北京市西城区2014年中考二模数学试卷及答案
【2014西城高三二模】北京市西城区2014届高三二模试卷 数学理

北京市西城区2014年高三二模试卷数学(理科) 2014.5第I 卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ).A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞2.在复平面内,复数2(12i)z =+对应的点位于( ).A . 第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线,则双曲线C 的离心率是( ).A .5B .52C .3D .324.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ). A . 2A ∈,且4A ∈ B .2A ∈,且4A ∈C . 2A ∈,且25A ∈D .2A ∈,且17A ∈5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是( ).A .1B .2C .π2D .π7.在平面直角坐标系xOy中,不等式组0,0,80xyx y⎧⎪⎨⎪+-⎩………所表示的平面区域是α,不等式组04,010xy⎧⎨⎩剟剟所表示的平面区域是β.从区域α中随机取一点(,)P x y,则P为区域β内的点的概率是().A.14B.35C.34D.158.设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论: ①()x Ω的最大值为2;②()()x y Ω+Ω的取值范围是[2,22]; ③()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ). A .①B .②③C .①②D .①②③第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.61()x x+的二项展开式中,常数项为_________.10.在ABC V 中,若14,3,cos 3a b A ===,则sin A =______,B =______.11.如图,AB 和CD 是圆O 的两条弦,AB 与CD 相交于点E ,且4,:4:1C E D E A E B E ===,则AE =_______;ACBD=______.12.执行如图所示的程序框图,输出的a 值为_________.13.设抛物线2:4C y x =的焦点为,F M 为抛物线C 上一点,(2,2)N ,则MF M N +的取值范围为_________.14.已知f 是有序数对集合**{(,)|,}M x y x y =∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =,对于任意的正整数,()m n m n >,映射f 由下表给出:(,)x y (,)n n (,)m n (,)n m(,)f x yn m n - m n +则(3,5)f =_______,使不等式(2,)4x f x …成立的x 集合是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在平面直角坐标系xOy中,点(cos,2sin),(sin,0)A Bθθθ,其中θ∈R.(I)当2π3θ=,求向量ABuu u r的坐标;(II)当π[0,]2θ∈时,求ABuu u r的最大值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B两班中各抽5名学生进行视力检测.检测的数据如下:A班的5名学生的视力检测结果:43.,51.,46.,41.,49..B班的5名学生的视力检测结果:51.,49.,40.,40.,45..(I)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(II)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(III)现从班的上述5名学生中随机选取3名学生,用X表示其中视力大于46.的人数,求X的分布列和数学期望.17.(本小题满分14分)如图,在三棱锥P ABC -中,PA ⊥底面,,ABC AC BC H ⊥为PC 的中点,M 为AH 的中点,2,1PA AC BC ===(I )求证:AH ⊥面PBC ;(II )求PM 与平面AHB 所成角的正弦值 (III )设点N 在线段PB 上,且,PNMN PBλ=∥平面ABC ,求实数λ的值.18.(本小题满分13分)已知函数12e ()44x f x ax x +=++,其中a ∈R(I )若0a =,求函数()f x 的极值;(II )当1a >时,试确定函数()f x 的单调区间.19.(本小题满分14分)设,A B 是椭圆22:143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与点,A B 不重合),O 为坐标原点.(I )如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程;(II )设N 为x 轴上一点,且4OM ON ⋅=uuu r uuu r,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.20.(本小题满分14分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*1,n n n a a a +∈<N .设*m ∈N ,记使得n a m …成立的n 最大值为m b .(I )设数列为1,3,5,7,L ,写出123,,b b b 的值; (II )若{}n b 为等差数列,求出所有可能的数列{}n a ;(III )设12,p p a q a a a A =+++=L ,求12q b b b +++L 的值.(用,,p q A 表示)。
北京市各区县2014年中考数学二模试题分类汇编 应用题

应用题汇总一、 不等式类型:1、(丰台)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.解:(1)设车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品. ………1分 根据题意可得,()12100101018015600x x ⨯+-⨯≥, ……………………3分 解得4x ≤…………………………………………4分∴106x -≥.……………………………………………………………………5分∴至少要派6名工人去生产乙种产品才合适.2、(海淀)每年的5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?解:设这份快餐含有x 克的蛋白质. ……………………………………………………1分 根据题意可得:440070%x x +≤⨯,……………………………………………3分 解不等式,得56.x ≤…………………………………………………………4分答:这份快餐最多含有56克的蛋白质. …………………………………………5分二、整式方程3、(大兴)如图,要建一个面积为40平方米的矩形宠物活动场地ABCD ,为了节约材料,宠物活动场地的一边AD 借助原有的一面墙,墙长为8米(AD < 8),另三边恰好用总长为24米的栅栏围成,求矩形宠物活动场地的一边AB 的长.解:设AB 长为x 米,则BC 长为(24-2x )米. …………………… 1分依题意,得40)224(=-x x . ………………………… 2分整理,得 020122=+-x x .解方程,得 2,1021==x x . …………………………… 3分所以当10=x 时,4224=-x ;当2=x 时,20224=-x (不符合题意,舍去).………… 4分答:矩形宠物活动场地的一边AB 的长为10米.………………5分4、(通州)列方程或方程组解应用题:某停车场的收费标准如下:中型汽车的停车费为每辆6元,小型汽车的停车费为每辆4元.现在停车场有中、小型汽车共50辆,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解:设中型汽车有x 辆,小型汽车有y 辆.根据题意得:⎩⎨⎧=+=+2304650y x y x ………………………………..(2分)解方程组得:15=x ,35=y ………………………………..(4分)答:中、小型汽车各有15辆和35辆 …………………….…..(5分)5、(西城)一列“和谐号”动车组,有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设有座位64个,每节二等车厢设有座位92个.问该列车一等车厢和二等车厢各有多少节?解:设该列车一等车厢有x 节,二等车厢有y 节.1分8由题意,得66494,296x y x y +=+=⎧⎨⎩,2分解得4,2x y ==⎧⎨⎩,4分 答:该列车一等车厢有2节,二等车厢有4节5分6.(石景山)某郊区景点门票价格:成人票每X40元,学生票每X 是成人票的半价.小明和小华两家人买了12X 门票共花了420元,求两家人的学生和成人各有几人?解:设两家人有学生x 人,成人y 人 ……………………………………… 1分 据题意:⎩⎨⎧=+=+420402012y x y x ……………………………………… 3分 解之:⎩⎨⎧==93y x ……………………………………… 4分答:两家人的学生有3人,成人有9人. ……………………………………… 5分三、分式方程:7、(顺义)A 、B 两地相距15千米,甲从A 地出发步行前往B 地,15分钟后,乙从B 地出发骑车前往A 地,且乙骑车的速度是甲步行速度的3倍.乙到达A 地后停留45分钟,然后骑车按原路原速返回,结果甲、乙二人同时到达B 地.求甲步行的速度.解:设甲步行的速度是x 千米/小时,……………………………………………… 1分 由题意,得 301513x x+=. ……………………………………………… 2分 解得 5x =.………………………………………………………… 3分经检验,5x =是所列方程的解.…………………………………………… 4分答:甲步行的速度是5千米/小时. ……………………………………………… 5分8、(昌平).如图,李大爷要借助院墙围成一个矩形菜园ABCD ,用篱笆围成的另外三边总长为24m ,设BC 的长为x m ,矩形的面积为y m 2,则y 与x 之间的函数表达式为. 21122y x x =-+ 9、(东城)列方程或方程组解应用题:甲、乙两公司各为“希望工程”捐款20000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的45.问甲、乙两公司人均捐款各为多少元? 解:设甲公司人均捐款x 元,则乙公司人均捐款(x +20)元.………………1分 根据题意得:20000420000520x x ⨯=+.………………3分 解得:x =80.……………4分经检验x =80是原方程的解.………5分x +20=100.答:甲公司人均捐款80元,则乙公司人均捐款100元.10、(某某)母亲节来临之际,小红去花店为自己的母亲选购鲜花,在花店中同一种鲜花每支的价格相同.小红如果选择由三支康乃馨和两支百合组成的一束花,则需要花34元;如果选择由两支康乃馨和三支百合组成的一束花,则需要花36元.一支康乃馨和一支百合花的价格分别是多少?11、(平谷)A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,求A 型、B 型两种机器人每小时分别搬运多少化工原料?解:设 A 型机器人每小时搬运化工原料x 千克,则B 型机器人每小时搬运(x -20)千克. -------------------------------------------------------------------------------------------------------------1分依题意得: 100080020x x =- ------------------------------------------------------------------------ 3分解这个方程得:100x=. --------------------------------------------------------------------- 4分经检验100x=是方程的解且符合实际意义,所以x-20=80. ------------------------5分答:A、B两种机器人每小时分别搬运化工原料100千克和80千克.四、函数问题12、(怀柔)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数表达式是.乙种收费的函数表达式是.(2)该校某年级每次需印制320~350份学案,选择哪种印刷方式较合算?解:(1)设甲种收费的函数表达式y1=kx+b,乙种收费的函数表达式是y2=k1x,把(0,6),(100,16)代入y1=kx+b,得616100bk b=⎧⎨=+⎩,解得:0.16kb=⎧⎨=⎩,∴y1=0.1x+6(x≥0的整数),…………………………………2分把(100,12)代入y2=k1x,解得:k1=0.12,………………………………………3分∴y 2(x≥0的整数);∴y1=0.1x+6(x≥0的整数),y2(x≥0的整数).(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;………………………………………4分当y1<y2时,0.1x+6<0.12x,得x>300;∴当x在320~350X围时,选择甲种方式合算.………………………………………5分。
