一元一次方程辅助元问题

合集下载

一元一次方程的应用配套问题

一元一次方程的应用配套问题

4.某厂生产一批西装,每2米布可以裁上衣3件,或 裁裤子4条,现有花呢210米,为了使上衣和裤子配 套,裁上衣和裤子应该各用花呢多少米?
“每2米布…”,所以需要做的第一项工作是变“每2米布…” 为“每1米布…”, 由题意可知“每1米布可以裁上衣3/2件,或裁裤子4/2=2 条”,
设花呢210米中,裁上衣用x米,裁裤子用(210-x)米, 则上衣的数量为3/2x,裤子的数量2(210-x), 因为1件上衣与1条裤子配套, 所以上衣的数量=裤子的数量, 3/2x=2(210-x) 解得x=120 则210-x=90 所以裁上衣用120米,裁裤子用90米。
例题3、某工厂有16名工人,每人每天可以生产A 部件100个或B部件150个。其中组装一台机器需要 A部件2个和B 部件5个。问:为使每天生产的部件 刚好组装成机器,怎样安排生产A部件和B部件的工 人。
设x人生产A部件,(16-x)人生产B部件, 则每天生产的A部件数量为100x个,每天生产的B部件数量 为150(16-x)个, 因为组装一台机器需要A部件2个和B 部件5个, 所以A部件数量的5倍=B部件数量的2倍, 所以100x·5=150(16-x)·2 解得x=6 则16-x=10 所以6人生产A部件,10人生产B部件.
例题2、某车间有100名工人,每人每天平均可加工 螺栓18个或螺母24个。要使每天加工的螺栓与螺母 配套(1个螺栓配2个螺母),应如何分配加工螺栓 和螺母的工人?

设x名工人加工螺栓,(100-x)名工人加工螺母, 则每天加工的螺栓数量为18x个,加工的螺母数量为24 (100-x)个, 因为“1个螺栓配2个螺母”, 所以,要使每天加工的螺栓与螺母配套, 则有螺栓的数量乘以2=螺母的数量乘以1, 由题意,得18x·2=24(100-x)·1 解得x=40 则100-x=60 所以40名工人加工螺栓,60名工人加工螺母.

解一元一次方程应用题的方法与技巧

解一元一次方程应用题的方法与技巧

一元一次方程是初等数学中最基本的概念之一,解一元一次方程应用题则是数学中常见的问题类型之一。

本文将带领读者深入了解解一元一次方程应用题的方法与技巧,帮助读者更好地掌握这一知识点。

一、了解一元一次方程的概念在解一元一次方程应用题之前,我们首先需要了解一元一次方程的概念。

一元一次方程是指方程中只含有一个未知数,并且该未知数的最高次数为一。

一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。

解一元一次方程就是要找到使得该方程成立的未知数的值。

二、掌握解一元一次方程的基本方法在解一元一次方程应用题时,我们可以通过以下基本方法来求解。

1. 移项当方程中含有未知数的项和已知数的项时,我们可以通过移项的方法将未知数的项移到一个侧,以便进行下一步计算。

对于方程2x+3=7,我们可以通过移项将3移到等号的右侧,得到2x=7-3。

2. 消元如果方程中包含多个未知数的项,我们可以通过消元的方法化简方程。

消元的方法通常是通过加减乘除的运算,将未知数的系数相消,从而得到一个简化的方程。

对于方程3x-2y=5和2x+y=7,我们可以通过消元的方法将y的系数相消,从而仅含有一个未知数x的方程。

3. 求解通过移项和消元的方法,我们最终可以得到一个只含有一个未知数的简单方程,然后可以通过解方程的方法求解未知数的值。

解方程的方法包括凑平方、分式法、代入法等。

通过这些方法,我们可以得出未知数的值,从而求解一元一次方程。

三、应用题解题技巧在解一元一次方程应用题时,我们常常面临各种实际问题,而这些问题往往可以用一元一次方程来进行建模和求解。

以下是一些解一元一次方程应用题的常用技巧。

1. 建立方程在解题时,我们首先需要根据实际问题建立方程。

这就需要我们理解问题,将问题中的已知条件和未知量用数学符号表示出来,建立起方程模型。

2. 明确未知数在建立方程时,我们需要明确未知数代表的是什么,只有明确了未知数,才能建立准确的方程模型。

一元一次方程应用题(精选拔高-题型全-含详细答案)

一元一次方程应用题(精选拔高-题型全-含详细答案)

