1.3勾股定理的应用
北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

2020-2020学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D 为底边BC的中点)的长是()A.6米 B.5米 C.3米 D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2 C.3 D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2020-2020学年度北师大版数学八年级上册同步练习:1.3 勾股定理的应用(word解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC∽△BED,可得=,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B.2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.【解答】解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.3.故选:B.【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r 则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。
1.3.2勾股定理的应用(教案) 2022—2023学年北师大版数学八年级上册

# 1.3.2 勾股定理的应用(教案)一、教学目标•了解勾股定理的概念和应用•掌握勾股定理的运用方法•能够解决与勾股定理相关的问题二、教学内容•勾股定理的定义•勾股定理的应用实例•针对勾股定理的解题方法三、教学重难点重点: - 勾股定理的运用方法 - 针对勾股定理题目的解题思路难点: - 针对实际问题应用勾股定理的思考四、教学过程1.引入(5分钟)–老师通过导入相关理论知识概念,引起学生的兴趣和思考,例如:勾股定理的故事和历史背景等。
2.理论讲解(15分钟)–老师以PPT或黑板为媒介,讲解勾股定理的定义和相关公式推导过程,注重结论的解释和实例的导入。
3.应用实例分析(20分钟)–老师以实际应用问题为例,引导学生分析如何利用勾股定理解决问题,让学生思考和讨论解题思路。
4.解题方法讲解(15分钟)–老师总结出针对勾股定理题目的解题方法,并通过典型例题向学生展示具体的解题步骤和思路。
5.练习和巩固(20分钟)–学生个人或小组完成一系列勾股定理的练习题,巩固所学的知识和解题方法。
6.提问和讨论(10分钟)–老师针对难点和易错点进行提问和解答,鼓励学生积极参与讨论和答题,增强国际互动。
7.课堂总结(5分钟)–老师让学生回顾和总结本节课所学的重点和难点,帮助学生形成对勾股定理应用的深入理解。
五、课后作业1.完成课堂练习题2.思考如何将勾股定理应用到其他实际问题中,并写出解题思路六、教学反思本节课通过引入激发学生兴趣、理论讲解、应用实例分析、解题方法讲解、练习巩固和提问讨论等多种教学手段,全面提高学生对勾股定理的理解和应用能力。
同时,在课后作业中引导学生思考拓展,进一步加深对勾股定理的理解。
针对学生的不同水平和能力,教师可以适当调整练习题的难度和复杂度,帮助学生达到巩固知识和拓展思维的目的。
勾股定理的应用--蚂蚁爬行的最短距离

1.3 勾股定理的应用问题:蚂蚁要想吃到糖果,怎样走最近?请说明理由.
蚂蚁
糖果
(平面内)两点之间,线段最短.
学习目标
情境引入
1.学会运用勾股定理求立体图形中两点之间的最短距离.
(重点)
2.能够运用勾股定理解决实际生活中的问题.(重点,难点)
讲授新课
一 立体图形中两点之间的最短距离
问题:在一个圆柱石凳上,若小明在
B
吃东西时留下了一点食物在B处,恰
好一只在A处的蚂蚁捕捉到这一信息,
于是它想从A处爬向B处,你们想一想,
蚂蚁怎么走最近?
A
讲授新课
根据如下提示完成自主探究:
1、将圆柱体展开,并在练习本上画出展开图
B
2、在展开图上标上相应的字母
B
B
B'
A
A
A'
解:圆柱形油罐的展开图如图,则AB'为梯子的最短距离.
∵AA'=2×3×2=12, A'B'=5,∴AB'=13.
答:梯子最短需13米.
讲授新课
二 立体图形中两点之间的最短距离
问题:如图所示是一个三级台阶,它的每一级的长、宽 、高分别等于55cm、10cm、6cm,A和B是这两个台阶 的两个相对的端点,则一只蚂蚁从点A出发经过台阶爬 到点B的最短路线有多长?
数学思想: 立体图形
转化 展开
平面图形
(平面内)两点之间,线段最短.
课堂小结
说一说本节课学习了哪些内容?
小组合作探究做题方法
方法归纳: 立体图形中求两点间的最短距离,一般把立体 图形展开成平面图形,连接两点,根据两点之间 线段最短确定最短路线.