2014年北京市中考数学试卷-含答案详解

2014年北京市中考数学试卷1.2的相反数是( )A. 2B. −2C. −12D. 122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨.将300000用科学记数法表示应为( )A. 0.3×106B. 3×105C. 3×106D. 30×1043.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )A. 16B. 14C. 13D. 124.如图是几何体的三视图,该几何体是( )A. 圆锥B. 圆柱C. 正三棱柱D. 正三棱锥5.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是( )A. 18,19B. 19,19C. 18,19.5D. 19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为( )A. 40平方米B. 50平方米C. 80平方米D. 100平方米7.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为( )A. 2√2B. 4C. 4√2D. 88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是( )A. B.C. D.9.分解因式:ax4−9ay2=______.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为______m.11.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出(k≠0),使它的图象与正方形OABC有公共点,这一个函数y=kx个函数的表达式为______.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(−y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为______,点A2014的坐标为______;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为______.13.如图,点B在线段AD上,BC//DE,AB=ED,BC=DB.求证:∠A=∠E.14.计算:(6−π)0+(−15)−1−3tan30°+|−√3|15.解不等式12x−1≤23x−12,并把它的解集在数轴上表示出来.16.已知x−y=√3,求代数式(x+1)2−2x+y(y−2x)的值.17.已知关于x的方程mx2−(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.19.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为______本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为______本.21.如图,AB是⊙O的直径,C是AB⏜的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE//AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为______,AC的长为______.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,−2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=1(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,求x其边界值;(2)若函数y=−x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,≤t≤1?当m在什么范围时,满足34答案和解析1.【答案】B【解析】解:根据相反数的定义可知:2的相反数是−2.故选:B.根据相反数的概念作答即可.此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n是负数.【解答】解:300000=3×105,故选:B.3.【答案】D【解析】解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:36=12.故选:D.由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】C【解析】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选:C.如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.【答案】A【解析】解:年龄为18岁的队员人数最多,众数是18;=19.平均数=18×5+19×4+20×1+21×212故选:A.根据众数及平均数的概念求解.本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.【答案】B【解析】解:根据图象可得,休息后园林队2小时绿化面积为160−60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.根据图象可得,休息后园林队2小时绿化面积为160−60=100平方米,然后可得绿化速度.此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.【答案】C【解析】【分析】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,OC=2√2,然后利用CD=2CE进行计算.且可判断△OCE为等腰直角三角形,所以CE=√22【解答】解:如图,∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,OC=2√2,∴CE=√22∴CD=2CE=4√2.故选C.8.【答案】A【解析】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,先随x的增大而减小,再随x的增大而增大;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.9.【答案】a(x2−3y)(x2+3y)【解析】解:ax4−9ay2=a(x4−9y2)=a(x2−3y)(x2+3y).故答案为:a(x2−3y)(x2+3y).首先提取公因式a,进而利用平方差公式进行分解即可.此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.【答案】15【解析】解:设旗杆高度为x米,由题意得,1.83=x25,解得x=15.故答案为:15.根据同时同地物高与影长成正比列式计算即可得解.本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.【答案】y=1x(答案不唯一)【解析】解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=kx(k≠0)过B点时,k=2×2=4,只要满足y=kx(0<k≤4),∴满足条件的一个反比例函数解析式为y=1x.故答案为:y=1x(答案不唯一).先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【答案】(−3,1);(0,4);−1<a<1且0<b<2【解析】解:∵A1的坐标为(3,1),∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A 2014的坐标与A 2的坐标相同,为(0,4);∵点A 1的坐标为(a,b),∴A 2(−b +1,a +1),A 3(−a,−b +2),A 4(b −1,−a +1),A 5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在x 轴上方,∴{a +1>0−a +1>0,{−b +2>0b >0, 解得−1<a <1,0<b <2.故答案为:(−3,1),(0,4);−1<a <1且0<b <2.根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A 2014的坐标即可;再写出点A 1(a,b)的“伴随点”,然后根据x 轴上方的点的纵坐标大于0列出不等式组求解即可.本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.13.【答案】证明:如图,∵BC//DE ,∴∠ABC =∠BDE .在△ABC 与△EDB 中,{AB =DE ∠ABC =∠BDE BC =BD∴△ABC≌△EDB(SAS),∴∠A =∠E .【解析】由全等三角形的判定定理SAS 证得△ABC≌△EDB ,则对应角相等:∠A =∠E .本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.【答案】解:原式=1−5−√3+√3=−4.【解析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.【答案】解:去分母,得:3x−6≤4x−3,移项,得:3x−4x≤6−3,合并同类项,得:−x≤3,系数化成1得:x≥−3.则解集在数轴上表示出来为:.【解析】去分母、去括号,移项、合并同类项,系数化成1即可求解.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变.16.【答案】解:∵x−y=√3,∴(x+1)2−2x+y(y−2x)=x2+2x+1−2x+y2−2xy=x2+y2−2xy+1=(x−y)2+1=(√3)2+1=3+1=4.【解析】先把代数式计算,进一步化简,再整体代入x−y=√3,求得数值即可.此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.【答案】(1)证明:∵m≠0,△=(m+2)2−4m×2=m2−4m+4=(m−2)2,而(m−2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x−1)(mx−2)=0,x−1=0或mx−2=0,∴x1=1,x2=2m,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【解析】(1)先计算判别式的值得到△=(m+2)2−4m×2=(m−2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=2m,然后利用整数的整除性确定正整数m的值.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.【答案】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得108 x+0.54=27x,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.【解析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=12AB=2,∴PH=√3,DH=5,∴tan∠ADP=PHDH =√35.【解析】(1)根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=√3,DH=5,然后利用锐角三角函数的定义求解即可.本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.【答案】5;4950【解析】解:(1)m%=1−1.0%−15.6%−2.4%−15.0%=66%,∴m=66.(2)∵年平均增长幅度为(4.78−3.88)÷4=0.225(本),∴2014年的阅读量为:4.78+0.225≈5(本);故答案为:5;(3)2014年该小区成年国民阅读图书的总数量约为:990×5=4950(本).故答案为:4950.(1)1直接减去个部分的百分数即可;(2)直接利用从2009到2013年平均增长数量,求出即可;(3)根据(2)的结果直接计算.本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.【答案】(1)证明:连接OC,∵C是AB⏜的中点,AB是⊙O的直径,∴CO⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC//BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,{∠CEO=∠FEB OE=BE∠COE=∠FBE,∴△COE≌△FBE(ASA),∴BF=CO,∵OB=2,∴BF=2,∴AF=√AB2+BF2=2√5,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴AB BH =AFBF,∴AB⋅BF=AF⋅BH,∴BH=AB⋅BFAF =4×22√5=4√55.【解析】(1)连接OC,由C是AB⏜的中点,AB是⊙O的直径,则CO⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC//BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=√AB2+BF2,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.