一元一次方程的应用1、列方程解应用题的根本步骤和方法:注意:〔1〕初中列方程解应用题时,怎么列简单就怎么列〔即所列的每一个方程都直接的表示题意〕,不用担忧未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.〔2〕解方程的步骤不用写出,直接写结果即可.〔3〕设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:〔1〕“直接设元〞:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;〔2〕“间接设元〞:有些应用题,假设直接设未知数很难列出方程,或者所列的方程比拟复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.〔3〕“辅助设元〞:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.〔4〕“局部设元〞与“整体设元〞转换:当整体设元有困难时,可以考虑设其一局部为未知数,反之亦然,如:数字问题.模块一:数字问题〔1〕多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,〔其中a 、b 均为整数,19a ≤≤,09b ≤≤〕那么这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,〔其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤〕那么这个三位数表示为:10010a b c ++.〔2〕奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +〔其中k 表示整数〕.〔3〕三个相邻的整数的表示方法:可设中间一个整数为a ,那么这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得总分值,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,那么个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,那么这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,那么这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,那么这个四位数可以表示为108x +,那么调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗?【解析】设小明在7:00时看到的两位数的十位数字是x ,那么个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题〔1〕、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.〔2〕、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. 〔3〕、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2021年12月的日历表,请解答问题:在表中用形如下列图的平行四边形框框出4个数,〔1〕假设框出的4个数的和为74,请你通过列方程的方法,求出它分别是哪4天? 〔2〕框出的4个数的和可能是26吗?为什么?【解析】〔1〕设第一个数是x ,那么根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;〔2〕设第一个数为x ,那么41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】〔1〕15,16,21,22;〔2〕无法构成平行四边形.【例6】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?假设能,请找出这样的位置;假设不能,请说明理由.【解析】〔1〕设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.那么平移后的四个数是13、14、20、21.〔2〕设四个数字是x ,1x +,7x +,8x +,那么41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例7】 把2021个正整数1,2,3,4,…,2021按如图方式排列成一个表.〔1〕用如图方式框住表中任意4个数,记左上角的一个数为x ,那么另三个数用含x 的式子表示出来,从小到大依次是________________.〔2〕由〔1〕中能否框住这样的4个数,它们的和会等于244吗?假设能,那么求出x 的值;假设不能,那么说明理由.【解析】〔1〕∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.〔2〕不能.假设能够框住这样的4个数,那么:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】〔1〕8x +,16x +,24x +;〔2〕不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.〔1〕当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; 〔2〕当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量. 【例8】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下局部的13,还剩下42公顷没耕完,那么这片地共有多少公顷?【解析】设这片地共有x 公顷,第一天耕了这片地的23,那么耕地23x 公顷,第二天耕了剩下局部的13,那么第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭〔公顷〕,根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例9】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!〞牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.〞问牧羊人的这群羊共有多少只?【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例10】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长?【解析】设停电时间为x 小时,粗蜡烛长l 米,那么细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例11】 2006年我市在全国率先成为大面积实施“三免一补〞的州市,据悉,2021年我市筹措农村义务教育经费与“三免一补〞专项资金3.6亿元【由中央、省、市、县〔区〕四级共同投入,其中,中央投入的资金约2.98亿元,市级投入的资金分别是县〔区〕级、省级投入资金的1.5倍、18倍】,且2021年此项资金比2021年增加1.69亿元.〔1〕2021年我市筹措农村义务教育经费与“三免一补〞专项资金多少亿元?〔2〕2021年省、市、县〔区〕各级投入的农村义务教育经费与“三免一补〞专项资金各多少亿元? 〔3〕如果按2021-2021年筹措此项资金的年平均增长率计算,预计2021年,我市大约需要筹措农村义务教育经费与“三免一补〞专项资金多少亿元〔结果保存一位小数〕?【解析】〔1〕3.61 1.69 1.91-=〔亿元〕.〔2〕设市级投入x 亿元,那么县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =〔亿元〕,10.0218x =〔亿元〕.〔3〕 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭〔亿元〕. 【答案】〔1〕1.91亿元;〔2〕省、市、县分别投入0.02亿元、0.36亿元、0.24亿元;〔3〕6.8亿元.模块四:行程问题一、 行程问题路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×〔顺流速度-逆流速度〕 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的根本数量关系为:车速×过桥时间=车长+桥长.【例12】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,那么甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例13】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,假设每小时行18千米,那么比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,那么此人此时骑摩托车的速度应为多少?【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =, 此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-〔千米/时〕 【答案】27【例14】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米?【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例15】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米?【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭〔千米〕 【答案】9千米【例16】 一人步行从甲地去乙地,第一天行假设干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天?【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.那么根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】7.5天【例17】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为a ,原来的水速为b ,那么2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+〔小时〕.【答案】1【例18】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少?【解析】因为向上游了10分钟,所以返回追赶也要10分钟〔流水中的相遇时间与追及时间都与水流速度无关〕,即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=〔千米∕时〕.【答案】水流速度为4.5千米/时【例19】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问: 〔1〕假设小船按水流速度由A 港漂流到B 港需多少小时? 〔2〕救生圈是何时掉入水中的?【解析】〔1〕设小船在静水中的速度为a ,水流速度为b ,那么6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=〔小时〕; 〔2〕设小船行驶x 小时后,救生圈掉入水中,那么(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各局部工作量之和=1【例20】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时?【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例21】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例22】 某中学库存假设干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.〔1〕问该中学库存多少套桌凳?〔2〕在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【解析】〔1〕设该中学库存x 套桌凳,根据题意可列方程:201624x x -=,解得960x =. 〔2〕方案①所需费用:()9608010540016⨯+=〔元〕; 方案②所需费用:()96012010520024⨯+=〔元〕; 方案③所需费用:()960801201050401624⨯++=+〔元〕. 综上,方案③最省钱.【答案】〔1〕960套;〔2〕方案③最省钱.模块六:商品销售问题在现实生活中,购置商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些根本概念的根底上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价 利润=进价×利润率实际售价=标价×打折率【例23】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例24】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?【解析】设月初进货价为a 元,月初利润率为x ,那么月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例25】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的本钱价为15元/千克,B 原料液的本钱价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总本钱增加了12%,公司为了拓展市场,打算再投入现总本钱的25%做广告宣传,如果要保证每千克利润不变,那么此时这种饮料的利润率是多少?【解析】原料液A 的本钱价为15元/千克,原料液B 的本钱价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总本钱上涨12%,设每100千克成品中,二原料比例A 占x 千克,B 占〔100-x 〕千克,那么涨价前每100千克本钱为()1510100x x +-,涨价后每100千克本钱为()1811100x x +-,根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -= 即二者的比例是::1:6A B =,那么涨价前每千克的本钱为156075777+=〔元〕,销售价为127.57元,利润为7.5元. 原料涨价后,每千克本钱变为12元,本钱的25%为3元,保证利润为7.5元,那么利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最正确方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比拟后得出最正确方案.【例26】 某开发商进行商铺促销,广告上写着如下条款:投资者购置商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.〔1〕请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?〔注:=100%⨯投资收益投资收益率实际投资额〕 〔2〕对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?【解析】〔1〕设商铺标价为x 万元,那么按方案一购置,那么获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯=按方案二购置,那么获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x ⨯≈. 所以投资者选择方案二获得的投资收益率高.〔2〕由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了62.5万元,乙投资了53.125万元【答案】略【例27】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.〔1〕假设绕道而行,要15分钟到达学校。

