、Rayleigh criterion 瑞利判据44、Rayleigh limit 瑞利极限45、quasi-stellar object 类星体(QSO)46、quiescent radiation 宁静辐射47、quiescent spectrum 宁静光谱48、radial-velocity survey 视向速度巡天49、absorption frequency 吸收频率50、background radiation 背景辐射51、light illumination 光照度52、radiant power 辐射功率53、anisotropic medium 各向异性介质54、plasma jet instability 各向异性等离子体喷流不稳定性55、cosmic rays 宇宙线56、Zeeman effect 塞曼效应57、annihilation radiation 湮灭辐射58、radiometric magnitude 辐射星等59、proton flux 质子流量60、Abell cluster 阿贝尔星系团61、autocorrelation coefficient 自相关系数62、dark matter 暗物质63、Maxwellion distribution 麦克斯韦分布64、black hole binary 黑洞双星65、blanketing factor 覆盖因子66、radio galaxy 射电星系67、Cauchy's dispersion formula 柯西色散公式68、intergalactic medium 星系际介质69、shock wave 激波70、background Compton scattering 背景康普顿散射71、dark energy 暗能量72、multiple galaxy 多重星系73、current density 流密度74、thermodynamic equilibrium 热动平衡75、thermal excitation 热激发76、synchrotron radiation 同步加速辐射77、synchro-cyclotron radiation 同步-回旋加速辐射78、center of curvature 曲率中心79、super-relativistic effect 极端相对论性效应80、active binary 活动双星81、compact binary 致密双星82、compact galaxy nucleus 致密星系核83、supernova explosion 超新星爆发84、supernova ejecta 超新星喷射物85、deflection angle 偏转角86、cosmic noise absorption 宇宙噪声吸收87、string theory 宇宙弦理论88、stripped plasma 全电离等离子体89、close binary star 密近双星90、stellar-mass black hole 恒星质量黑洞91、ultraviolet radiation 紫外辐射92、aberration 光行差93、spontaneous emission 自发发射94、curvature radiation 曲率辐射95、spontaneous transition 自发跃迁96、peculiar spectrum 特殊光谱97、particle horizon 粒子视界98、stimulated radiation 受激辐射99、stimulated emission 受激发射100、circular polarization 圆偏振101、damping radiation 阻尼辐射102、spherical harmonics 球谐函数103、parity nonconservation 宇称不守恒104、drifting zebras 漂移带105、parallax second 秒差距(parsec) (pc)106、geometric aberration 几何象差107、electric multipole radiation 电多极辐射108、Voigt effect 佛克特效应109、monotonic model 单调宇宙模型110、isochronous correspondence 等时对应111、gas nebula 气体星云112、cepheid parallax 造父视差113、diffusion equation 扩散方程114、advancing shock front 前进激波前115、advection dominated accretion 径移吸积流116、spherical potential 球对称势117、luminous emittance 发光度118、cosmic gusher 宇宙喷射源119、microwave background 微波背景120、herpolhode 空间极迹121、heat of desorption 退吸热122、termination shock 终端激波123、very hard binary 甚硬双星124、weak turbulence theory 弱湍流理论125、nova-like X-ray source 类新星 X 射线源126、longitudinal chromatic aberration 纵向色差127、statistical equilibrium 统计平衡128、Compton cross-section 康普顿截面129、irregular nebula 不规则星云130、stellar astrophysics 恒星天体物理131、background radiation intensity 背景辐射强度132、optical binary 光学双星133、astronomical coordinate system 天文坐标系统134、orbital inclination 轨道倾角135、critical mass 临界质量136、Kerr-Newman black hole 克尔-纽曼黑洞137、Kerr-Newman metric 克尔-纽曼度规138、chromatism 色差139、reflection at critical angle 临界角反射140、source brightness distribution 源亮度分布141、Laplace's nebular hypothesis 拉普拉斯星云假说142、photoionized plasma 光电离等离子体143、photoluminescence 光致发光144、relaxation time 弛豫时间145、cross-correlation function 互相关函数146、relaxed cluster 驰豫星团147、disk-like structure 盘状结构148、fast-spinning black hole 快自旋黑洞149、Fermi Gamma-ray Space Telescope 费米γ射线空间望远镜150、time reversal 时间反演。

晶体光学课后习题答案

第一章1、为什么一轴晶光率体所有椭圆切面上都有No?二轴晶光率体任意切面上是否都有Nm?在哪些切面上才有Nm?(P15)答:一轴晶光率体是以Ne轴为旋转轴的旋转椭球体,所有斜交光轴的切面都与圆切面相交,因此,所有斜交光轴的椭圆切面的长、短半径中必有一个是主轴No。

