现代控制理论稳定性理论

合集下载

《现代控制理论》课件

《现代控制理论》课件
现代控制理论
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。

现代控制理论

现代控制理论

学科内容
按照发展的过程,我们通常把自动控制理论区分为经典控制理论和现代控制理论两个部分。
经典控制理论经典控制理论的研究对象是单输入单输出的自动控制系统,特别是线性定常系统。经典控制理 论的特点是以输入输出特性为系统的数学模型。
现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、 随机控制理论和适应控制理论。
线性系统理论:它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和 观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派: 基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔 曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。
现代控制理论
建立在状态空间法基础上的一种控制理论
01 发展过程
03 智能系统
目录
02 学科内容 04 相关名词
建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控 制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比 经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统 和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定 的性能指标的最优控制系统提供了可能性。
谢谢观看
非线性系统理论:非线性系统的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性 系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分 几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。

现代控制理论

现代控制理论

现代控制理论⾮线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引⼊到系统控制理论中,从⽽标志着现代控制理论研究的开始。

现代控制理论的研究对象是系统的数学模型,它根据⼈们对系统的性能要求,通过对被控对象进⾏模型分析来设计系统的控制律,从⽽保证闭环系统具有期望的性能。

其中,线性系统理论已经形成⼀套完整的理论体系。

过去⼈们常⽤线性系统理论来处理很多⼯程问题,并在⼀定范围内取得了⽐较满意的效果。

然⽽,这种处理⽅法是以忽略系统中的动态⾮线性因素为代价的。

实际中很多物理系统都具有固有的动态⾮线性特性,如库仑摩擦、饱和、死区、滞环等,这些⾮线性动态⾮线性特性的存在常常使系统的控制性能下降,甚⾄变得不稳定。

这就使得利⽤线性系统理论处理⾮线性动态系统⾯临巨⼤的困难。

此外,在控制系统运⾏过程中,环境的变化或者元件的⽼化,以及外界⼲扰等不确定因素也会造成系统实际参数和标称值之间出现较⼤差别。

因此,基于标称数学模型所设计的控制律⼀般很难达到期望的性能指标,甚⾄会使系统不稳定。

综上所述,研究不确定条件下⾮线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。

⾮线性动态系统是指按确定性规律随时间演化的系统,⼜称动⼒学系统,其理论来源于经典⼒学,⼀般由微分⽅程来描述。

美国数学家Birkhoff[1]发展了法国数学家Poincare在天体⼒学和微分⽅程定性理论⽅⾯的研究,奠定了动态系统理论的基础。

在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型⼀般不可能精确得到。

因此,我们只能⽤近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产⽣。

所谓鲁棒性就是指系统预期⾮线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在⽽遭到破坏的特性,鲁棒控制是⾮线性动态系统控制理论研究的⼀个⾮常重要的分⽀。

现代控制理论的发展促进了对动态系统的研究,使它的应⽤从经典⼒学扩⼤到⼀般意义下的系统。

现代控制理论(17-21讲:第5章知识点)

现代控制理论(17-21讲:第5章知识点)
V (x) C
0
试分析系统的稳定性。
解:(1)由 x(t ) 0 , 求得 xe = 0 是系统唯一平衡状态;

(2)选择Lyapunov函数为 1
2 2
二次型函数,是正定的; d 2 2 2 (3) V (x) ( x1 x2 ) 2 x1 x1 2 x2 x 2 2 x2 dt 故V(x)的导数是半负定的; (4)由:
(1) V(x)是正定的; (2) V ( x )是负定的;
则在状态空间坐标原点处的平衡状态是渐近稳定的。此时, 如果随着||x||→∞,V(x) →∞,那么在原点处的平衡状态是大 范围渐近稳定的。
2 2 例1:设系统的状态方程为: x1 x2 ax1 ( x1 x2 ) 其中:a为非零正常数。试 2 x2 x1 ax2 ( x12 x2 ) 分析系统的稳定性。