【答案】解:75°;3过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB//DF,∴△ABE∽△FDE,∴AB DF =AEEF=BEDE=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°=∠ADC,∴AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=√3,AD=2DF=2√3.∴AC=AD=2√3,AB=2DF=2√3.∴BC=√AB2+AC2=2√6.【解析】【分析】本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.根据相似的三角形的判定与性质,可得ABDF =AEEF=BEDE=2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.【解答】解:∵CE//AB,∴∠E=∠BAD=75°,∵∠CAD=30°,∴∠ACE=∠E=75°,∴AE=AC,∵CE//AB,BD=2DC,∴AD:DE=BD:CD=2,∵AD=2,∴DE=1,∴AE =AD +DE =3,∴AC =AE =3,即∠ACE =75°,AC 的长为3.故答案为75°;3.其它见答案.23.【答案】解:(1)∵抛物线y =2x 2+mx +n 经过点A(0,−2),B(3,4),代入得:{n =−218+3m +n =4, 解得:{m =−4n =−2, ∴抛物线解析式为y =2x 2−4x −2,对称轴为直线x =1;(2)由题意得:C(−3,−4),二次函数y =2x 2−4x −2的最小值为−4,由函数图象得出D 纵坐标最小值为−4,设直线BC 解析式为y =kx +b ,将B 与C 坐标代入得:{3k +b =4−3k +b =−4, 解得:k =43,b =0, ∴直线BC 解析式为y =43x , 当x =1时,y =43,则t 的范围为−4≤t ≤43.【解析】(1)将A 与B 坐标代入抛物线解析式求出m 与n 的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C 坐标,以及二次函数的最小值,确定出D 纵坐标的最小值,求出直线BC 解析式,令x =1求出y 的值,即可确定出t 的范围.此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.【答案】解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=130°,=25°;∴∠ADF=180°−130°2(3)EF2+FD2=2AB2, 证明:如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.【解析】(1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边,进而得出答案;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定第21页,共21页理得出答案.此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.【答案】解:(1)根据有界函数的定义知,函数y =1x (x >0)不是有界函数.y =x +1(−4<x ≤2)是有界函数,边界值为:2+1=3;(2)∵函数y =−x +1的图象是y 随x 的增大而减小,∴当x =a 时,y =−a +1=2,则a =−1当x =b 时,y =−b +1,则{−2≤−b +1≤2b >a a =−1, ∴−1<b ≤3;(3)若m >1,函数向下平移m 个单位后,x =0时,函数值小于−1,此时函数的边界t >1,与题意不符,故m ≤1.当x =−1时,y =1即过点(−1,1)当x =0时,y 最小=0,即过点(0,0),都向下平移m 个单位,则函数y =x 2−m 过点(−1,1−m)、(0,−m),34≤1−m ≤1或−1≤−m ≤−34,∴0≤m ≤14或34≤m ≤1.【解析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a =−1;然后由“函数的最大值也是2”来求b 的取值范围;(3)需要分类讨论:m ≤1和m >1两种情况.由函数解析式得到该函数图象过点(−1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(−1,1−m)、(0,−m);最后由函数边界值的定义列出不等式34≤1−m ≤1或−1≤−m ≤−34,易求m 取值范围:0≤m ≤14或34≤m ≤1. 本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
北京中考二模数学2014---24题汇编

24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD =45°,求证BD =CE .14大兴24. 已知:二次函数y = x 2 + bx + 8的图象与x 轴交于点A (– 2,0).(1)求二次函数y = x 2 + bx + 8的图象与x 轴的另一个交点B 及顶点M 的坐标; (2)点P 从点B 出发,以每秒1个单位的速度沿水平方向向右运动,同时点Q 从点M出发,以每秒2个单位的速度沿竖直方向向下运动,当点P 运动到原点O 时,P 、Q 同时停止运动. 点C 、点D 分别为点P 、点Q 关于原点的对称点,设四边形PQCD 的面积为S ,运动时间为t ,求S 与t 的函数关系表达式(不必写出t 的取值范围);(3)在(2)的运动过程中,四边形PQCD 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.图2图124.在△ABC,∠BAC为锐角,AB>AC,AD平分∠BAC交BC于点D.(1)如图1,若△ABC是等腰直角三角形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若∠ABE=60°,判断AC,CE,AB之间有怎样的数量关系并加以证明;+=,求∠BAC的度数.②如图3,若AC AB AE14房山24. 边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG 上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设MBN∆的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.24.在ABC △中,90ABC ∠=,D 为平面内一动点,AD a =,AC b =,其中a ,b 为常数,且a b <.将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图14顺义24.在△ABC 中, A B = AC ,∠A =30︒,将线段 B C 绕点 B 逆时针旋转 60︒得到线段 B D ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上. (1)如图 1,直接写出 ∠ABD 和∠CFE 的度数; (2)在图1中证明: A E =CF ; (3)如图2,连接 C E ,判断△CEF 的形状并加以证明.ABCABC 图2图1BCBEQPDCB A24.【探究】如图1,在△ABC 中, D 是AB 边的中点,AE ⊥BC 于点E ,BF ⊥AC 于点F ,AE ,BF 相交于点M ,连接DE ,DF . 则DE ,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF . 求证:DE =DF ; 【推广】如图3,若将上面【拓展】中的条件“CB =CA ”变为“C B ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.14东城24.如图,等腰Rt △ABC 中,∠ACB =90°,AC =BC =4,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D . (1)当∠BQD =30°时,求AP 的长;(2)当运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由;(3)在整个运动过程中,设AP 为x ,BD 为y ,求y 关于x 的函数关系式,并求出当△BDQ为等腰三角形时BD 的值.ADBE CMFAD BCMF MABCDF图3图2图1EDDC24.如图1,在ABC △中,90ACB ∠=°,2BC =,∠A=30°,点E ,F 分别是线段BC ,AC 的中点,连结EF .(1)线段BE 与AF 的位置关系是________, AFBE =________.(2)如图2,当CEF △绕点C 顺时针旋转α时(0180α<<),连结AF ,BE ,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当C E F △绕点C 顺时针旋转α时(0180α<<),延长FC 交AB 于点D ,如果6AD =-α的度数.14门头沟24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; (3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.DαFECBA图3图2αFECBAFECBA图1图24-1图24-2图24-3图2图1E DC BA24.(1)如图1,在四边形ABCD 中,∠B =∠C =90°,E 为BC 上一点,且CE =AB ,BE =CD ,连结AE 、DE 、AD ,则△ADE 的形状是_________________________.(2)如图2,在90ABC A ∆∠=︒中,,D 、E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P .①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证明.②当BD CEAC AD==时, BPD ∠的度数____________________. 14通州23.已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G .(1)如图l ,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,请你判断线段FM 和FN 之间的数量关系,并证明你的判断是正确的.BD DB图1图2。
中考数学试卷2014年北京卷(有答案)

2014年北京市高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2的相反数是( )A.2B.-2C.-D.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为( )A.0.3× 06B.3× 05C.3× 06D.30× 043.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )D.A. B. C.34.如图是某几何体的三视图,该几何体是( )A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.某篮球队12则这12名队员年龄的众数和平均数分别是( )A.18,19B.19,19C.18,19.5D.19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( )A.40平方米B.50平方米C.80平方米D.100平方米7.如图,☉O的直径AB垂直于弦CD,垂足是E,∠A= .5°,OC= ,CD的长为( )A.2B.4C.4D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:ax4-9ay2= .10.在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为m.11.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P'(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2 014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.三、解答题(本题共30分,每小题5分)13.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.14.计算:(6-π)0+-5--3tan 30°+|-3|.15.解不等式x- ≤x-,并把它的解集在数轴上表示出来.316.已知x-y=3,求代数式(x+1)2-2x+y(y-2x)的值.17.已知关于x的方程mx2-(m+ )x+ =0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连结EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB= ,AD= ,∠ABC= 0°,求tan∠ADP的值.20.根据某研究院公布的2009—2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2013年成年国民倾向的阅读方式人数分布统计图2009—2013年成年国民根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.21.