5.3+实际问题与一元一次方程(4)——配套问题+课件++2024—2025学年人教版数学七年级上册

5.3+实际问题与一元一次方程(4)——配套问题+课件++2024—2025学年人教版数学七年级上册
并完成解答过程.
螺栓
螺母
人数
x
22-x
每人每天生产个数
1 200
2 000
每天生产总个数
1 200x
2 000(22-x)
解:依题意,得1 200x∶2 000(22-x)=1∶2,
即2 000(22-x)=2×1 200x.
解得x=10.
所以22-x=12.
答:应安排10名工人生产螺栓,12名工人生产螺母.
张纸板用图2的方式裁剪.
由题意,得[x+3(210-x)]∶10x=1∶2,

即x+3(210-x)= ×10x.


解得x=90.所以 ×10x=450.

答:一共做了450个礼盒.
9.曾经,家具、家电、服装被称为外贸出口的“老三样”,如今,
以电动汽车、锂电池、太阳能电池为代表的“新三样”走俏海
外.某太阳能光伏组件车间有38名工人,每人每天可以生产1 200
个甲零件或2 000个乙零件,2个甲零件要配3个乙零件,为使每天
生产的两种型号的零件刚好配套,应安排生产甲零件和乙零件的
kg面粉.现有面粉4 500 kg,应各用多少千克面粉制作两种月饼,才
能生产最多的盒装月饼?
解:设用x kg面粉制作大月饼,则用(4 500-x)kg面粉制作小月饼.


依题意,得

=2∶4,
.
.


即4× =2×

.
.
解得x=2 500.
所以4 500-x=2 000.
变式2 (教材P134练习T3)一台仪器由1个A部件和3个B部件构成.用
1 m3钢材可做40个A部件或240个B部件.现要用6 m3钢材制作这种仪