初中数学北师大版八年级上册《13勾股定理的应用》教学设计

北师大版数学八年级上册1.3勾股定理的应用教学设计师:1. 勾股定理的内容是什么?如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.2. 勾股定理的逆定理是什么?a2+b2=c2三角形是直角三角形3.欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.提出问题,学生探究热情高涨,为下一环节奠定了良好基础.合作探究蚂蚁爬行的最短(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?(2)如图所示,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?师:想一想为什么线段AB是最短的路线?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?已知圆柱的高是12,∴AA'=12;底面周长是18,∴A'B=9;∴AB2=AA'2+A'B2=144+81=225,∴AB=15答:爬行的最短路程是15cm。
【总结提高】求圆柱侧面上两点间的最短路线长的方法:路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.生:两点之间,线段最短【解】设滑道AC的长度为xm,则AB的长度为xm,AE的长度为(x-1)m,在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.1.如图,正方体的边长为1,一只蚂蚁沿正方体的表面从一个顶点A爬行到另一个顶点B,则蚂蚁爬行的最短路程的平方是( D )。
A.2 B.3 C.4 D.52.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地的距离是__5KM______;若A地在C地的正东方向,则B地在C地的____正北____方向.3.甲、乙两位探险者,到沙漠进行探险。
马翠萍1.3勾股定理的应用选编

AB C DEF一.基础夯实1.斜边长25cm,一条直角边长7cm,这个直角三角形的面积为.2.轮船在大海中航行,它从A点出发,向正北方向航行20km,遇到冰山后折向正东方向航行15km,则此时轮船与A点的距离为.3.欲登12米高的建筑物,梯子底端离建筑物5米,梯子的长度至少米.4.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是米.5.直角三角形的两直角边分别为5cm,12cm,其斜边上的高为().A.6cm B.5cm C.3013D.6013cm6.如图4所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A、3米B、4米C、5米D、6米7.下列数组中不是勾股数的是()A、3k,4k,5kB、5,12,13C、7,24,25 D 、8,12,15二.达标过关8.如图所示,为得到湖两岸A点和B点间的距离,一个观测者在C点设桩,使△ABC为直角三角形,并测得AC长20米,BC长16米,A、B两点间距离是多少?9.在图中,BC长为3厘米,AB长为4厘米,AF长为12厘米,求正方形CDEF的面积.10. 一个无盖的长方体形盒子的长、宽、高分别为8㎝,8㎝,12㎝,一只蚂蚁想从盒底的A点爬到盒顶的B点,你能帮蚂蚁设计一条最短的路线吗?蚂蚁要爬行的最短行程是多少?11. 如图2,是一个零件的形状,按规定这个零件中必须有AC⊥BC,工人师傅量得B、C两点的距离是36mm,AD=12mm,CD=9mm,AB=39mm,∠ADC=90°,问这个零件符合要求吗?请说明理由.三.综合提高12. 如图,已知长方体的长为20cm,宽为10cm,高为40cm,一只壁虎如果沿长方体的表面从A点爬到E点,怎么爬最近?最短路程是多少?图1HGFEDCBA图2DC BA。
八年级数学上册1《勾股定理的应用》课件 2022年北师大版八上数学PPT+

9.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,
但他把这三个数据与其他的数据弄混了,请你帮助他找出来为( C )
A.13,12,12
B.12,12,8
C.13,10,12
D.5,8,4
10.如图,王大伯家屋后有一块长12 m,宽8 m的矩形空地,他在以
长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,
思路探究:除了截短法和延长法外,在等腰三角形中,我们通常作底边的中线或高或顶角平分 线,以便使用等腰三角形的性质(三线合一).
第一章 三角形的证明 复习
回顾 思考1
“原名〞 知多少
公理:公认的真命题称为公理(axiom). 证明:除了公理外,其它真命题的正确性都通过推理的方法证实.
推理的过程称为证明. 定理:经过证明的真命题称为定理(theorem). 推论:由一个公理或定理直接推出的定理,叫做这个公理或定理的推论(corollary).推 论可以当作定理使用.
第8题图
第9题图
15.(8分)在一棵树的10 m高处有两只猴子,其中一只爬下树走向离树 20 m的池塘,而另一只爬向树顶后直扑池塘,如果两只猴子经过的距 离相等,问这棵树有多高? 解:如图,点B为树顶,D处有两只猴子,那么AD=10 m,C为池塘, 那么AC=20 m.设BD的长为x m,那么树的高度为(10+x) m.因为 AC+AD=BD+BC,所以BC=20+10-x=(30-x)m.在△ACB中, ∠A=90°,所以AC2+AB2=BC2.即202+(10+x)2=(30-x)2,解得 x=5,所以x+10=5+10=15,即这棵树高为15 m
结论4: 等腰三角形腰上的高线与底边的夹角等于顶 角的一半.