如图,AB是☉O的直径,C是的中点,☉O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交☉O于点H,连结BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC 上,∠BAD=75°,∠CAD=30°,AD= ,BD= DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2) .请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连结BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB= 0°,求∠ADF的度数;(3)如图2,若 5°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(- <x≤ )是不是有界函数?若是有界函数,求其边界值;(2)若函数y=-x+ (a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x 2(- ≤x≤m,m≥0)的图象向下平移m 个单位,得到的函数的边界值是t,当m 在什么范围时,满足3≤t≤ ?答案全解全析:一、选择题1.B ∵ +(- )=0,∴ 的相反数为-2.故选B.2.B 300 000=3× 05.故选B.3.D 6张扑克牌中,点数为偶数的有3张,所以抽到点数为偶数的概率是3 =.故选D.4.C 选项A 、B 中的几何体,三视图中一定有一个圆,与所给的三视图不符,排除A,B;选项D 中的几何体的三视图是三个三角形,与所给的三视图也不相符,排除D.只有选项C 中的几何体与所给的三视图相符,故选C.5.A 年龄为18岁的队员最多,故众数为18;12名队员年龄的平均数为5 9 0=19.故选A.6.B 休息的过程中是不进行绿化工作的,即绿化面积S 不变化,由图象可知第1~2小时为园林队休息时间,则休息后园林队的绿化面积为160-60=100(平方米),所用的时间为4-2=2(小时),所以休息后园林队每小时绿化面积为 00÷ =50(平方米).故选B. 7.C∵CO=AO,∴∠COE= ∠A= 5°.∵OC= ,∴CE=OC·sin∠COE= ×=2 .∵AB⊥CD,∴CD= C E=4 故选C.8.A 由图象可知,AP 先由短变长,然后略微变短再变长,最后AP 由长变短.选项A 与题目要求相符;选项B 是先由短变长,然后略微变短再变长,接着再略微变短再变长,最后由长变短,与题目要求不符;选项C 是先由短变长,到达第一个顶点后继续变长,到达第二个顶点后开始变短,到达第三个顶点后继续变短,与题目要求不符;选项D 是先由短变长,在经过点A 的直径与圆的另一个交点处时最长,然后开始变短,与题目要求不符.故选A.评析 解决本题的关键是根据图形特征分析函数图象随自变量变化的趋势,结合图形性质通过定性分析来确定选项.属中档题. 二、填空题9.答案 a(x 2+3y)(x 2-3y)解析 ax 4-9ay 2=a(x 4-9y 2)=a(x 2+3y)(x 2-3y). 10.答案 15解析 设旗杆的高度为x m,则 . 3=5,解得x=15.即旗杆的高度为15 m.11.答案 y=(答案不唯一,满足0<k≤ 即可)解析 要使反比例函数的图象与正方形有交点,则至少要经过点B,且k>0,而点B 的坐标为(2,2),所以k 的最大值为4,即0<k≤ . 12.答案 (-3,1);(0,4);-1<a<1,0<b<2解析 由题意可知,点A 2的坐标为(0,4),点A 3的坐标为(-3,1),点A 4的坐标为(0,-2),点A 5的坐标为(3, ),…,所以每四个点坐标为一个循环.∵ 0 ÷ =503…… ,∴点A 2 014的坐标与点A 2的坐标一致,为(0,4).因为每四个点坐标为一个循环,所以要求a,b 应满足的条件,只需要知道前4个点的坐标即可.∵点A 1的坐标为(a,b),∴点A 2、A 3、A 4的坐标依次为(-b+1,a+1)、(-a,-b+2)、(b-1,-a+ ).∵点A n 均在x 轴上方,∴0,0,-0,-0,∴-1<a<1,0<b<2.评析解决本题的关键是读懂题目要求,并按照题目要求正确操作.尤其是“在x轴上方”即为“纵坐标>0”.属中档题.三、解答题13.证明∵BC∥DE,∴∠ABC=∠D.在△ABC和△EDB中,,∠∠,,∴△ABC≌△EDB.∴∠A=∠E.14.解析原式=1-5-3×33+3=-4.15.解析去分母,得3x- ≤ x-3,移项,得3x- x≤ -3.合并同类项,得-x≤3,系数化为1,得x≥-3.不等式的解集在数轴上表示如下:16.解析(x+1)2-2x+y(y-2x)=x2+2x+1-2x+y2-2xy=x2-2xy+y2+1.∵x-y=∴原式=(x-y)2+1=4.17.解析(1)证明:∵m≠0,∴mx2-(m+2)x+2=0是关于x的一元二次方程.∴Δ=[-(m+2)]2- × m=(m-2)2.∵(m-2)2≥0,∴方程总有两个实数根.(2)由求根公式,得x=( )(- ).∴x1=1,x2=.∵方程的两个实数根都是整数,且m为正整数,∴m= 或2.18.解析设新购买的纯电动汽车每行驶1千米所需的电费为x元.由题意,得 7= 00.5.解得x=0.18.经检验,x=0.18是原方程的解,且符合题意.答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.四、解答题19.解析(1)证明:∵BF是∠ABC的平分线,∴∠ABF=∠EBF.∴∠AFB=∠EBF.∴∠AFB=∠ABF.∴AB=AF.同理,AB=BE.∴AF=BE.又∵AF∥BE,∴四边形ABEF是平行四边形.∵AB=AF,∴四边形ABEF是菱形.(2)过点P作PG⊥AD于点G,如图.∵四边形ABEF是菱形,∠ABC= 0°,∴△ABE是等边三角形.∵AB= ,∴AE=AB= ,∴AP=AE=2.在Rt△AGP中,可求得∠PAG= 0°.∴AG=AP·cos 0°= ,GP=AP·sin 0°=3.∵AD= ,∴DG=5,.∴tan∠ADP==3520.解析(1)66.0.( )5.00±0.0 .(3)7 500±30.(990÷ .0%×5=7 500) 21.解析(1)证明:连结BC.∵AB是☉O的直径,∴∠ACB=90°.∵C是的中点,∴=.∴AC=BC.∴∠CAB=∠CBA= 5°.∵BD是☉O的切线,∴∠ABD=90°.可得∠CBD=∠D= 5°.∴BC=CD.∴AC=CD.(2)连结OC.∴∠OCA=∠CAB= 5°.∴∠COE=90°.∵E是OB的中点,∴OE=BE.∵∠CEO=∠FEB,∴Rt△COE≌Rt△FBE.∴BF=OC.∵OB= ,∴BF= .由勾股定理,得AF=2.∵∠ABF=∠AHB=90°,∴BH=·=55.22.解析∠ACE的度数为75°,AC的长为3.解决问题:过点D作DF∥AB交AC于点F,如图.∴∠DFE=∠BAC=90°,又∠AEB=∠FED,∴△ABE∽△FDE.∴==.∵BE= ED,AE= ,∴FE= ,∴AF=3.∵∠CAD=30°,∴FD=,AD=2∵= ,∴AB=∵∠ADC=75°,∠CAD=30°,∴∠ACD=75°,∴AC=AD= 3.在Rt△ABC中,由勾股定理可得BC=2.评析本题考查了相似三角形的判定与性质、三角函数等知识.解决本题的关键是读懂题目中给出的操作方法,由平行想到相似三角形.属中档题.五、解答题23.解析( )∵点A,B在抛物线y=2x2+mx+n上,∴-,33m n.解得- ,- .∴抛物线的表达式为y=2x2-4x-2.∴抛物线的对称轴为x=1.(2)由题意可知,点C的坐标为(-3,-4). 设直线BC的表达式为y=kx+b(k≠0).∴3,--3,解得3,0.∴直线BC的表达式为y=3x.∴当x=1时,y=3.结合图象可知,点A在直线BC的下方,且抛物线的顶点坐标为(1,-4),∴- ≤t≤3.24.解析(1)补全图形,如图所示.(2)连结AE,如图.∵点E与点B关于直线AP对称,∴AE=AB,∠EAP=∠BAP= 0°.∵AB=AD,∴AE=AD,∴∠AED=∠ADF.又∠BAD=90°,∴ ∠ADF+ 0°+90°= 0°.∴∠ADF= 5°.(3)AB,FE,FD满足的数量关系为FE2+FD2=2AB2. 证明:连结AE,BF,BD,设BF交AD于点G,如图.∵点E与点B关于直线AP对称,∴AE=AB,FE=FB.可证得∠FEA=∠FBA.∵AB=AD,∴AE=AD.∴∠ADE=∠AED.∴∠ADE=∠ABF.又∵∠DGF=∠AGB,∴∠DFB=∠BAD=90°.∴FB2+FD2=BD2.∵BD2=2AB2,∴FE2+FD2=2AB2.25.解析(1)y=(x>0)不是有界函数;y=x+1(- <x≤ )是有界函数,边界值是3.(2)对于函数y=-x+ (a≤x≤b,b>a),∵y随x的增大而减小,∴y的最大值是-a+1,y的最小值是-b+1.∵函数的最大值是2,∴a=-1.又∵函数的边界值是2,∴-b+ ≥-2,∴b≤3.∴- <b≤3.(3)由题意,函数平移后的表达式为y=x2-m(- ≤x≤m,m≥0).当x=-1时,y=1-m;当x=0时,y=-m;当x=m时,y=m2-m.根据二次函数的对称性,当0≤m≤ 时,1-m≥m2-m;当m>1时,1-m<m2-m.①当0≤m≤时,1-m≥m,由题意,边界值t=1-m.当3≤t≤ 时,0≤m≤.∴0≤m≤.②当<m≤ 时,1-m<m.由题意,边界值t=m.当3≤t≤ 时,3≤m≤ .∴3≤m≤ .③当m>1时,由题意,边界值t≥m.∴不存在满足3≤t≤ 的m值.综上所述,当0≤m≤或3≤m≤ 时,满足3≤t≤ .。
北京市西城区2014年高三二模试卷小题解析

北京市西城区2014年高三二模试卷小题解析高三数学(理科)1.D 【解析】考查集合的关系与运算.因为集合{|20}{|2}A x x x x =-<=<,集{|}B x x a =<,若A B A =,所以a ≥2,故选D.2.A 【解析】考查复数的计算及其几何意义. 2=(12i)= -3+4i z +,在复平面中点的坐标为(3,4)-,所以复数对应的点在第二象限.3. A 【解析】考查双曲线的简单性质.由题意知,双曲线的渐近线方程为b y x a =±,因为直线2y x =为双曲线的一条渐近线,所以2b a =,又因为222c a b =+,所以225,c a =可得双曲线的离心率c e a==. 4. D 【解析】考查三视图求面积、体积.由已知三视图可知该几何体为以俯视图为底的正四棱锥,底面的对角线长为2A ,由主视图和侧视图可得,棱锥的高为4=A ,故选D.5.B 【解析】考查充分必要条件. 因为()0⋅-=a b c ,又因为平面向量a ,b ,c 均为非零向量,所以()⊥-a b c 或=b c ,所以为必要不充分条件.6.B 【解析】考查定积分. 阴影区域的面积是32232cos sin |22xdx x ππππ-=-=⎰,故选B.7. C 【解析】考查线性规划与几何概型.由题意知,α表示的平面区域为一梯形,面积为24,β表示的平面区域为矩形,其面积为8×4=32.根据几何概型可得,则P 为区域β内的点的概率是243324=. 8. B 【解析】考查简单的线性规划.正方形的边长为1,∴如下图,正方形的对角线在x轴上时,此时()x Ω=()(22y Ω=--= 此时,()()x y Ω+Ω的最大值为 此时()1x Ω=,()1y Ω=,此时()()x y Ω+Ω的最大值为2,为最小值.故()()x y Ω+Ω的取值范围为2,⎡⎣.9.20【解析】考查二项式定理. 61()x x +的二项展开式中通项6621661()rr r r r r T x x x C C --+==,若为常数项则6-2r=0,r=3,所以常数项为3620C = 10.3, π4【解析】考查三角函数、正弦定理.由题意知,sin A ==.由正弦定理得3sin 3sin 4b A B a ⨯===11. 8,2【解析】考查相交弦定理、三角形相似.由相交弦定理知CE DE AE BE =,设BE=x ,则16=4x 2,解得:x=2所以AE=8,BE=2,由△ACE ∽△DBE 得:422AC CE BD BE === 12. 13-【解析】考查程序框图.由题意知,3,1a i ==,第一次循环,132,213a i +==-=-; 第二次循环,121,3123a i -==-=+;第三次循环,1113,41213a i -===+;第四次循环,1123,5112a i +===-;第五次循环,132,613a i +==-=-……第十次循环时121,11123a i -==-=+满足条件,跳出循环体,故输出a 值为13-.13. [3,+)∞【解析】考查抛物线的几何意义.由题意知,抛物线的准线方程为1x =-,由抛物线的几何意义可得,||MF 即为点M 到抛物线准线的距离,过点N 作准线的垂线,交抛物线与一点,根据两点之间线段最短可知当M 为垂线与交抛物线交点时,||||MF MN +最小,最小值为2-(-1)=314. 8, {1,2}【解析】考查映射与指数不等式的解法. 35<,(3,5)358f ∴=+=; 2x x >恒成立,故(2,)2x x f x x =-,当1x =时,(2,)2114x f x =-=≤成立, 当2x =时,2(2,)2224x f x =-=≤成立, 当3x ≥时,3(2,)235x f x =-=成立, 故使不等式(2,)4x f x ≤成立的x 的集合为{1,2}。
2014年北京市中考数学试题(含答案)