(2) V ( x ) 是半负定的; (3) 对于任意初始时刻t0时的任意状态x0≠0, 在t≥t0时,除了在 x=0时,有 V ( x) 0 外,V ( x )不恒等于零,则系统在平衡状 态是渐近稳定的。如果随着||x||→∞,V(x) →∞,那么在原 点处的平衡状态是大范围渐近稳定的。 在应用定理二时,注意以下两种情况: (1)极限环的情况。稳定, 但不是渐近稳定;
(1) V(x)在原点的某一邻域内是正定的; (2) V ( x ) 在同样的邻域内也是正定的;

那么系统在原点处的平衡状态是不稳定的。(注意:此地 V(x)的导数也可半正定,但有V(x)的导数不恒为零。)
例3:设时变系统的状态方程为: x1 x1 sin 2 t x2et x 2 x1et x2 cos 2 t 分析系统的稳定性。 解:(1) 显然 xe = 0 是系统平衡状态; (2)选择V(x)为:

现代控制理论的概念、方法

现代控制理论的概念、方法
统安全监测等方面。
THANKS FOR WATCHING和优化控制,注重系统的全局性、 最优性和鲁棒性。
现代控制理论的重要性
工业自动化
现代控制理论为工业自动化提供了理论基础和技 术支持,提高了生产效率和产品质量。
航天与航空
在航天和航空领域,现代控制理论的应用对于飞 行器的稳定性和安全性至关重要。
能源与环境
在能源和环境领域,现代控制理论有助于实现能 源的高效利用和环境的可持续发展。
VS
详细描述
线性二次型最优控制基于最优控制理论, 通过最小化系统状态和控制输入的二次型 代价函数来寻找最优的控制策略。这种方 法能够有效地优化系统的性能,提高系统 的稳定性和动态响应能力。
预测控制
总结词
预测控制是一种基于模型预测和滚动优化的 控制方法。
详细描述
预测控制通过建立系统的预测模型,对未来 的系统行为进行预测,并滚动优化控制策略 以减小预测误差。这种方法具有较好的鲁棒 性和适应性,广泛应用于工业过程控制和智 能控制等领域。
现代控制理论的历史与发展
历史
现代控制理论起源于20世纪50年代,随着计算机技术和数学理论的不断发展而 逐步完善。
发展
现代控制理论的发展涉及多个学科领域,如线性系统理论、最优控制、鲁棒控 制、自适应控制等,为复杂系统的控制提供了更广泛和深入的理论基础。
02 现代控制理论的基本概念
系统建模
总结词
系统建模是现代控制理论的基础,它通过数学模型描述系统的动态行为。
详细描述
性能指标是用来评估控制系统性能的关键因素,包括稳定性、准确性、快速性和鲁棒性 等。稳定性表示系统在受到扰动后恢复平衡的能力;准确性表示系统输出与理想输出之 间的误差大小;快速性表示系统达到稳定状态所需的时间;鲁棒性表示系统在存在不确

现代控制理论第五章

现代控制理论第五章

定理 5.3.2 设 x(k 1) Gx(k )
x Rn , G Rnn , G1
则系统在原点为渐近稳定的充分必要条件是方程
GT PG P Q,
Q 0
存在唯一正定对称解 P 0 如果 V x(k ) V x(k 1) V x(k ) xT Qx 沿任一解 的序列不恒等于零,则 Q 可取半正定的。
定理5.2.4 如果 V ( x, t ) 0 V ( x, t ) 0则原点不稳定
例5.2.2
已知系统
x1 x2 x1 ( x12 x2 2 ) x2 x1 x2 ( x12 x2 2 )

试用李雅普诺夫第二方法判断其稳定性。
解: 显然,原点 xe 0 是唯一平衡点, 取 V ( x) x12 x22 0 ,则
5.2.3 几点说明
1)对于一给定系统,李雅普诺夫函数不是唯一的。 2)对于非线性系统能给出在大范围内稳定性的信息。 3)关于稳定性的条件是充分的,而不是必要的。 4)若不能找到合适的李雅普诺夫函数就不能得出该
系统稳定性方面的任何结论。
5)李雅普诺夫函数只能判断其定义域内平衡状态的稳 定性。 6)如果系统的原点是稳定的或渐近稳定的,那么具有
定义5.1.8 不稳定: 对于某个实数
内始终存在状态