否。

(1)垂直光轴OA切面(2)垂直锐角等分线Bxa切面(3)垂直钝角等分线Bxo切面(4)垂直光轴面NgNp的斜交切面2、怎样定义一轴晶光率体的光性符号?(P14)怎样定义二轴晶光率体的光性符号?(P20)答:一轴晶光率体只要比较出Ne′、No的相对大小即可确定出矿物的光性符号。

因为一轴正晶Ne>Ne′>No,一轴负晶Ne<Ne′<No,即只要确定出No<Ne′,则矿物光性符号1、要测定矿物的轴性和光性符号,应该选择在正交偏光下干涉色最高的切面。

(×)2、2、在同一岩石薄片中,同种矿物不同方向的切面上,其干涉色不同。

(√)3、3、对于一轴晶矿物来说,其延性和光性总是一致的。

(√)4、4、两非均质体矿片在正交镜间的45°位重迭,当异名半径平行时,因总光程差为零而使矿片变黑暗的现象,称为消色。

(√)5、5、贝克线的移动规律是下降物台,贝克线总是向折射率大的物质移动。

(√)6、6、二轴晶光率体,当Np>Nm>Ng时,为负光性。

(×)7、7、矿物的多色性在垂直光轴的切面上最不明显。

(√)8、8、一轴晶光率体的旋转轴永远是Ne轴。

(√)9、9、某矿物的最高干涉色为Ⅱ级紫红,因此该矿物的某些切面可能出现Ⅰ级紫红。

(√)10、10、一轴晶平行光轴切面的干涉图与二轴晶平行光轴面切面的干涉图特点完全一样,在轴性明确的情况下也不能用作光性正负的测定。

(×)为正,No>Ne′则矿物光性符号为负。

二轴晶光率体必须确定Bxa方向是Ng轴还是Np轴:若Bxa=Ng(Bxo=Np),则光性符号为正;若Bxa=Np(Bxo=Ng),则光性符号为负。

B10_波粒二象性


1913年,丹麦物理学家玻尔 年 丹麦物理学家玻尔 物理学家 (Bohr)在Ruthorford原子核模 在 原子核模 型的基础上, 型的基础上,应用量子化的概 解释了氢原子光谱. 念解释了氢原子光谱.1922年 年 Nobel Prize. 1924 年 , 法 国 物 理 学 家 德 布 罗 意 (de Broglie)提出 实物粒子也具有波动性的假 提出实物粒子也具有波动性 的假 提出 实物粒子也具有波动性 物质具有波粒二象性是建立量子力学 设.物质具有波粒二象性是建立量子力学 的一个基本出发点. 的一个基本出发点.1929年Nobel Prize. 年 1927年, 戴维孙 年 戴维孙(C.J.Davisson)和革末 和 革末(L.H.Germer)通 通 过镍单晶体表面对电子束的散射, 观测到和X光衍射 过镍单晶体表面对电子束的散射 , 观测到和 光衍射 类似的电子衍射现象;同年,汤姆孙(G.P.Thomson)用 类似的电子衍射现象;同年,汤姆孙 用 电子束通过多晶薄膜,证实了电子的波动性. 电子束通过多晶薄膜 , 证实了电子的波动性 .1937年 年 Nobel Prize.
任何物体( 任何温度下都有热 任何物体 ( 气 , 液 , 固 ) 在 任何温度 下都有热 连续延伸到紫外区 辐射,波长自远红外区连续延伸到紫外区. 辐射,波长自远红外区连续延伸到紫外区. 热辐射波谱是连续谱,各种波长都有. 热辐射波谱是连续谱,各种波长都有. 连续谱 但不同波长成分在不同温度下辐射强度不同. 但不同波长成分在不同温度下辐射强度不同. 温度↑ 辐射中短波长的电磁波的比例↑ 温度↑ → 辐射中短波长的电磁波的比例↑ 几种温度下辐射最强的电磁波颜色 1000K 1200K 1400K 800K 低温物体发出的是红外光 红外光, 低温物体发出的是红外光, 炽热物体发出的是可见光, 炽热物体发出的是可见光, 可见光 极高温物体发出的是紫外光. 极高温物体发出的是紫外光. 紫外光
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :n u c l -t h /9704010v 2 8 A p r 1997TWC-97-1Transverse Photon Spectrum from QGP FluidTetsufumi Hirano,Shin Muroya ∗,and Mikio NamikiDepartment of Physics,Waseda University,Tokyo 169∗Tokuyama Women’s College,Tokuyama,Yamaguchi 754AbstractWe calculate the thermal photon distribution from the hot QCD matter pro-duced by high energy nuclear collisions based on a hydrodynamical model,and compare it with the recent experimental data obtained by CERN WA80.Through the asymptotic value of the slope parameter of the transverse momentum distribu-tion,we investigate the characteristic temperature of the QCD fluid.IntroductionSince the thermal photon is considered to keep the information about the early stage of the hot matter produced by relativistic nuclear collisions,many theoretical analyses have already been done.Many groups [5]have analyzed the experimental data of CERN WA80S+Au 200GeV/nucleon [7]so as to fit their theoretical model to the thermal photon emission data.In this paper we analyze the photon and the hadron distribution produced by the hot QCD matter in a consistent way [1]:1.We first choose parameters in the hydrodynamical model so as to reproduce the hadronic spectrum,i.e.,the (pseudo-)rapidity distribution and the transverse mo-mentum distribution.2.We derive the thermal production rate of photons from a unit space-time volume based on the finite temperature field theory.3.Accumulating the thermal production rate,over the whole space-time region covered with the particle source,which is estimated by the hydrodynamical model,we eval-uate the thermal photon distribution which is to be compared with the experimental data.Hydrodynamical Model and Hadronic SpectrumIn a previous paper [3],by making use of the following two models:I)the QGP fluid model with phase transition,I I)the hot hadron gas model without phase transition,we have analyzed the pseudo-rapidity distribution of charged hadrons in S+Au 200GeV/nucleon collision obtained by CERN WA80[6].Where we supposed that the fluid in the QGP phase is dominantly composed of u-,d-,s-quarks and gluons and that the fluid in the hadron phase