yOEDCB A2014年市高级中等学校招生考试数学试卷学校号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2的相反数是A.2B.2-C.12-D.122.据报道,某小区居民先生改进用水设备,在十年帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为A.60.310⨯B.5310⨯C.6310⨯D.43010⨯3.如图,有6扑克处于,从中随机抽取一,点数为偶数的概率是A.16B.14C.13D.124.右图是几何体的三视图,该几何体是A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2A.18,19B.19,19C.18,19.5D.19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为A.40平方米B.50平方米C.80平方米D.100平方米7.如图.O的直径AB垂直于弦CD,垂足是E,22.5A∠=︒,4OC=,CD的长为A.22.4C.42.88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x的函数关系的图象大致如右图所示,则该封闭图形可能是AADCBAA二、填空题(本题共16分,每小题4分) 9.分解因式:429______________ax ay -=.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x=≠,使它的图象与正方形OABC 有公共点,这个函数的表达式为.12.在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),则点3A 的坐标为,点2014A 的坐标为;若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为.三、解答题(本题共30分,每小题5分)13.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.计算:11(6π)()3tan30|5--︒+--︒+.ECBAD15.解不等式1211232x x --≤,并把它的解集在数轴上表示出来.-4-34-2-112316.已知3x y -=,求代数式2(1)2(2)x x y y x +-+-的值.17.已知关于x 的方程2(2)20(0)mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.18.列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分) 19.如图,在ABCD 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD . (1)求证:四边形ABEF 是菱形;(2)若4AB =,6AD =,60ABC ∠=︒,求tan ADP ∠的值.F PECB AD20.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:下载并打印阅读1.0%手机阅读15.6%电子阅读器阅读2.4%网络在线阅读15.0%图书阅读m %根据以上信息解答下列问题: (1)直接写出扇形统计图中m 的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.21.如图,AB 是O 的直径,C 是AB 的中点,O 的切线BD 交AC 的延长线于点D ,E是OB 的中点,CE 的延长线交切线BD 于点F ,AF 交O 于点H ,连接BH . (1)求证:AC CD =; (2)若2OB =,求BH 的长.OHEF CBAD22.阅读下面材料:年份 年人均阅读图书数量(本) 2009 3.88 2010 4.12 2011 4.352012 4.56 2013 4.78图3ABCDE小腾遇到这样一个问题:如图1,在ABC △中,点D 在线段BC 上,75BAD ∠=︒,30CAD ∠=︒,2AD =,2BD DC =,求AC 的长.E图2图1AB CD D CB A小腾发现,过点C 作CE AB ∥,交AD 的延长线于点E ,通过构造ACE △,经过推理和计算能够使问题得到解决(如图2). 请回答:ACE ∠的度数为,AC 的长为. 参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD 中,90BAC ∠=︒,30CAD ∠=︒,75ADC ∠=︒,AC 与BD 交于点E ,2AE =,2BE ED =,求BC 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (0,2-),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图像,求点D 纵坐标t 的取值围.xy–1–2–3–41234–1–21234524.在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE DE ,,其中DE 交直线AP 于点F . (1)依题意补全图1;(2)若20PAB ∠=︒,求ADF ∠的度数;(3)如图2,若4590PAB ︒<∠<︒,用等式表示线段AB FE FD ,,之间的数量关系,并证明.图 1PD CBA A BCDP图 225.对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1y x=()0x >和()142y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1y x =-+()a x b b a ≤≤>,的边界值是2,且这个函数的最大值也是2,求b的取值围;(3)将函数()210y x x m m =-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么围时,满足314t ≤≤?。
2024年北京西城区初三二模数学试卷和答案
北京市西城区九年级模拟测试试卷 数学2024.5 第1页(共8页)北 京 市 西 城 区 九 年 级 模 拟 测 试 试 卷数 学 2024.5考生须知1.本试卷共8页,共两部分,28道题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.右图是某几何体的三视图,该几何体是 (A )圆柱 (B )圆锥 (C )三棱柱(D )长方体2.新能源革命受到全球瞩目的同时,也成为中国实现“碳达峰碳中和”目标的关键所在.2023年全球可再生能源新增装机510 000 000千瓦,其中中国的贡献超过了50%. 将510 000 000用科学记数法表示应为 (A )90.5110 (B )85.110 (C )95.110 (D )75110 3.正十二边形的每一个外角的度数为(A )30°(B )36°(C )144°(D )150°4.如图,直线AB ⊥CD 于点C ,射线CE 在∠BCD 内部,射线CF平分∠ACE .若∠BCE =40°,则下列结论正确的是 (A )∠ECF =60° (B )∠DCF =30° (C )∠ACF 与∠BCE 互余 (D )∠ECF 与∠BCF 互补5.不透明的袋子里装有3个完全相同的小球,上面分别标有数字4,5,6.随机从中摸出一个小球不放回,再随机摸出另一个小球.第一次摸出小球上的数字大于第二次摸出小球上的数字的概率是 (A)12 (B )13(C )23(D )49北京市西城区九年级模拟测试试卷 数学2024.5 第2页(共8页)6.如图,点C 为线段AB 的中点,∠BAM =∠ABN ,点D ,E 分别在射线AM ,BN 上,∠ACD 与∠BCE 均为锐角.若添加一个条件一定 可以证明△ACD ≌△BCE ,则这个条件不能是 (A )∠ACD =∠BCE (B )CD=CE (C )∠ADC =∠BEC(D )AD =BE7.某农业合作社在春耕期间采购了A ,B 两种型号无人驾驶农耕机器.已知每台A 型机器的进价比每台B 型机器进价的2倍少0.7万元;采购相同数量的A ,B 两种型号机器,分别花费了21万元和12.6万元.若设每台B 型机器的进价为x 万元,根据题意可列出关于x 的方程为(A )12.621(20.7)x x (B )2112.620.7x x (C )2112.620.7x x(D )2112.620.7x x8.下面问题中,y 与x 满足的函数关系是二次函数的是①面积为102cm 的矩形中,矩形的长y (cm )与宽x (cm )的关系;②底面圆的半径为5cm 的圆柱中,侧面积y 2(cm )与圆柱的高x (cm )的关系;③某商品每件进价为80元,在某段时间内以每件x 元出售,可卖出(100)x 件. 利润y (元)与每件售价x (元)的关系. (A )① (B )②(C )③ (D )①③第二部分 非选择题二、填空题(共16分,每题2分)9. 若分式34x 有意义,则x 的取值范围是______. 10.分解因式:2218x y y =______.11.方程组25,24x y x y的解为______. 12.在平面直角坐标系xOy 中,点(3,1)A 关于原点O 的对称点的坐标为______.13.如图,BD 是△ABC 的角平分线,DE ⊥BC 于点E .若BE =3,△BDE 的面积为1.5,则点D 到边AB 的距离为______. 14.如图,AB 与⊙O 相切于点C .点D ,E 分别在OA ,OB上,四边形ODCE 为正方形.若OA =2,则DE =______.北京市西城区九年级模拟测试试卷 数学2024.5 第3页(共8页)15.如图,(2,)A m ,(3,2)B 两点在反比例函数ky x(x >0)的图象上.若将横、纵坐标都是整数的点称为整点,则线段OA ,OB 及反比例函数图象上A ,B 两点之间的部分围成的区域(不含边界)中,整点的坐标为______.16.在某次比赛中,5位选手进入决赛环节,决赛赛制为单循环形式(每两位选手之间都赛一场).每位选手胜一场得3分,负一场得0分,平局得1分.已知这次比赛最终结果没有并列第一名,获得第一名的选手的成绩记为m (分),则m 的最小值为______;当获得第一名的选手的成绩恰好为最小值时,决赛环节的平局总数至少为______场. 三、解答题(共68分,第17-21题,每题5分,第22-23题,每题6分,第24题5分,第25-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:04cos 45(π3) .18.解不等式组3 2 < 4,2,53x x x x≥并写出它的所有整数解. 19.已知230x x ,求代数式233(1144x x x的值. 20.已知:如图,在△ABC 中,∠ABC =90°,BA=BC .求作:点D ,使得点D 在△ABC 内,且12ADB BDC .下面是小华的解答过程,请补充完整:(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):①作线段BC 的垂直平分线PQ 交BC 于点E ;②以点A 为圆心,AB 长为半径作弧,与直线PQ 在△ABC 内交于点D . 点D 就是所求作的点.(2)完成下面的证明.证明:连接DA ,DB ,DC .∵ 点D 在线段BC 的垂直平分线上, ∴ DB = DC ( )(填推理的依据), DE ⊥BC .∴ 12BDE CDE BDC .∵ ∠ABC =90°,∠DEC =90°, ∴ ∠ABC =∠DEC .北京市西城区九年级模拟测试试卷 数学2024.5 第4页(共8页)∴ AB ∥DE . ∴ ∠ABD =∠BDE . ∵ , ∴ ∠ADB =∠ .∴ 12ADB BDE BDC .21.已知关于x 的一元二次方程2320x x k 有两个不相等的实数根.(1)求实数k 的取值范围;(2)若k 为满足条件的最大整数,求此时方程的根.22.如图,四边形ABCD 是平行四边形,AE ⊥BD 于点E ,CG ⊥BD 于点F ,FG =CF ,连接AG .(1)求证:四边形AEFG 是矩形;(2)若∠ABD =30°,AG =2AE =6,求BD 的长.23.如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,点E 是 BD的中点,连接AE 交BC 于 点F ,∠ACB =2∠EAB . (1)求证:AC 是⊙O 的切线; (2)若BF =6,3cos 5C,求AB 的长.24.我国快递市场繁荣活跃,某快递公司为提高服务质量,对公司的业务量、公众满意度等数据进行统计分析.公司随机抽取了某日发往相邻城市的快递中的1000件,称重并记录每件快递的重量(单位:kg,精确到0.1).下面给出了部分信息.a.每件快递重量的频数分布直方图(数据分成11组:0≤x<1,1≤x<2,2≤x<3,3≤x<4,4≤x<5,5≤x<6,6≤x<7,7≤x<8,8≤x<9,9≤x<10,10≤x<11);b.在3≤x<4这一组的数据如下:3.0 3.1 3.1 3.2 3.2 3.2 3.4 3.4 3.4 3.43.5 3.5 3.5 3.5 3.6 3.6 3.7 3.7 3.8 3.9c.这1000件快递重量的平均数、中位数、众数如下:平均数 中位数 众数快递重量3.6 m n(单位:kg)根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)写出m的值;(3)下面四个结论中,① n的值一定在2≤x<3这一组;②n的值可能在4≤x<5这一组;③n的值不可能在5≤x<6这一组;④n的值不可能在8≤x<9这一组.所有正确结论的序号是 ;(4)该日此快递公司在全市揽收的快递包裹中有3800件发往相邻城市,估计这批快递的重量.