,在超球域
,使得从该状态开始的
受扰运动要突破超球域 定义5.1.9 正定函数:
1)
时, 则称
存在 2)
3)当
是正定的(正半定的)。
如果条件3)中不等式的符号反向,则称 是负定的(负半定的)。
例5.1.1
1)
2)
正定的
半正定的
3)

现代控制理论基本内容

b. 自校正自适应控制 (Self-Turning Adaptive Control)
(4)系统辨识 建立系统动态模型的方法: 根据系统的输入输出的试验数据,从一类给定的模型 中确定一个被研究系统本质特征等价的模型,并确定 其模型的结构和参数。
(5)最佳滤波理论(最佳估计器) 当系统中存在随机干扰和环境噪声时,其综合必须应 用概率和统计方法进行。即:已知系统数学模型,通 过输入输出数据的测量,利用统计方法对系统状态估 计。
1945年,美国Bode在《网络分析和反馈放大 器设计》中提出频率响应分析法-Bode图。
1948年,美国Wiener在《控制论-关于在动 物和机器中控制和通信的科学》中系统地论 述了控制理论的一般原理和方法。 ---标志控制学科的诞生
控制论:研究动物(包括人类)和机器内部 控制和通信的一般规律的学科。
(2)如何克服系统结构的不确定性及干扰带来 的影响?
(3)如何实现满足要求的控制策略?
(1)线性系统理论 研究线性系统在输入作用下状态运动过程 规律,揭示系统的结构性质、动态行为之 间的关系。
主要内容: 状态空间描述、能控性、能观性和稳定性、 状态反馈、状态观测器设计等。
(2)最优控制 在给定约束条件和性能指标下,寻找使系统性 能指标最佳的控制规律。
Kalman滤波器
1954年,钱学森的《工程控制论》在美国出 版。 ---奠定了工程控制论的基础
(1)经典控制理论 a.特点
研究对象:单输入、单输出线性定常系统。 解决方法:频率法、根轨迹法、传递函数。 非线性系统:相平面法和描述函数分析。 数学工具:拉氏变换、常微分方程。
b.局限性 难以应用于时变系统、多变量系统。 难以揭示系统更为深刻的特性。
第八章 现代控制理论初步