is dominantly composed of pions and kaons.According to the previous analysis [3],we here use the first model (the QGP fluid model with phase transition)specified by the initial temperature T i =195MeV,the critical temperature T c =160MeV,and the freeze-out temperature T f =140MeV,and the second model (the hot hadron gas model without phase transition)specified by T i =400MeV and T f =140MeV.For these models,we obtain theoretical results of the hadronic spectrum.From Fig.1and Fig.2,we observe that the both models can consistently reproduce the experimental data [3].c h 020406080100120140160180-2-11234S+Au 200 GeV/A data from WA80phase transition model hot hadron gas modelηd ηd N Figure 1:The pseudo-rapidity distri-bution of charged hadrons in S+Au 200GeV/nucleon collision.Data form CERN WA80.The solid curve and the dashed curve stand for,respectively,the QGP phase transition model and the hot hadron gas model.)S+Au 200 GeV/A data from WA8060 % of the azimuth in 2.1<y <2.9phase transition model hot hadron gas model10101010-12-3-6-90.51 1.52 2.53 3.54(GeV)Tp d N π0p Td p T 1(Me V -2Figure 2:The transverse momentum dis-tribution of neutral pions in S+Au 200GeV/nucleon collision.Data was obtained by CERN WA80.The solid curve and the dashed curve stand for,respectively,the QGP phase transition model and the hot hadron gas model.Thermal Production Rate of PhotonsAssuming that a certain mode is dominantly excited in a local equilibrium system of the hot QCD matter and that the canonical operator of that mode obeys the quantum Langevin equation [2],we can easily derive thermal production rate semi-phenomenologicaly.In Fig.3we compare the numerical result of our semi-phenomenological production rate with another result obtained by Kapusta et al.[4,1].Integrating the production rate from a volume element R (T )over the whole space-time volume in which the particle source exists,we obtain momentum distributionsk 0d 3Ndk ′3k ′0=U µ(x )k µ,(1)which are to be compared with experimental data.Here temperature T (x )and local four velocity U µ(x )at space-time point x are given by the numerical solution of the hydrody-namical model.Figure 4shows the numerical results of Eq.(1)compared with the recent experimental data (S+Au 200GeV/nucleon collision)obtained by CERN WA80[7].The solid curve and the dotted curve are,respectively,the whole thermal photon distribution given by our QGP fluid model and the contribution of the QGP phase region only.In the case of the QGP fluid with phase transition model,our result in Fig.4seems consistent with the experimental data of WA80.The dashed curve stands for the photon distribution given by our hot hadron gas model.The dashed curve deviates from the experimental data in both absolute value and slope.(G e V 1001201401601802001010101010d k T(MeV)-3-4-5-6-7our numerical result Kapusta et al.d R -1)f m -4k =1.0 G e V Figure 3:The production rate as a functionof temperature .The solid curve stands forour phase transition model and the dashedcurve for the production rate calculated in Ref.[4].The critical temperature T c =160MeV.k -7-6-5-4-3-2-100.51 1.52 2.53 3.51010101010101010(G e V -2)d 3N d 3kk T(GeV)phase transition model hot hadron gas model QGP phase only upper limitsby WA80given 0110102S+Au 200 GeV/A data from WA800Figure 4:The single photon spectrum in S+Au 200GeV/nucleon collision.Effective temperatureIn order to pick up the most dominant contribution to the transverse momentum distribution,we can rewrite the thermal factor asexp(−k µU µ√T)=exp(−k T1−v 2L1+v T1−v 2L1+v TTable1:The maximum T eff in our hydrodynamical simulation,and the slope parameters T s at k T=20GeV.Model v T T eff(MeV)QGPfluid(QGP phase)0.53280.8157.50.11273.5400.00.0397.0。

相关文档
最新文档