北京市西城区九年级模拟测试试卷数学2024.5 第5页(共8页)北京市西城区九年级模拟测试试卷 数学2024.5 第6页(共8页)25.已知角x (0°≤x ≤90°),探究sin x 与角x 的关系.两个数学兴趣小组的同学在查阅资料后,分别设计了如下两个探究方案:方案一:如图,点P 在以点O 为圆心,1为半径的 MN上,∠MON =90°,设∠POM 的度数为x . 作PC ⊥OM 于点C ,则线段 ① 的长度c 即为sin x 的值.方案二:用函数35π1π1π()()()1806180120180x x x F x的值近似代替sin x 的值.计算函数 ()F x 的值,并在平面直角坐标系xOy 中描出坐标为(,())x F x 的点.两个小组同学汇总、记录的部分探究数据如下表所示(精确到0.001). 若()c F x ≤0.001记为√,否则记为×. x 0 102030 40455060708090 c 0 0.174 0.342 ②0.643 0.707 0.766 0.866 0.940 0.985 1 ()F x0.174 0.342 0.500 0.643 0.707 0.766 0.866 0.941 0.987 1.005√或× √√√√√√√√×根据以上信息,解决下列问题: (1)①为 ,②为 ; (2)补全表中的√或×;(3)画出()F x 关于x 的函数图象,并写出sin55°的近似值(精确到0.01).26.在平面直角坐标系xOy 中,11(,)M x y ,22(,)N x y 是抛物线2y ax bx c上任意两点.设抛物线的对称轴是x=t .(1)若对于12x ,21x ,有12y y ,求t 的值;(2)若对于1x ≥2,都有1y c 成立,并且对于21x ,存在2y c ,求t 的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,∠BAC=α(0°<α<30°).将射线AB绕点A顺时针旋转2α得到射线l,射线l与直线BC的交点为点M.在直线BC上截取MD=AB (点D在点M右侧),将直线DM绕点D顺时针旋转2α所得直线交直线AM于点E.(1)如图1,当点D与点B重合时,补全图形并求此时∠AED的度数;(2)当点D不与点B重合时,依题意补全图2,用等式表示线段ME与BC的数量关系,并证明.图1图2北京市西城区九年级模拟测试试卷数学2024.5 第7页(共8页)北京市西城区九年级模拟测试试卷 数学2024.5 第8页(共8页)28.如图1,对于⊙O 外的线段PQ (线段PQ 上的各点均在⊙O 外)和直线PQ 上的点R ,给出如下定义:若线段PQ 绕点R 旋转某一角度得到的线段P ′Q ′恰好是⊙O 的弦,则称点R 为线段PQ 关于⊙O 的“割圆点”.图1图2在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2,已知点(1,4)S ,(1,2)T ,(1,2)U ,(0,3)W . 在线段ST ,TU ,UW 中,存在关于⊙O 的“割圆点”的线段是_______,该“割圆点”的坐标是_______; (2)直线y x b 经过点(0,3)W ,与x 轴的交点为点V .点P ,点Q 都在线段VW 上,且PQ PQ 关于⊙O 的“割圆点”为点R ,写出点R 的横坐标R x 的取值范围;(3)直线l 经过点H ,不重合的四个点A ,B ,C ,D 都在直线l 上,且点H 既是线段AB 关于⊙O 的“割圆点”,又是线段CD 关于⊙O 的“割圆点”.线段AB ,CD 的中点分别为点M ,N ,记线段MN 的长为d ,写出d 的取值范围.北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第1页(共6页)北 京 市 西 城 区 九 年 级 模 拟 测 试 试 卷数学答案及评分参考 2024.5一、选择题(共16分,每题2分)题号 1 2 3 4 5 6 7 8 答案BBADABCC二、填空题(共16分,每题2分)9.4x 10.2(3)(3)y x x11.2,1x y 12.(3,1) 13.1 1415.(1,1),(2,2) 16.6;4 三、解答题(共68分,第17-21题,每题5分,第22-23题,每题6分,第24题5分,第25-26题,每题6分,第27-28题,每题7分) 17.解: 04cos 45(π3) 2412…………………………………………………………… 4分 1 . ……………………………………………………………………………… 5分18.解:原不等式组为3 2 < 4,2.53x x x x≥ 解不等式①,得3x .……………………………………………………………1分 解不等式②,得1x ≥.………………………………………………………… 2分∴ 原不等式组的解集为1 ≤3x .…………………………………………… 3分 ∴ 原不等式组的所有整数解为1 ,0,1,2.……………………………… 5分19.解: 233(1)144x x x2231(2)x x x3(1)(2)x x232x x. ……………………………………………………………………… 3分∵ 230x x , ∴ 23x x .∴ 原式3 .…………………………………………………………………………5分① ②北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第2页(共6页)20.解:(1)作图见图1.……………………………………………………………………2分(2)线段垂直平分线上的点与这条线段两个端点的距离相等;……………… 3分 AB=AD ;……………………………………………………………………… 4分ABD .………………………………………………………………………… 5分21.解:(1)依题意,得234(2)174k k .…………………………………… 1分∵ 原方程有两个不相等的实数根,∴ 1740k .………………………………………………………………2分 解得 174k.…………………………………………………………………3分 (2)∵ k 为满足条件的最大整数,∴ 4k .此时方程为2320x x .此时方程的根为11x ,22x .…………………………………………5分22.(1)证明:如图∵ 四边形ABCD 是平行四边形,∴ AB//CD ,AB=CD .…………………………………………………… 1分 ∴ ∠ABE=∠CDF .∵ AE ⊥BD 于点E ,CG ⊥BD 于点F , ∴ ∠AEB=∠CFD=∠AEF=∠EFC=90°. ∴ △ABE ≌△CDF .图1北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第3页(共6页)∴ AE=CF .∵ FG =CF ,∴ AE= FG .∵ ∠AEF=∠EFC ,∴ AE//FG .∴ 四边形AEFG 是平行四边形.∵ ∠AEF=90°,∴ 四边形AEFG 是矩形. ……………………………………………… 3分(2)解:∵ △ABE ≌△CDF ,∴ BE= DF .∵ AG=2AE =6,∴ AE =3.在Rt △ABE 中,∠AEB =90°,∠ABE =30°,AE =3,∴3tan tan 30AE BE ABE4分 ∵ 四边形AEFG 是矩形,AG =6,∴ EF=AG=6.……………………………………………………………… 5分∴26BD BE EF DF BE EF . ………………………… 6分23.(1)证明:如图3,连接AD .∵ AB 是⊙O 的直径,BC 交⊙O 于点D ,∴ ∠BDA=90°.∴ 90B DAB .∵ 点E 是 BD的中点, ∴ BEED . ∴ 1EAB .∴ 12DAB EAB EAB .∵ ∠ACB =2∠EAB ,∴ ∠DAB =∠ACB .∴ 90B ACB .∴ ∠BAC=90°.………………………………………………………… 2分∴ AC ⊥AB .∵ AB 是⊙O 的直径,∴ AC 是⊙O 的切线.…………………………………………………… 3分 图3北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第4页(共6页)(2)解:在Rt △ABC 中,∠BAC=90°,3cos 5C . 设AC =3k ,则BC =5k ,AB =4k .∵ 90B DAB ,90CAD DAB ,∴ B CAD .∵ 2B EAB ,1CAF CAD ,1EAB ,∴ 2CAF .∴ CF=AC=3k .∴ 2BF BC CF k .∵ BF =6,∴ k =3.∴ 412AB k .…………………………………………………………… 6分24.解:(1)补全频数分布直方图见图4;……………………………………………… 1分(2)2分(3)②④;………………………………………………………………………… 4分(4)3.6380013680 (kg ).……………………………………………………5分25.解:(1)PC ,0.5; …………………………………………………………………… 2分(2)√,×;……………………………………………………………………… 4分(3)画图见图5;5分0.82.………………………………………………………………………… 6分 图5北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第5页(共6页)26.解:(1)∵ 对于12x ,21x ,有12y y ,∴ 42a b c a b c .∴ b a .∴ 122b t a .………………………………………………………………2分 (2)由题意可知,抛物线2y ax bxc 与y 轴的交点为(0,)c .①当a > 0时,抛物线开口向上.∴ 当1x ≥2时,1y 有最小值,没有最大值.∴ 与“对于1x ≥2时,都有1y c ”不符,所以不合题意.∴ a > 0不成立.②当a < 0时,抛物线开口向下,且经过点(0,)c ,(2,)t c .若抛物线经过点(1,)c ,则12t ; 若抛物线经过点(2,)c ,则1t .(i )当12t ≤时, 01t ≤或021t t ≤.∴ 对于21x ,都有2y c .与“对于21x ,存在2y c ”不符,所以不合题意.(ii )当112t 时,122t t . ∴ 对于21x ,存在2y c ,对于1x ≥2,都有1y c .∴112t 成立. (iii )当1t ≥时,022t ≤. ∴ 当12x 时,1y c .与“对于1x ≥2,都有1y c 成立”不符,所以不合题意. 综上所述,112t .27.解:(1)补全图形见图6.∵ 点D 与点B 重合,MD=AB ,∠BAM ∴ ∠AMD =∠BAM =2α.在Rt △ABC 中,∠ACB =90°,∴ 90AMD MAC .∵ ∠BAC =α,∴ 5α=90AMD BAM BAC .北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第6页(共6页)解得α=18 .∵ ∠MDE =2α,∴ 2α+2α4α=72AED AMD MDE .………………………… 2分(2)补全图形见图7.…………………………………………………………… 3分ME =2BC .…………………………………………………………………… 4分证明:如图7,在BC 的延长线上截取CF=BC ,连接AF .以点B 为圆心,BF 为半径作弧,交AF 于点N ,连接BN .∵ CF=BC ,∠ACB =90°,∴ AB=AF .∴ ∠BAN =2∠BAC =2α.∵ ∠MDE =2α,∴ ∠MDE =∠BAN .∴ 在等腰△ABF 中,18090α2BAF F . ∵ BN=BF ,∴ 390αF .在Rt △AMC 中,190903αMAC .∴ 21(903α)+2α90αMDE .∴ 23 .∵ 41802 ,1803BNA ,∴ 4BNA .∵ DM =AB ,∴ △DME ≌△ABN .∴ ME=BN .∵ BN=BF ,∴ ME=BF=2BC .……………………………………………………7分28.解:(1)UW ,(2,1) ;…………………………………………………………………2分(2)2R x ≤或1R x ≥;………………………………………………………… 4分(3)02d或4d ≤.……………………………………………… 7分。
2014年北京市中考数学试卷-答案
5 / 10
(2)连接 OC. OA OC ,OCA CAB 45 .
∠AFB ∠ABF , AB AF 同理 AB BE . AF BE . 四边形 ABEF 是平行四边形.
AB AF ,四边形 ABEF 是菱形.
4 / 10
(2)过点 P 作 PG AD 于点 G,如图.
四边形 ABEF 是菱形, ABC 60 , △ABE 是等边三角形.
AB 4 , AE AB 4 . AP 1 AE 2 .
3 【解析】待定系数法求函数解析式,在平面直角坐标系中比较的数值的大小. 24.【答案】(1)补全图形,如图 1 所示.
(2)连接 AE,如图 2.
点 E 与点 B 关于直线 AP 对称, AE AB , EAP BAP 20 .
AB AD , BAD 90 , AE AD . AED ADF . 2ADF 40 90 180 . ADF 25 . (3)AB,FE,FD 满足的数量关系: FE2 FD2 2AB2 . 证明:连接 AE,BF,BD,设 BF 交 AD 于点 G,如图 3.
时,n 为正整数,n 等于原数的整数位数减 1;当原数的绝对值小于 1 时,n 为负整数,n 的绝对值等于原数 中左起第一个非零数前零的个数(含整数位上的零),即 300 000 3105 ,故选 B.
【考点】科学记数法. 3.【答案】D 【解析】六张扑克牌中有 2 张的点数是偶数,故 P(抽到的点数是偶数) 3 1 ,故选 D.