控制理论:介绍控制理论的基础知识,包括反馈、传递函数和稳定性

控制理论:介绍控制理论的基础知识,包括反馈、传递函数和稳定性控制理论是一门研究如何通过设定输入来影响系统行为的学科。

它在许多领域都有广泛的应用,如工程、自动化、经济学和生态学等。

控制理论的核心是通过反馈机制来调整输出,以使系统保持稳定和良好的性能。

本文将介绍控制理论的一些基础知识,包括反馈、传递函数和稳定性。

什么是反馈?在控制系统中,反馈是一种通过测量系统输出并与期望输出进行比较来调整输入的机制。

它可以帮助系统实现所需的稳定性和性能。

反馈可以分为正反馈和负反馈两种类型。

正反馈会增强系统的不稳定性,而负反馈则会减少系统的偏差和波动。

以一个简单的温度控制器为例,当温度升高超过设定值时,控制器会打开冷却系统,并发送一个信号给加热系统,要求其减少加热功率。

当温度降低到设定值以下时,控制器会关闭冷却系统,并发送一个信号给加热系统,要求其增加加热功率。

这种反馈机制可以使系统保持在稳定的温度范围内。

传递函数是什么?传递函数是描述线性系统输入输出关系的数学工具。

它将输入信号转换为输出信号,并用数学方程表示。

传递函数可以帮助我们理解系统的动态特性和响应。

传递函数通常用符号G(s)表示,其中s是复变量。

传递函数的一般形式为:G(s) =其中N(s)和D(s)是多项式函数,它们的系数代表了系统的特性。

传递函数可以通过系统的微分方程来推导。

例如,考虑一个简单的质量-阻尼-弹簧系统,其微分方程可以表示为:m + b + ky = u其中m是质量,b是阻尼系数,k是弹簧常数,y是位移,u是输入信号。

将上述微分方程做拉普拉斯变换,并解出传递函数,可以得到系统的传递函数表示形式:G(s) =通过传递函数,我们可以分析系统的稳定性、频率响应和时域响应等。

稳定性是什么?在控制理论中,稳定性是指系统在给定条件下的操作状态是否会持续保持。

稳定的系统可以达到稳定的输出,而无稳定的系统可能会产生不受控制的振荡或偏差。

稳定性可以通过控制系统的传递函数来分析。

第1章 现代控制理论概述-控制理论发展


经典控制理论—标志阶段(7/9)
➢ 传递函数只描述了系统的输入输出间关系,没有内部变量 的表示。
➢ 经典控制理论的特点是以传递函数为数学工具,本质上是 频域方法,主要研究“单输入单输出”(Single-Input Single-output, SISO)线性定常控制系统的分析与设计,对线 性定常系统已经形成相当成熟的理论。
瓦特
经典控制理论—起步阶段(3/5)
瓦特离心调速器
Watt’s fly ball governor
This photograph shows a flyball governor used on a steam engine in a cotton factory near anchester in the United Kingdom.
➢ 这些系统的复杂性和对快速跟踪、精确控制的高性能追 求,迫切要求拓展已有的控制技术,促使了许多新的见解和 方法的产生。
➢ 同时,还促进了对非线性系统、采样系统以及随机控制系 统的研究。
➢ 可以说工业革命和战争促使了经典控制理论的发展。
经典控制理论—标志阶段(4/9)
以传递函数作为描述系统的数学模型,以时域分析法、根轨迹 法和频域分析法为主要分析设计工具,构成了经典控制理论的 基本框架。 ➢ 到20世纪50年代,经典控制理论发展到相当成熟的地步,形 成了相对完整的理论体系,为指导当时的控制工程实践发 挥了极大的作用。
经典控制理论—起步阶段(5/5)
经典控制理论—发展阶段(1/4)
3. 发展阶段
实践中出现的问题,促使科学家们从 理论上进行探索研究。
➢ 1868年,英国物理学家麦克斯韦 (J.C. Maxwell)通过对调速系统 线性常微分方程的建立和分析,

现代控制理论ppt


求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入

动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理4.2 [定常情况] 对于零初始条件的定常系统,设初始时
刻 t0 0 ,单位脉冲响应矩阵为Gt,传递函数矩阵为Gs,则 系统为BIBO稳定的充分必要条件为,存在一个有限常k,使 G t
的每一个元gij ti 1,2,L , q, j 1,2,L , p满足
0
gij t dt
k
或者 Gs为真有理分式函数矩阵,且其每一个元传递函数 gi的j s
时,tl 1ell才是绝对可积的,即 gij t 为绝对可积,从而系统是
BIBO稳定的。证毕。
二 内部稳定性
考虑如下的线性时变系统
x& A t x B t u t ,x t0 x0,t t0,t y CtXt Dtut
设系统的外输入ut 0 ,初始状态 x0是有界的。系统的状
态解为
本章首先介绍外部温度性和内部稳定性的概念,然后讨论 李亚普诺夫稳定性的定义,定理,李亚普诺夫方法在线性系统 中的应用。
第一节 外部稳定性和内部稳定性
一 外部稳定性
定义4.1 (有界输入,有界输出稳定性)
对于零初始条件的因果系统,如果存在一个固定的有限常
数 k 及一个标量 输入ut满足 ut
,使得对于任意的 t t0, ,当系统的
第四章 稳定性理论
在控制系统的分析和设计中,首先要解决系统的稳定性问 题。动力学系统的稳定机制与其本身的结构密切相关,如何根 据动力学系统的构成分析其稳定性受到普遍的重视。
导弹稳定控制
倒立摆稳定控制
在控制系统稳定性研究中,李亚普诺夫(A.M.Lyapunov)方法 得到了广泛的应用。李亚普诺夫方法包括第一方法(也称为间接 法)和第二方法(通常称为直接法)。
从而根据定义4.1知系统是BIBO稳定的。
再证必要性 采用反证法,假设存在某个 t1 t0, 使得
t t0
g t1, d
(4-3)
定义如下的有界输入函数 ut
1
u
t
Sgn
t1,
t
0
当g t1,t 0 当g t1,t 0
1
当g t1,t 0
在上述输入激励下,系统的输出为
y t1
定理4.1 [时变情况] 对于零初始条件的线性时变系统,设Gt,
为其脉冲响应矩阵,则系统为BIBO稳定的充分必要条件为,
存在一个有限常数k,使得对于一切t t0,,Gt, 的每一个元
满足 gij t, i 1,2,L ,q, j 1,2,L , p
t t0
gij t, d
k
(4-1)
证明 为了方便,先证单输入-单输出情况,然后推广到多输入
i 1, 2,L , n
则式(4-7)成立。 内部稳定性描述了系统状态的自由运动的稳定性。
这里顺便说说有界输入,有界状态稳定性(简记为BIBS)
问题。在内部稳定性的定义中,要求系统的输入ut 0。如
果对于任意有界输入 u t 以及k任意有界初始状态 x,t存0
在一个 0 k,t0,x标t0 量 使得系统状态解满足 x t, 则该系
式(4-4)对应的拉普拉斯反变换为:
hltl e 1 lt, l 1, 2,L , m