5[1].1.4一元一次方程的应用.题库学生版

5[1].1.4一元一次方程的应用.题库学生版

黑体小四板块 考试要求 A 级要求B 级要求C 级要求方程 知道方程是刻画数量关系的一个有效的数学模型 能够根据具体问题中的数量关系,列出方程 能运用方程解决有关问题 方程的解 了解方程的解的概念 会用观察、画图等手段估计方程的解一元一次方程 了解一元一次方程的有关概念会根据具体问题列出一元一次方程能运用整式的加减运算对多项式进行变形,进一步解决有关问题一元一次方程的解法理解一元一次方程解法中的各个步骤能熟练掌握一元一次方程的解法;会求含有字母系数(无需讨论)的一元一次方程的解会运用一元一次方程解决简单的实际问题黑体小四应用题是中学数学中的一类重要问题,一般通过对问题中的数量关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.一、设未知数的三种方法 1.直接设未知数直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况. 2.间接设未知数 设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用. 3.引入辅助未知数 设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去. 注意:解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.二、列方程解应用题的步骤知识点睛中考要求一元一次方程的应用的相等关系.要注意题中的相等关系有些是明显的,有些是不明显的,需要结合生活实际来发现;2.设:设未知数,一般求什么,就设什么为x,若有几个未知数,应恰当地选择其中的一个,用字母x表示出来.有时直接设不容易设得话,可采用间接设;3.找:找出能够表示应用题全部意义的一个相等关系;4.列:根据这个相等关系列出方程;5.解:解所列出的方程,求出未知数的值;6.验:检验所求得的解是否符合题意;7.答:检验所求解是否符合题意,写出答案(包括单位名称).一、列方程【题01】根据条件列出方程(1)某数的10倍比9大1;(2)某数的14比这个数小5;(3)某数的30%比这个数的20%小2【题02】某数的23比这个数的34小5,设某数为x,下面列出的方程正确的是()A.23534x x=+B.23534x x+=-C.23534x x=-D.23534x x-=【题03】根据条件列方程:某数的3倍减去9,等于该数的13加上6.【题04】某数的70%与这个数的3倍的差等于11,设某数为m,则列出的方程为.【题05】甲队有32人,乙队有28人,现从乙队抽x人到甲队,使甲队是乙队人数的2倍,依题意,列出方程为.【题06】某工程,甲工程队单独做40天完成,乙工程队单独做需要60天完成,若乙工程队单独做30天后,甲、乙两工程队再合作x天完成.列方程为.二、一元一次方程的应用例题精讲1.和差倍分问题【题07】2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.【题08】北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009 年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?【题09】在环保竞赛中,某校代表队的平均分是88分,其中女生的平均成绩比男生高10%,而男生的人数比女生多10%.试问男、女生的平均成绩各是多少?【题10】十堰市东方食品厂2003年的利润(总产值-总支出)为200万元,2004年总产值比2003年增加了20%,总支出减少了10%.2004年的利润为780万元.问2003年总产值、总支出各是多少万元?【题11】某商场甲、乙两个柜组12月份营业额共64万元,1月份甲增长了20%,乙增长了15%,营业额共达到75万元.试求两柜组1月份各增长多少万元?【题12】据《衢州日报》2009年5月2日报道:“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1726.13元钱,那么他购买这台冰箱节省了元钱.【题13】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.【题14】美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为cm.(保留整数)【题15】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有2吨运不走;若每辆汽车装4吨货物,那么装完这批货物后,还可以装其他货物1吨,问汽车有多少辆?这批货物有多少吨?【题16】某公司有甲乙两个工程队,甲队人数比乙队人数的23多28人.现因任务需要,从乙队调走20人到甲队,这时甲队人数是乙队人数的2倍,则甲乙两队原来的人数分别是多少人?【题17】甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.【题18】甲乙两个圆柱体容器,底面积比为53∶,甲容器水深20cm,乙容器水深10cm,再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?【题19】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的3倍;“朝天龙”的条数是“珍珠”的2倍,且“朝天龙”比“水泡”少1条,这三种金鱼各有几条呢?【题20】某区中学生足球联赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分.试问该队胜了几场?【题21】很久很久以前,有一位穷苦的农民,在路上遇见了一个魔鬼.魔鬼拉住农民的衣服说:“嗨,你的钱多得很啊!”农民答道:“不瞒你说,我穷得丁当响,全部家当,就是这口袋里的几个铜板.”魔鬼说:“我有一个主意,可以让你轻轻松松发大财.只要你从我身后这座桥上走过去,你的钱就会增加1倍.你从桥上再走回来,钱数又会增加1倍.每走过一次桥,你的钱都能增加1倍.但你必须保证,每次在你的钱数加倍以后,你都要给我24个铜板.否则,就要你的命!”农民点点头说:“好吧!”农民过了一次桥,确定钱数增加了1倍,就给了魔鬼24个铜板;第二次过桥,口袋的钱数又增加l倍,他又给了魔鬼24个铜板;第三次过桥,口袋里的钱又照例增加了1倍,不过增加以后总共只有24个铜板,统统被魔鬼抢去,分文不剩.那么农民在遇见魔鬼以前有多少钱呢?【题22】牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?【题23】一个袋中有若干个红色和蓝色的小球,如果从袋中取出一个红色的小球后,袋中剩下的小球数的17是红色的;把这个红色的小球放回袋中,再从袋中取出2个蓝色小球后,袋中剩下的小球数的15是红色的,那么袋中原有多少个小球?【题24】一批树苗按下列方法分给各班:第一班取100棵和余下的110,第二班取200棵和余下的110,……最后树苗全部被取完且各班树苗数都相等.求树苗总数和班级数.2.工程问题【题25】某车间原计划每周装配42台机床,预计若干周完成任务.在装配了三分之一以后,改进操作技术,工效提高了一倍,结果提前一周半完成任务.