北京市西城区2014届高三二模试卷数学文
北京市西城区2014年高三二模试卷数 学(文科) 2014.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集{|02}U x x =<<,集合1{|0}A x x =<≤,则集合U A =ð( )(A )(0,1) (B )(0,1](C )(1,2)(D )[1,2)2.已知平面向量(2,1)=-a ,(1,3)=b ,那么|a +b |等于( ) (A )5 (B(C(D )133.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心率为( ) (A(B )2(C(D4.某几何体的三视图如图所示,则该几何体的体积为( ) (A )2 (B )43(C )4 (D )5正(主)视图俯视图侧(左)视图6. 设0a >,且1a ≠,则“函数log a y x =在(0,)+∞上是减函数”是“函数3(2)y a x =-在R 上是增函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )4 (B )5(C )6(D )78. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )(A ) 4个 (B )6个(C )10个(D )14个5.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( )(A )()sin =f x x (B )()sin 2=f x x (C )()cos =f x x (D )()cos 2=f x xBADC. P第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______.10.若抛物线2:2C y px =的焦点在直线20x y +-=上,则p =_____;C 的准线方程为_____.11.已知函数3, 0,()1, 0,1≤+⎧⎪=⎨>⎪+⎩x x f x x x 若0()2=f x ,则实数0=x ______;函数()f x 的最大值为_____.12.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为______.13.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是__________.14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点. 设AP xAD =,PB PC y ⋅=,记()=y f x ,则(1)=f ____; 函数()f x 的值域为_________.A D C P三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小; (Ⅱ)如果cos =B ,2b =,求a 的值. 16.(本小题满分13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b ,c 的值;(Ⅱ)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不.是次品的概率; (Ⅲ)某人从这批灯泡中随机地购买了()*∈n nN 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值.17.(本小题满分14分)如图,在四棱锥ABCD S -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(Ⅰ)求证://AB 平面SCD ; (Ⅱ)求证:SN ⊥平面ABCD ;(Ⅲ)在棱SC 上是否存在一点P ,使得平面⊥PBD 平面ABCD ?若存在,求出SPPC的值;若不存在,说明理由. 18.(本小题满分13分)已知函数()ln af x x x=-,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.19.(本小题满分14分)已知椭圆22221(0)x y W a b a b+=>>:的焦距为2,过右焦点和短轴一个端点的直线的斜率为1-,O 为坐标原点.(Ⅰ)求椭圆W 的方程.(Ⅱ)设斜率为k 的直线l 与W 相交于,A B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.20.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等比数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足104d -<<; (Ⅲ)如果{}n c 为数列{}n a 的一个6项子列,且{}n c 为等比数列,证明:1234566332c c c c c c +++++≤.北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(文科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.B 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.4 2=-x 11.1- 3 12.25613. (3,5) 14.1 4[,4]5注:第10、11、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 4分又因为 (0,π)∈A ,所以 π3A =. ……………… 6分(Ⅱ)解:因为 cos 3=B ,(0,π)∈B ,所以 sin B ==, ………………8分由正弦定理 sin sin =a bA B, ………………11分得 sin 3sin ==b Aa B. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =,0.3=c . ……………… 3分(Ⅱ)解:设“此人购买的灯泡恰好不是次品”为事件A . ……………… 4分由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个, 所以此人购买的灯泡恰好不是次品的概率为100604()2005+==P A . …………… 8分(Ⅲ)解:由(Ⅱ)得这批灯泡中优等品、正品和次品的比例为60:100:403:5:2=. (10)分所以按分层抽样法,购买灯泡数 35210()*=++=∈n k k k k k N ,所以n 的最小值为10. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 是矩形,所以 //AB CD , ……………… 1分又因为 AB ⊄平面SCD ,CD ⊂平面SCD ,所以 //AB 平面SCD . ……………… 3分(Ⅱ)证明:因为 , , AB SA AB AD SAAD A ⊥⊥=,所以 ⊥AB 平面SAD , ……………… 5分又因为 SN ⊂平面SAD ,所以 AB SN ⊥. ……………… 6分因为 SA SD =,且N 为AD 中点, 所以 SN AD ⊥. 又因为 ABAD A =,所以 SN ⊥平面ABCD . ……………… 8分(Ⅲ)解:如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PB ,PD .因为 SN ⊥平面ABCD ,所以 FP ⊥平面ABCD . (11)又因为 FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . …………… 12在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面⊥PBD 平面ABCD ,此时12SP PC =. ……… 14分18.(本小题满分13分) (Ⅰ)解:由2()ln f x x x=-,得212()f x x x '=+, (2)分所以 (1)3f '=, 又因为 (1)2f =-,所以函数()f x 的图象在点(1,(1))f 处的切线方程为350x y --=. ……………… 4分(Ⅱ)解:由 ()2f x x >-+,得ln 2ax x x->-+, 即 2ln 2a x x x x <+-. ……………… 6分设函数2()ln 2g x x x x x =+-,则 ()ln 21g x x x '=+-, ……………… 8分因为(1,)x ∈+∞,所以ln 0x >,210x ->,所以当(1,)x ∈+∞时,()ln 210g x x x '=+->, ……………… 10分故函数()g x 在(1,)x ∈+∞上单调递增,所以当(1,)x ∈+∞时,()(1)1g x g >=-. ……………… 11分因为对于任意(1,)x ∈+∞,都有()2f x x >-+成立, 所以对于任意(1,)x ∈+∞,都有()a g x <成立.所以1a -≤. ……………… 13分19.(本小题满分14分)(Ⅰ)解:由题意,得椭圆W 的半焦距1c =,右焦点(1,0)F ,上顶点(0,)M b ,…… 1分 所以直线MF 的斜率为0101-==--MF b k , 解得 1b =, ……………… 3分由 222a b c =+,得22a =,所以椭圆W 的方程为2212x y +=. ……………… 5分(Ⅱ)证明:设直线l 的方程为y kx m =+,其中1k =或2,11(,)A x y ,22(,)B x y .… 6分由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分所以 2216880k m ∆=-+>, (*)由韦达定理,得122412km x x k -+=+, 21222212m x x k -=+. (8)分所以||AB == (9)分因为原点O 到直线y kx m =+的距离d =, (10)分所以 1||2AOB S AB d ∆=⋅= ……………… 11分当1k =时,因为AOB S ∆=所以当232m =时,AOB S ∆的最大值12S =, 验证知(*)成立; ……………… 12分当2k =时,因为AOB S ∆=所以当292m =时,AOB S ∆的最大值22S =; 验证知(*)成立.所以 12S S =. ……………… 14分注:本题中对于任意给定的k ,AOB ∆的面积的最大值都是2.20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列:12,14,18. ……………… 2分(Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 4分因为 514b b d =+,151,0b b >≤, 所以 514011d b b =->-=-,解得 14d >-. 所以104d -<<. ……………… 7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 23451234561(1)c c c c c c c q q q q q +++++=+++++. 因为{}n c 为{}n a 的一个6项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. ……………… 8分设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥).当1K =时,因为 112q L =≤, 所以 23451234561(1)c c c c c c c q q q q q +++++=+++++ 2345111111()()()()22222+++++≤, 所以 1234566332c c c c c c +++++≤. ……………… 10分当1K ≠时,因为 556151==⨯K c c q a L是{}n a 中的项,且,K L 互质,所以 5*()a K M M =⨯∈N ,所以 23451234561(1)c c c c c c c q q q q q +++++=+++++543223*********()M K K L K L K L KL L=+++++. 因为 2L ≥,*,K M ∈N ,所以 234512345611111631()()()()2222232c c c c c c ++++++++++=≤. 综上, 1234566332c c c c c c +++++≤. ……………… 13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年北京市西城区初三二模2014. 6一、选择题(本题共32分,每小题4分) 1.在12,0,1-,2-这四个数中,最小的数是 A .12B .0C .1-D .2-2.据报道,按常住人口计算,2013年北京市人均GDP (地区生产总值)达到约93 210元, 将93 210用科学记数法表示为A .393.2110⨯B .49.32110⨯C .50.932110⨯D . 2932.110⨯ 3.如图,四边形ABCD 为⊙O 的内接四边形, 若∠BCD=110°,则∠BAD 的度数为 A .140° B .110° C .90° D .70°4.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0, 1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为A . 4 5B . 3 5C . 2 5D . 1 55.如图,为估算学校的旗杆的高度,身高 1.6米的小红同学沿着旗杆在地面的影子AB 由A 向B 走去,当她走到点C 处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC =2m ,BC =8m ,则旗杆的高度是( )A .6.4mB .7mC . 8mD .96.如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD =6,则菱形ABCD 的面积是 A . 6 B . 12 C . 24 D .487.如图,在平面直角坐标系xOy中,直线y =经过点A ,作AB⊥x 轴于点B ,将△ABO 绕点B 顺时针旋转o60得到△BCD ,若点B的坐标为(2,0),则点C 的坐标为A .B . (5,1)C .D .(6,1)8.右图表示一个正方体的展开图,下面四个正方体中只有一个符合要求,那么这个正方体是O CBAA .B .C .D . 二、填空题(本题共16分,每小题4分) 9.函数=y 中,自变量x 的取值范围是_________10.若一次函数的图像过点(0,2),且函数y 随自变量x 的增大而增大,请写出一个符合要求的一次函数表达式:_________11.一组数据:3,2,1,2,2的中位数是_____,方差是_____. 12.如图,在平面直角坐标系xOy 中,已知抛物线y =-x (x -3)(0≤x ≤3)在x 轴上方的部分,记作C 1,它与x 轴交于点O ,A 1,将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,….则点A 4的坐标为 ;C n 的顶点坐标为 (n 为正整数,用含n 的代数式表示) .三、解答题(本题共30分,每小题5分)13.计算:101()(3)3tan304-+-π-+︒14.已知:如图,C 是AE 上一点,∠B=∠DAE ,BC ∥DE ,AC=DE . 求证:AB=DA . 15.解分式方程:22142xx x +=--16.列方程或方程组解应用题:一列“和谐号”动车组,有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设有座位64个,每节二等车厢设有座位92个.问该列车一等车厢和二等车厢各有多少节?17.已知关于x 的一元二次方程x 2+2x +3k -6=0有两个不相等的实数根 (1)求实数k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.18.抛物线2y x bx c =++(b ,c 均为常数)与x 轴交于(1,0),A B 两点,与y 轴交于点(0,3)C .. (1)求该抛物线对应的函数表达式;(2)若P 是抛物线上一点,且点P 到抛物线的对称轴的距离为3,请直接写出点P 的坐标.EDCBA四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,AB ∥DC , DB 平分∠ADC , E 是CD 的延长线上一点,且12AEC ADC ∠=∠.(1)求证:四边形ABDE 是平行四边形.(2)若DB ⊥CB ,∠BCD =60°,CD =12,作AH ⊥BD 于H ,求四边形AEDH 的周长.21.据报道:2013年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:请根据以上信息,回答以下问题:(1)从2012年到2013年微信的人均使用时长增加了________分钟;(2)补全2013年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为_________亿(结果精确到0.1);(3)从调查数学看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达_________亿.21.