(4-5)
当l 0时,式(4-5)为 函数。这说明,由gij s取拉普拉斯反变
换导出gij t 是由有限个形为(4-5)式之和构成的,和式中也可能
包含 函数。容易看出,当且仅当l l 1,2,L ,m处在在半复平面
所有极点处在左半复平面。
证明 定理4.2第一部分结论可直接由定理4.1得到,下面只
要证明定理的第二部分。
由假设条件,gij s为真有理分式,则利用部分分式法将其展
开为有限项之和的形式,其中每一项均具有形式为
l ,
s l l
l 1, 2,L , m
(4-4)
这里 l 为gij s极点, l 和 l 为常数,也可为零且 1 L m n
k 时,所产生的输出y t满足 y t
ak
则称该因果系统是外部稳定的,也就是有界输入-有界输出
稳定的,简记为BIBO稳定。
这里必须指出,在讨论外部稳定性时,是以系统的初始条 件为零作为基本假设的,在这种假设下,系统的输入-输出描 述是唯一的。线性系统的BIBO稳定性可由输入-输出描述中 的脉冲响应阵或传递函数矩阵进行判别。
gi1 t,
u1
d
L
t t0
gip
t,
u p
d
t t0
gi1
t,
u1
d
L
t t0
gip t, up
d
t t0
gi1 t, u1 d L
t t0
gip t, up d
i 1, 2,3,L ,q
由于有限个有界函数之和仍为有界函数,利用单输入-单位输出 系统的结果,即可证明定理4.1的结论。证毕。
t1 t0
g t1, u d
t1 t0
g t1, d
这表明系统输出是无界的,同系统是BIBO稳定的已知条件 矛盾。因此,式(4-3)的假设不成立,即必定有
t t0
g t1, d
k
t1 [t,)
现在将上述结论推广到多输入-多输出的情况。考察系统输出
y(t)的任一分量yi (t)
yi t
t t0
-多输出情况。在单输入-单输出条件下,输入-输出满足关系
y
t
t
t0
g
t,
u
d
(4-2)
先证充分性 已知式(4-1)成立,且对任意输入ut满
足 u t k1 , t t0,, 要证明输出 y t有界。由(4-2)式,
可以方便得到
y t
t
t0
g
t,
u
d
t
t0
g t,
u d
t
k1 t0 g(t, ) d kk1
统称之为有界输入-有界状态稳定的。对于线性定常系统而言,
满足渐近定常系统而言,满足渐近稳定性时,一定是BIBS稳定
eAt l 1 sI A 1
l
1
adj sI s-1 s-2
A L s-n
i 为A之特征值
进一步可得
n
eAt l 1
i1
Qi sI A
n
Qieit
i1
其中
Qi
s i adjsI A s i s 2 L s n
si
显然,当矩阵 A 的一切特征值满足
Re i A 0
xt t,t0 xt0
(4-6)
这里 t, 为时变系统的状态转移矩阵。如果由系统的初始 x引0
起的状态响应(4-6)满足:
lim
t
t,
t0
x0
0
(4-7)
则称系统是内部稳定的或是渐近稳定的。若系统是定常的,
则 t,t0 eAtt0,令t0 0,这时
xt t,0x0 eAtx0
假定系统矩阵 A 具有两两相异的特征值,则
相关文档
最新文档