结论5:等腰三角形底边上的任意一点到两腰的距离 之和等于一腰上的高.
勾股定理的应用教学设计
勾股定理的应用教学设计勾股定理的应用教学设计(精选篇1)一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1、通过观察图形,探索图形间的关系,发展学生的空间观念。
2、在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点。
四、教法学法1、教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2、课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具。
五、教学过程分析本节课设计了七个环节、第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
北师大版八年级(上)数学《勾股定理的应用》课堂练习(含答案)
1.3 勾股定理的应用1.若正整数a,b,c是一组勾股数,则下列各组数一定仍然是勾股数的是()A.a+1,b+1,c+1 B.a2,b2,c2C.2a,2b,2c D.a-1,b-1,c-1你能否再多写几组勾股数,从这些勾股数中,你能发现什么规律?2.如图1,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A 有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)3.有一个长宽高分别为2cm,1cm,3cm的长方体,如图2,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由.4.在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?参考答案1.C若a,b,c为一组勾股数,那么ka,kb,kc(k≠0,k为常数)也是勾股数.2.解:如下图:将圆柱沿着过A点的高AC剪开,并将侧面展开.1·2πr=π·r≈18(cm)则AC=24cm,BC=2∴在Rt△ABC中,AB2=AC2+BC2=242+182,∴AB=30(cm)∴它最短的爬行路程约为30×2=60(厘米)3.(1)当蚂蚁在侧面A1ABB1和侧面B1BCC1上爬行时,爬行的最短路线的长设为d1,则d12=(2+1)2+32=18(2)当蚂蚁在侧面A1ABB1和上底面A1B1C1D1上爬行时,由A到C1的最短路线的长设为d2,则d22=22+(3+1)2=20(3)同理可求得蚂蚁在侧面A1ADD1和D1DCC1上爬行时,d32=32+(1+2)2=18,蚂蚁在底面ABCD,侧面D1DCC1上爬行时,d32=22+(1+3)2=20所以,蚂蚁可沿A—M—C1爬行,如下图:或蚂蚁沿A—N—C1爬行,如下图:4.解:设水深为x尺如图,Rt△ABC中,AB=h,AC=h+3,BC=6由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62∴h2+6h+9=h2+36,解得:h=4.5答:水深4.5尺.。
1.3勾股定理的应用补充
八年级 数学学科学案课题:1.3勾股定理的应用(补充)【学习目标】知识目标:1、会用勾股定理求最短路径问题2、在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力。
能力目标:1、利用数学中的建模思想构造直角三角形,利用勾股定理解决实际问题.2、提高运用勾股定理解决实际问题的能力情感目标:1、感知勾股定理解决实际问题的作用2、在用勾股定理解决实际问题的过程中,培养数学的学习兴趣【学习重点】能通过长方体,运用勾股定理解决蚂蚁行走的最短路径问题【学习难点】利用数学中的建模思想构造直角三角形,利用勾股定理解决实际问题.预习案 1、下面的四组数中不是勾股数的一组是 ( ) A .3,4,5 B .5,12,13 C .6,8,10 D .5,8,132、如图1中的四边形都是正方形,字母B 所代表的正方形的边长是()A .144B .12C .194D .153、可以利用如图2验证勾股定理,得到的等式是4、.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形探究案导学案装订 线 图2图1活动一:例1:如图一个无盖长方体盒子的长、宽、高分别为8cm ,8cm,12cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,蚂蚁爬行的最短路径是多少?(1)为了求蚂蚁从A点爬到B点的最短路径,请你利用下图画出相应的平面展开图;(2)请你求出蚂蚁爬行的最短路径活动二:例2:如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米,自A至B在长方体表面的连线距离最短是多少?反馈案1、蚂蚁沿图中所示的折线由A点爬到了D点,蚂蚁一共爬行了多少厘米?(图中小方格的边长代表1厘米)2、小明从家出发向正北方向走了150m,接着向正东方向走到离家250m远的地方。
小明向正东方向走了多远?3、如图,直角三角形三边上的半圆面积之间有什么关系?(写出具体过程)4、方格纸上每个小正方形的面积为1个单位,在方格纸中以线段AB为边画正方形,所画正方形各顶点必须在小正方形的顶点上,并且计算所画正方形的面积。
2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》达标测试题(附答案)