求这次任务需装配机床总台数.【题26】甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米.两列火车同时开出,相向而行,经过多少小时相遇?【题27】某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?【题28】某人有急事,预定搭乘一辆小货车从A地赶往B地.实际上,他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的车速是36千米/小时,求两地间路程.【题29】一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【题30】一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问:(1)若小船按水流速度由A港漂流到B港需多少小时?(2)救生圈是何时掉入水中的?4.浓度问题【题31】有含盐15%的盐水20千克,要使盐水含盐20%,需要加盐多少千克?【题32】现有浓度为20%的盐水300克需配制成浓度为60%的盐水,问还需加盐多少克?5.数字问题【题33】一个两位数,十位数字是个位数字的3倍,如果把十位数字与各位数字交换,所成的新数比原数少54,求原数.【题34】一个两位数,十位数字比个位数字的4倍多1.将两个数字调换位置后,所得的数比原数小63,求原来的两位数.【题35】一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?6.年龄问题【题36】父亲和女儿现在的年龄之和是91岁,当父亲的年龄是女儿现在年龄的2倍时,女儿的年龄是父亲现在年龄的13,求女儿现在的年龄.【题37】小明的爸爸前年存了年利率为2.43%的两年期定期储蓄,今年到期后,扣除利息税(利息的20%),所得利息正好为小明买了一只价值48.6元的计算器.问小明爸爸前年存了多少元?8.商品利润问题【题38】学校准备添置一批课桌椅.原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.【题39】某商店将彩电的进价提高40%,然后在广告上写“大酬宾,八折优惠”结果每台彩电仍获利270元,求彩电的进价.【题40】某商店以每3盒16元钱的价格购进一批录音带,又从另外一处以每4盒21元的价格购进比前一批数量加倍的录音带,如果以每3盒k元的价格出售可得到所投资的20%的收益,求k的值.【题41】“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品原销售价分别为多少元?【题42】对某种商品优惠,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1400元,商品的原价是多少元?【题43】若进货价降低8%,而售出价不变,那么利润可由目前的p增加到(10%p),求p.【题44】初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,如右图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,请你分别求出A、B两个超市今年“五一节”期间的销售额.【题45】某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40kg到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品名西红柿豆角批发价(单位:元/kg)1.2 1.6零售价(单位:元/kg)1.8 2.5问:他当天卖完这些西红柿和豆角能赚多少钱?9.方案决策问题对超过限额的部分按2.9元/吨收费.一户三口之家上个月用水12吨,交费22元.求该市对三口之家每月用水所作的限额是多少?【题47】夏季为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高l℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后,两种空调每天各节电多少度?【题48】某音乐厅五月份初决定在暑假期间举办学生音乐专场音乐会,入场券分为团体票和零售票两种,其中团体票是总票数的23,若提前购票,则给予不同程度的优惠,在五月份,团体票每张12元,共售出团体票的35,零售票每张16元,共售出零售票的一半,如果在六月份,团体票每张16元出售,并计划在六月份两种票都完全出售,那么,零售票应按每张多少元出售才能使两个月的票款持平?【题49】团体购买公园门票,票价如下:今有甲乙两个旅游团,若分别购票,两团总计应付门票1314元,若合在一起作为一个团体购票,总计支付门票费1008元,问这两个旅游团各有多少人?【题50】某校科技小组的学生在3名老师带领下,准备前往国家森林公园考察、采集标本.当地有两家旅行社,分别去两个景区.两家旅行社收取的途中费用和相应的景区门票定价都相同,且对师生都有优惠:甲旅行社表示带队老师免费,学生按8折收费;乙旅行社表示师生一律按7折收费.甲景区对师生均收半价,乙景区则规定当人数超过30人时,按4折收费,否则按6折收费.经合算两家旅行社的实际途中收费正好相同.你认为该去何处较合算?若该校在暑假夏令营中,学生数增加了8名,老师不变,则又该去哪个旅行社?【题51】强强在A、B两电子商城发现他看中的4MP的单价相同,U盘的单价也相同.4MP和U盘单价之和是581元,且4MP的单价比U盘单价的5倍少7元.(1)求该同学看中的4MP和U盘的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,电子商城A所有商品打8折销售,电子商城B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了490元钱,如果他只在一家电子商城购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【题52】某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元不超过300元一律九折;③一次性购物超过300元一律八折.(1)小新妈妈购物付款99元.那她购买的物品实际价格为多少元?(2)若购物付款259.2元.那她购买的物品实际价格为多少元?【题53】“中国竹乡”安吉县有丰富的毛竹资源,某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.【题54】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨.但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜销售或加工完毕.为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?【题55】一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产(同一天内一段时间生产酸奶,另一段时间生产奶粉),为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?。