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,过点B 作⊙O 的切线与AD 的延长线交于F . (1)求证:ABC F ∠=∠(2)若sinC=35,DF=6,求⊙O 的半径..22.阅读下面材料:小明遇到这样一个问题: 如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.小明研究发现:如图2“日”五个正方形被两条互相垂直的线段AB ,CD 分割为四部分,将这四部分图形分别标号,以CD 为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.请你参考小明的画法,完成下列问题:(1)如图3,边长分别为a ,b 的两个正方形被两条互相垂直的线段AB ,CD 分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出EB拼接示意图(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为8+,则八角形纸板的边长为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.经过点(1,1)的直线l : 2 (0)y kx k =+≠与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1),与y 轴交于点D .(1)求直线l 对应的函数表达式及反比例函数G 1的表达式; (2)反比例函数G 2::2 (0)ty t x=≠, ①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA =EB ,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.24.在△ABC ,∠BAC 为锐角,AB >AC , AD 平分∠BAC 交BC 于点D .(1)如图1,若△ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系; (2)BC 的垂直平分线交AD 延长线于点E ,交BC 于点F .①如图2,若∠ABE =60°,判断AC ,CE ,AB 之间有怎样的数量关系并加以证明;②如图3,若AC AB AE +,求∠BAC 的度数.25.在平面直角坐标系xOy 中,对于⊙A 上一点B 及⊙A 外一点P ,给出如下定义:若直线PB 与 x 轴有公共点(记作M ),则称直线PB 为⊙A 的“x 关联直线”,记作PBM l . (1)已知⊙O 是以原点为圆心,1为半径的圆,点P (0,2),①直线1l :2y =,直线2l :2y x =+,直线3l :2y +,直线4l :22y x =-+都经过点P ,在直线1l , 2l , 3l , 4l 中,是⊙O 的“x 关联直线”的是 ;②若直线PBM l 是⊙O 的“x 关联直线”,则点M 的横坐标M x 的最大值是 ; (2)点A (2,0),⊙A 的半径为1,①若P (-1,2),⊙A 的“x 关联直线”PBM l :2y kx k =++,点M 的横坐标为M x ,当M x 最大时,求k 的值;②若P 是y 轴上一个动点,且点P 的纵坐标2p y >,⊙A 的两条“x 关联直线”PCM l ,PDN l 是⊙A 的两条切线,切点分别为C ,D ,作直线CD 与x 轴点于点E ,当点P 的位置发生变化时, AE 的长度是否发生改变?并说明理由.北京市西城区2014年初三二模试卷数学试卷参考答案及评分标准2014.6一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:101()(3)3tan304-+-π-+︒=413+······················································································ 4分=3+······························································································· 5分14. 证明:(1)∵BC∥DE,∴∠ACB=∠DEA.…………1分在△ABC和△DAE中,,B DAEACB DEAAC DE∠=∠⎧∠∠⎪⎩=⎪⎨,=∴△ABC≌△DAE.·························································· 4分∴AB=DA.··········································································· 5分15.方程两边同时乘以24x-,得22(2)4x x x++=-,·········································· 3分解得,3x=-. ······································································································· 4分经检验,3x=-是原方程的解3x=-······································································ 5分16.解:设该列车一等车厢有x节,二等车厢有y节.······························································1分由题意,得66494,296x yx y+=+=⎧⎨⎩,·····························································································2分EDCBA解得 4,2x y ==⎧⎨⎩, ································································································································· 4分答:该列车一等车厢有2节,二等车厢有4节 ········································································· 5分17.解:(1)由题意,得 Δ=4-4(3k -6)>0∴73k <. ······································································································· 2分 (2)∵k 为正整数, ∴k =1,2 ····································································································· 3分 当k =1时,方程x 2+2x -3=0的根x 1=-3,x 2=1都是整数; ······························ 4分当k =2时,方程x 2+2x =0的根x 1=-2,x 2=0都是整数. 综上所述,k =1,2. ·························································································· 5分18.解:(1) ∵抛物线2y x bx c =++与y 轴交于点(0,3)C ,∴c =3 . ∴23y x bx =++.又∵抛物线2y x bx c =++与x 轴交于点(1,0)A , ∴b =-4.∴243y x x =-+. ···························································································· 3分(2)点P 的坐标为(5,8)或(1,8)-. 四、解答题(本题共20分,每小题5分) 19.解:(1)∵DB 平分∠ADC ,∴1122ADC ∠=∠=∠.又∵12AEC ADC ∠=∠,∴1AEC ∠=∠.∴AE ∥BD . ························································································ 1分 又∵AB ∥EC ,∴四边形AEDB 是平行四边形. ························································· 2分 (2)∵DB 平分∠ADC ,,∠ADC =60°,AB ∥EC ,∴∠1=∠2=∠3=30°. ∴AD =AB . 又∵DB ⊥BC , ∴∠DBC =90°.在Rt △BDC 中, CD=12,∴BC=6,DB = ········································································· 3分 在等腰△ADB 中,AH ⊥BD ,∴DH= BH=12DB = 在Rt △ABH 中,∠AHB =90°,∴AH =3,AB=6. ··················································································· 4分 ∵四边形AEDB 是平行四边形.∴AE BD == ED=AB=6.∴9AE ED DH AH +++=. ··················································· 5分 ∴四边形AEDH的周长为9.20.解:(1)6.7; ········································································································· 1分(2)42.4%, 1.5 ····························································································· 4分 (3)8.64··········································································································· 5分21.(1)证明:∵BF 为⊙O 的切线,∴AB ⊥BF 于点B . ∵ CD ⊥AB ,∴∠ABF =∠AHD =90°. ∴CD ∥BF . ∴∠ADC=∠F . 又∵∠ABC=∠ADC ,∴∠ABC=∠F .······················································································ 2分(2)解:连接BD .∵AB 为⊙O 的直径, ∴∠ADB =90°, 由(1)∠ABF =90°, ∴∠A=∠DBF . 又∵∠A=∠C .∴∠C=∠DBF . ································································································ 3分在Rt △DBF 中,3sin sin 5C DBF =∠=,DF=6, ∴BD=8. ······································································································ 4分 在Rt △ABD 中,3sin sin 5C A ==, ∴403AB =. ∴⊙O 的半径为203. ··················································································· 5分B22.解:(1)拼接示意图如下;……………… 2分(2)接示意图如下,八角形纸板的边长为 1 . ······································· 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)解:∵直线l : 2 (0)y kx k =+≠经过(1,1)-,∴1k =-,∴直线l 对应的函数表达式2y x =-+. ················································· 1分 ∵直线l 与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1), ∴3a b ==.∴(1,3)A -,B (3,-1).∴3m =-.∴反比例函数G 1函数表达式为3y x=-. ··············································· 2分(2)∵EA =EB ,(1,3)A -,B (3,-1),∴点E 在直线y=x 上.∵△AEB 的面积为8,AB =∴EH =∴△AEB 是等腰直角三角形.∴E (3,3), ······································································································ 5分(3)分两种情况:(ⅰ)当0t >时,则01t <<; ········································································ 6分 (ⅱ)当0t <时,则504t -<<.综上,当504t -<<或01t <<时,反比例函数2G 的图象与直线l 有两个公共点M ,N ,且DM DN +< ········································································································· 7分24.解:(1)AB=AC+CD ; ·················································································· 1分 (2)①AB=AC+CE ; ·························································································· 2分∴CE=HE . ·························································································· 3分EF 垂直平分BC ,∴CE=BE . ································································································· 4分 又∠ABE =60°,∴△EHB 是等边三角形. ∴BH=HE .∴AB=AH+HB=AC+CE . ·········································································· 5分 ②在线段AB 上截取AH=AC ,连接EH ,作EM ⊥AB 于点M . 易证△ACE ≌△AHE , ∴CE=HE . ∴∠EAB =30°.∴∠CAB =2∠EAB =60°. ······································································· 7分25.解:(1)①34,l l ; ·································································································· 2分②M x ; ···················································································· 3分 (2)①如图,当直线PB 与⊙A 相切于点B 时,此时点M 的横坐标M x 最大,作PH ⊥x 轴于点H ,∴HM =1M x +,AM = 2M x -,在Rt △ABM 和Rt △PHM 中, tan AB PH B M MA M HB =∠=,∴BM =12HM =1(1)2M x +.在Rt △ABM 中, 222AM AB BM =+, ∴221(2)1(1)4M M x x -=++.解得33M x =±.∴点M 的横坐标M x 最大时,3M x =∴k =·························································································· 6分 ②当P 点的位置发生变化时,AE 的长度不发生改变.如图,⊙A 的两条“x 关联直线”与⊙A 相切于点C ,D ,∴PC=PD .又∵AC=AD∴AP 垂直平分BC .在Rt △ADF 和Rt △ADP 中,sin sin ADF APD ∠=∠,∴2AF AP AD ⋅=在Rt △AEF 和Rt △AOP 中,cos AF AO A A PE E AF =∠=, ∴AF AP AE AO ⋅=⋅∴2AD AE AO =⋅ ∴12AE =.。