2022-2023学年北师大版八年级数学上册《1.3勾股定理的应用》达标测试题(附答案)一.选择题(共8小题,满分32分)1.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁要从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A.cm B.3cm C.cm D.2cm2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4≤a≤5B.3≤a≤4C.2≤a≤3D.1≤a≤23.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间整有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20B.24C.25D.264.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.175.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.dm B.20dm C.25dm D.35dm6.如图,某公园的一块草坪旁边有一条直角小路,公园管理处为了方便群众,沿AC修了一条近路,已知AB=40米,BC=30米,则走这条近路AC可以少走()米路.A.20B.30C.40D.507.如图,已知树EF(垂直于地面)上的点B处(BE=5米)有两只松鼠,为抢到A处(点A,E在同一水平地面上,AE=10米)的坚果,一只松鼠沿B﹣E﹣A到达点A处,另一只松鼠沿B﹣F﹣A到达点A处.若两只松鼠经过的路程相等,则树EF的高为()A.6.5米B.7.0米C.7.5米D.8米8.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米二.填空题(共5小题,满分20分)9.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间为秒.10.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.11.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是尺.12.小亮用11块高度都是2cm的相同长方体小木块垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD木板,截面如图所示.两木墙高分别为AE与CF,点B 在EF上,求正方形ABCD木板的面积为cm2.13.折竹抵地(源自《九章算术》):“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子处3尺远.则原处还有尺竹子.(1丈=10尺)三.解答题(共7小题,满分68分)14.八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?15.在综合实践课上王老师带领大家利用所学的知识了解某广告牌的高度,已知CD=3m,经测量,得到其它数据如图所示,其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算广告牌的高度GH.16.如图,有一架秋千,当他静止时,踏板离地的垂直高度DE=0.6m,将他往前推送2.4m (水平距离BC=2.4m)时,秋千的踏板离地的垂直高度BF=1.2m,秋千的绳索始终拉得很直,求绳索AD的长度.17.一架2.5m长的梯子AB斜靠在一竖直的墙AC上,这时BC为0.7m.如果梯子的顶端A 沿墙下滑0.4m,那么梯子底端B在水平方向上滑动了多少米?18.某条道路限速70km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速检测仪间的距离为50m.(1)求BC的长;(2)这辆小汽车超速了吗?19.图1是超市购物车,图2为超市购物车侧面示意图,测得∠ACB=90°,支架AC=4.8dm,CB=3.6dm.(1)两轮中心AB之间的距离为dm;(2)若OF的长度为dm,支点F到底部DO的距离为5dm,试求∠FOD的度数.20.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=600km,BC=800km,又AB =1000km,以台风中心为圆心,周围500km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?参考答案一.选择题(共8小题,满分32分)1.解:如图,将正方体展开,则线段AB即为最短的路线,∵这个正方体的棱长为1cm,∴AB==(cm),∴蚂蚁爬行的最短路程是cm.故选:A.2.解:设b是圆柱形的高,当吸管底部在地面圆心时吸管在罐内部分b最短,此时b就是圆柱形的高,即b=12;∴a=16﹣12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分b最长,b==13,∴此时a=3,所以3≤a≤4.故选:B.3.解:如图所示,将图展开,图形长度增加2MN,原图长度增加4米,则AB=20+4=24,连接AC,∵四边形ABCD是长方形,AB=24,宽AD=10,∴AC====26,∴蚂蚁从A点爬到C点,它至少要走26的路程.故选:D.4.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.5.解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故选:C.6.解:在Rt△ABC中,∵AB=40米,BC=30米,∴AC==50(米),30+40﹣50=20(米),∴他们踩坏了50米的草坪,只为少走20米的路.故选:A.7.解:设设BF为xm,则EF=(5+x)m,由题意知:BE+AE=15m,∵两只松鼠所经过的路程相等,∴BF+AF=15m,∴AF=(15﹣x)m,在Rt△AEF中,由勾股定理得:102+(x+5)2=(15﹣x)2,解得x=2.5,∴EF=5+2.5=7.5(m),答:这棵树高7.5米.故选:C.8.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故选:B.二.填空题(共5小题,满分20分)9.解:设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.10.