一元一次方程配套问题

一元一次方程配套问题

一套仪器由一个A部件和三个B部件构成用1m³钢材可以做40个A部件或240个B部件,现要用6m³钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,应分配多少人生产甲种零件,多少人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套?(已知3个甲种零件和2个乙种零件配成一套)某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间.现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?制造一种零件第一道工序每人每小时可做5件,第二道工序每人每小时可做3件,现在有工人40人,如何分配劳动力才能使生产配套服装厂要生产某种型号的学生服装一批,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存有这样的布料600m,应分别用多少布料做上衣,多少布料做裤子才能恰好配套?某车间每天能生产甲种零件180个,或乙种零件120个,如果甲种、乙种零件分别取3个、2个才能配成一套,那么要想在30天内生产最多的成套产品,应怎样安排生产甲、乙两种零件的天数在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条。

利用一元一次方程解配套问题和工程问题课件


本例是工作效率已知,从工作量设元,则从工 作时间找相等关系列方程.
工程问题中将工作总量看成单位“1”是最常见 的,“工作总量等于各部分工作量之和”也是最常 用的等量关系.
小结
1. 工程问题的基本量:工作量、工作效率、工作时间, 基本关系式:工作量=工作效率×工作时间.
2. 当工作总量未给出具体数量时,常把总工作量当作 整体1. 常用的相等关系为:总工作量=各部分工作量的和.
答:应安排10名工人生产螺钉,12名工人 生产螺母.
解决配套问题时,要弄清配套双方的数量关系,准确地 找出题中的相等关系; 常见类型: (1)生产配套:已知总人数,分成几部分分别从事不同项目,
各项目数量之间的比例符合总体要求.符合一
定的数量关系,或从第三方调入一些人(或物)到甲、乙两处, 使之符合一定的数量关系,其基本相等关系为:甲人(或物) 数+乙人(或物)数=总人(或物)数
乙每小时完成全部工作的_______; 甲x小时完成全部工作的_______; 乙x小时完成全部工作的_______.
【例知2识】整点理一批图书,由一个人做要40 h完成.现计划
由一部分人先做 4 h,然后增加2人与他们一起做
8 h,完成这项工作.假设这些人的工作效率 相
同,具体应先安排多少人工作?
答:应安排2人先做4 h.
这类问题中常常 把总工作量看作1, 并 利用“工作量= 人均 效率×人数 ×时间” 的关系 考虑问题.
(来自教材)
1.知基识本关点系式:工作量=工作效率×工作时间,
工作时间=
工作量 工作效率
,工作效率=
工作量 工作时间
.
2.当问题中总工作量未知而又不求总工作量时,通常把总
如果设x名工 人生产螺母, 怎样列方程?

一元一次方程的应用题(含解析)

一元一次方程的应用题(一)考试要求:内容基本要求略高要求较高要求一元一了解一元一次方会根据具体问题列出一元一次方能运用整式的加减运算次方程程的有关概念程对多项式进行变形,进一步解决有关问题一元一理解一元一次方能熟练掌握一元一次方程的解会运用一元一次方程解次方程程解法中的各个法;会求含有字母系数(无需讨论)决简单的实际问题的解法步骤的一元一次方程的解例题精讲:应用题是中学数学中的一类重要问题,一般通过对问题中量的关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的方法一般来讲,有以下几种:直接设未知数解应用题:直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;间接设未知数解应用题:设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;引入辅助未知数解应用题:设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为 x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)模块一和差倍分问题【例1】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的 3 倍;“朝天龙”的条数是“珍珠”的 2 倍,且“朝天龙”比“水泡”少 1 条,这三种金鱼各有几条呢?【解析】设“珍珠”的条数为x条,则“水泡”“朝天龙”的条数分别为3x条、2x条.依题意得:3x2x1,x1,从而3x3,2x2.【答案】3,2,1x【巩固】甲队有 32 人,乙队有 28 人,现从乙队抽人到甲队,使甲队是乙队人数的 2 倍,依题意,列出方程为【解析】略【答案】32 2(28 ).x x 【巩固】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有 2 吨运不走;若每辆汽车装 4 吨货物,那么装完这批货物后,还可以装其他货物 1 吨,问汽车有 多少辆?这批货物有多少吨?【解析】设有汽车 辆.依题意得:3.5 2 4 1,解之得: 6 ,41 23,故汽车 x x x x x 有 6 辆,货物有 23 吨.【答案】6 ; 23【例2】 ⑴ 甲仓库有粮120吨.乙仓库有粮90 吨.从甲仓库调运剂后甲仓库存粮是乙仓库的一半.吨到乙仓库,调 ⑵ 甲乙两个圆柱体容器,底面积比为5∶3,甲容器水深20c m ,乙容器水深10c m , 再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?1【解析】⑴ 从甲仓库调运 吨到乙仓库,依题意得120 (90) ,解得 x 50 . x x x 2⑵ 设这时水深 cm ,依题意得 5( 20) 3( 10),解得 35 .若学生不好理x x x x 解,不妨多设一个底面积比为5 ∶3 .方程为5 (20) 3 ( 10) 即可. a a a x a x 【答案】50 ;352【巩固】某公司有甲乙两个工程队,甲队人数比乙队人数的 多 28 人.现因任务需要,从3乙队调走 20 人到甲队,这时甲队人数是乙队人数的 2 倍,则甲乙两队原来的人数 分别是多少人?2【解析】设乙队原来有 x 人,则甲队有 28 人.依题意可列:x 32 2 x 20 x 28 20 ,解得: 66x 3【答案】72,66【巩固】甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2 倍少189千米,乙铁路长比丙铁路少8 千米,求甲铁路的长. 【解析】设丙铁路长为 千米,则乙铁路长x 8 千米,甲铁路长2 x 8 189 千x 米.依题意可列: x x 8 2 x 8189 1191【答案】499,344,352【巩固】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长1 1度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 ,此时cm 3 木桶中水的深度是5. cm1【解析】设此时木桶中水的深度为 c m ,依题意得,两根铁棒的长度为 [ (1 )]cm 和x x 31 1 1[x (1 )]cm ,故[x (1 )] [x (1 )] 55,解得 20.x 5 3 5【答案】20【例3】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有 100 只吧!”牧羊人答道:“如果这群 羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只 羊也算进去,才刚好凑满 100 只.”问牧羊人的这群羊共有多少只?1 2 14【解析】设这群羊共有 只,依题意,有2 1100 ,解之得 36 .x x x x x 【答案】36模块二 行程问题追击问题解决追击问题的一个最基本的公式:追击时间 速度差 追击的路程.于此相关 的问题都可以应用这一公式进行解答.【例4】 敌我两军相距 32 千米,敌军以每小时 6 千米的速度逃窜,我军同时以每小时 16 千米的速度追击在相距 2 千米的地方发生战斗,问战斗是从 开始追击后几小时发生的?【解析】根据追击问题的基本公式:追击时间 速度差 追击的路程.设战斗是从开始追击后 小时发生的.则依题意可列:166 x 32 2 , x 解得: 3. x 【答案】3【巩固】环城自行车赛,最快的人在开始 48 分钟后遇到最慢的人,已知最快的人的速度是3最慢的人速度的 倍,环城一周是 20 千米,求两个人的速度。

一元一次方程应用题(精选拔高-题型全-含详细答案-可编辑) (2)(word文档良心出品)

一元一次方程的应用1、列方程解应用题的基本步骤和方法:注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.(2)解方程的步骤不用写出,直接写结果即可.(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.模块一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++.(2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数).(3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +,则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗?【解析】设小明在7:00时看到的两位数的十位数字是x ,则个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题(1)、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.(2)、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. (3)、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,(1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天? (2)框出的4个数的和可能是26吗?为什么?【解析】(1)设第一个数是x ,则根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;(2)设第一个数为x ,则41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】(1)15,16,21,22;(2)无法构成平行四边形.【例6】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.【解析】(1)设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.则平移后的四个数是13、14、20、21.(2)设四个数字是x ,1x +,7x +,8x +,则41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例7】 把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.(1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是________________.(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x 的值;若不能,则说明理由.【解析】(1)∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.(2)不能.假设能够框住这样的4个数,则:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】(1)8x +,16x +,24x +;(2)不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.(1)当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; (2)当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量.【例8】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下部分的13,还剩下42公顷没耕完,则这片地共有多少公顷?【解析】设这片地共有x 公顷,第一天耕了这片地的23,则耕地23x 公顷,第二天耕了剩下部分的13,则第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭(公顷),根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例9】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例10】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长?【解析】设停电时间为x 小时,粗蜡烛长l 米,则细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例11】 2006年我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金3.6亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约2.98亿元,市级投入的资金分别是县(区)级、省级投入资金的1.5倍、18倍】,且2010年此项资金比2009年增加1.69亿元.(1)2009年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元?(2)2010年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元? (3)如果按2009-2010年筹措此项资金的年平均增长率计算,预计2011年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)?【解析】(1)3.61 1.69 1.91-=(亿元).(2)设市级投入x 亿元,则县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =(亿元),10.0218x =(亿元).(3) 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭(亿元). 【答案】(1)1.91亿元;(2)省、市、县分别投入0.02亿元、0.36亿元、0.24亿元;(3)6.8亿元.模块四:行程问题一、 行程问题路程=速度×时间 相遇路程=速度和×相遇时间 追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×(顺流速度-逆流速度) 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速×过桥时间=车长+桥长.【例12】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,则甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例13】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =,此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-(千米/时) 【答案】27【例14】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米?【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例15】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米?【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭(千米)【答案】9千米【例16】 一人步行从甲地去乙地,第一天行若干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天?【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.则根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】7.5天【例17】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为a ,原来的水速为b ,则2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+(小时).【答案】1【例18】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少?【解析】因为向上游了10分钟,所以返回追赶也要10分钟(流水中的相遇时间与追及时间都与水流速度无关),即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=(千米∕时).【答案】水流速度为4.5千米/时【例19】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问: (1)若小船按水流速度由A 港漂流到B 港需多少小时? (2)救生圈是何时掉入水中的?【解析】(1)设小船在静水中的速度为a ,水流速度为b ,则6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=(小时); (2)设小船行驶x 小时后,救生圈掉入水中,则(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各部分工作量之和=1【例20】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时?【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例21】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例22】 某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费. (1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【解析】(1)设该中学库存x 套桌凳,根据题意可列方程:201624x x-=,解得960x =. (2)方案①所需费用:()9608010540016⨯+=(元); 方案②所需费用:()96012010520024⨯+=(元); 方案③所需费用:()960801201050401624⨯++=+(元). 综上,方案③最省钱.【答案】(1)960套;(2)方案③最省钱.模块六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价利润=进价×利润率实际售价=标价×打折率【例23】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例24】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?【解析】设月初进货价为a 元,月初利润率为x ,则月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例25】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是多少?【解析】原料液A 的成本价为15元/千克,原料液B 的成本价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总成本上涨12%, 设每100千克成品中,二原料比例A 占x 千克,B 占(100-x )千克,则涨价前每100千克成本为()1510100x x +-,涨价后每100千克成本为()1811100x x +-, 根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -=即二者的比例是::1:6A B =,则涨价前每千克的成本为156075777+=(元),销售价为127.57元,利润为7.5元.原料涨价后,每千克成本变为12元,成本的25%为3元,保证利润为7.5元, 则利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例26】 某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:=100%⨯投资收益投资收益率实际投资额)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?【解析】(1)设商铺标价为x 万元,则按方案一购买,则获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯= 按方案二购买,则获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x⨯≈. 所以投资者选择方案二获得的投资收益率高.(2)由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了62.5万元,乙投资了53.125万元【答案】略【例27】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.(1)若绕道而行,要15分钟到达学校。