解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.11.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故答案是:13.12.解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°.∵∠ABC=90°,∴∠ABE+∠CBF=90°.∴∠EAB=∠CBF,∵AB=BC,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=2×5=10(cm),∵CF=2×6=12(cm).在Rt△BCF中,BC2=BF2+CF2=102+122=244,∴S正方形ABCD=BC2=244cm2,即正方形ABCD木板的面积为244cm2.故答案为:244.13.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.解得:x=4.55.答:原处还有4.55尺高的竹子.故答案为:4.55.三.解答题(共7小题,满分68分)14.解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6米,答:风筝的高度CE为16.6米;(2)由题意得,CM=9,∴DM=6,∴BM===10,∴BC﹣BM=7,∴他应该往回收线7米.15.解:延长CD交AH于点E,设DE=x,则BE=x,∵∠A=30°,∴==,∴x=5﹣4.5,∴GH=EC=5﹣1.5(m)答:GH的长为=(5﹣1.5)m.16.解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x+0.6﹣1.2)m,故x2=2.42+(x+0.6﹣1.2)2,5.76﹣1.2x+0.36=0解得:x=5.1,答:绳索AD的长度是5.1m.17.解:∵Rt△OAB中,AB=2.5m,BC=0.7m.∴AC==2.4(m),同理,Rt△CA1B1中,∵A1B1=2.5m,CA1=2.4﹣0.4=2(m),∴B1C==1.5(m),∴BB1=B1C﹣BC=1.5﹣0.7=0.8(m).答:梯子底端B在水平方向上滑动了0.8米.18.解:(1)在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC===40(m),(2)∵BC=40m,∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.19.解:(1)在Rt△ABC中,由勾股定理得:AB===6(dm),故答案为:6;(2)过点F作FH⊥DO,交DO延长线于H,如图所示:则FH=5dm,在Rt△FHO中,由勾股定理得:OH===5(dm),∴OH=FH,∴△FHO是等腰直角三角形,∴∠FOH=45°,∴∠FOD=180°﹣∠FOH=180°﹣45°=135°,∴∠FOD的度数为135°.20.解:(1)∵AC=600km,BC=800km,AB=1000km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴600×800=1000×CD,∴CD=480(km),∵以台风中心为圆心周围500km以内为受影响区域,∴海港C受台风影响;(3)当EC=500km,FC=500km时,正好影响C港口,∵ED==140(km),∴EF=280km,∵台风的速度为28千米/小时,∴280÷28=10(小时).答:台风影响该海港持续的时间为10小时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨井中学八年级数学学科导学案
集体备课 备注栏
一、 课题:第三节 勾股定理的应用
二、学习目标:
1.运用勾股定理及直角三角形的判别条件解决简单的实际问题。
2.进一步体会转化的数学思想方法。
3.在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己。
三、学习重难点
重点:探索、发现事物中隐含的勾股定理及其逆及理,并用其解决生活实际问题.
难点:利用建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
四、教学过程
【温故知新】
1、公理:两点之间, 。
2、立体图形 图形直角三角形问题解决。
3、如果三角形的三边长a、b、c满足 ,那么这个三角形是 。
4、判断一组数是勾股数的条件是:①都是 数;②满足条件 。
【导学释疑】
有一个圆柱它的高等于12厘米,底面半径等于3厘米。在圆柱下底面的A点有一只蚂蚁,他想
吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(参看P.13页
图1—12)
⑴利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你觉得那条线路最短?
AB
(2)如图,将圆柱侧面剪开展开成一个长方形,
从A点到B 点的最短路线是什么?你画对了吗?
A
B
(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?
解:依题意,把圆柱的侧面展成如图所示的长方形,求最短路线问题就变成了根据
求 三角形边的问题。
反思:此问题是将立体的线路问题先 为平面的线路问题,再利用所学数学常识解决问题。
归纳总结:立体图形转化为 图形,再转化为 问题,是解决此类问题的一般
思路
【巩固练习】
1、课本P13引例。
2、做一做
3、随堂练习
【检测反馈】
一个无盖的长方体盒子的长、宽、高分别为8cm、8cm、 12cm,一只蚂蚁想从盒底的A点爬到盒
顶的B 点,你能 帮蚂蚁设计一条最短的线路吗?蚂蚁要爬行的最短行程是多少?
在你的学具上画出几条线路,你认为将长方体侧面展开有几种方式?
12cm
8cm
8cm
B
A
【学(教后反思)】