一元一次方程——配套问题

3722
x x +=
7 4.5 2.535x x -=⨯-
14126110312++=+--x x x
)4.1211(327.0322.01x x x +-=---
配套问题
1、某车间有22名工人,每人每天可
以生产1200个螺钉或者2000个
螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好
配套,应安排生产螺钉和螺母的
工人个多少人?
2、一套仪器由一个A部件和三个B
部件构成,用1立方米钢材可做
40个A部件或240个B部件。


在用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢
材做B部件,恰好配成这种仪器
多少套?
3、一张方桌由1个桌面和4条桌腿
组成,如果1立方米木料可以做桌面50个或者桌腿300条,现在有50立方米木料,问用多少立方米木料做桌面,多少立方米木料做桌腿恰好配套?能配成多少张方桌呢?
4、某糕点厂中秋节前要制作一批盒
装月饼,每盒中装2块大月饼和4块小月饼,制作1块大月饼要用
0.05千克面粉,1块小月饼要用
0.02千克面粉. 现共有面粉4500
千克,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程辅助元问题
辅助元问题是应用题中较难的一类,这类题通常已知量很少,或者方程中必须要用到的数量没有给出,难以用常规方法列出方程。

解题时对不知道的数量大胆设辅助元,在解方程过程中通常可自然消去。

1.某服装商贩同时卖出两套服装,每套均卖168元,以成本计算,其中一套盈利20%,另一套亏本20%,则这次出售中商贩( )
A. 不赚不赔
B. 赚37.2元
C. 赚14元
D. 赔14元
2.某商场四月份售出某品牌衬衣b件,每件c元,营业额a元;五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加() A.1.4a元 B.2.4a元 C.3.4a元 D.4.4a元
3.甲乙二人,在圆形跑道上跑步,甲用40秒跑一圈;乙返向跑,每15秒与甲相遇一次,求乙跑一圈需多少时间?
4.甲步行上午6时从A地出发,于下午5时到达B地;乙骑自行车上午10时从A 地出发,于下午3时到达B地,问乙是在什么时间追上甲的?
5.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的,若提前购票,则给予不同程度的优惠。

在五月份内,团体票每张12元,共售出团体票的,零售票每张16元,共售出零售票的一半,如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元才能使这两个月的票款收入持平?
6.现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
7.某商店经销一种商品,由于进货价降低了5%,售出价不变,使得利润率由m%提高到(m+6)%,求m值.
8.一轮船从重庆到上海要5昼夜,而从上海到重庆要7昼夜.那么有一木排从重庆顺流漂到上海要多少天?
9.两名教师带若干名学生去旅游,联系了甲、乙两家标价相同的旅游公司,经洽谈后,甲公司给的优惠条件是1名教师全额付款,其余按七五折(金额的75%)收费;乙公司给的优惠条件是全部师生按八折收费.
(1)当学生人数超过多少人时,甲公司的优惠价比乙公司的更优惠?
(2)若核算结果,甲公司的优惠价比乙公司的优惠价至少要便宜1/32,问学生人数至少是多少人?
10.甲从学校出发到相距14千米的A地。

当到达距学校2千米的B地时发现遗忘某物品。

打电话给乙,乙随即出发在C地追上甲后立即返回。

当乙回到学校时甲距A地还有3千米。

求学校到C地的距离。

相关文档
最新文档