不定积分的四种计算方法

合集下载

有理函数的不定积分(1)

有理函数的不定积分(1)

R(
x)
P( Q(
x) x)
为真分式
,

R(
x)dx
的步骤:
1. 将 Q(x) 在实数范围内分解成一次式和二 次质因式的乘积 .
2. 将 R( x) P( x) 拆成若干个部分分式之和.
Q( x)
(分解后的部分分式必须是最简分式).
3. 求出各部分分式的原函数 , 即可求得 R( x)dx .
11
1dx
,
其中A _____,B _____,C _______;
3、计算
2
dx sin
x
, 可用万能代换sin
x
___________,
dx _____________;
4、计算
dx
, 令t ___,x ___,dx ____ .
ax b m
32
5、有理函数的原函数都是_________ .
2(1 x)2 1 x
2、ln( x sin x) C ;
3、
(1 x 2 )3
1 x2 C;
3x3
x
4、 sin x 1 ln(sec x tan x) C ; 2 cos2 x 2
5、 8(1
x4
x
8
)
1 arctan 8
x4
C

6、 2 x C ,或sec x x tan x C ; 1 tan x 2
原式
(t
2
1)
t
(t
2t 2 1)2
dt
2
t
t
2
2
1
dt
2
(1
t
2
1
) 1

不定积分(1)

不定积分(1)

第三讲 不定积分一、 考试内容与要求1 概念与性质(1)原函数 '=∈F x f x x I ()(), (2)不定积分f x dx F x C()()=+⎰(3)性质:1) ⎰+='Cx f dx x f )()(或⎰+=C x f x df )()(2)ddxf x dx f x (())()⎰=或⎰=dxx f dx x f d )()(一般地,d df x f x C()()⎰⎰=+3)⎰⎰=dx x f k dx x kf )()( 4) ⎰⎰⎰±=±dx x g dx x f dx x g x f )()()]()([(4) 基本积分公式表:2 基本积分公式表3 求不定积分的基本方法(1) 第一换元积分法f x x dx f x d x f u du F u C F x C[()]()[()]()()()[()]ϕϕϕϕϕ'===+=+⎰⎰⎰常用“凑”微分公式: (2) 第二换元积分法f ax b ()+ 根式代换f a x ()22-, f a x ()22+ , f x a ()22- 三角代换 t x=1 倒代换注:e t x t x t x ===,ln ,arcsin (3) 分部积分法uv dx udv uv vdu '==-⎰⎰⎰常用分部积分法:P x e dx P x axdx n kx n (),()sin ⎰⎰ P x xdx P x xdx n n ()ln ,()arcsin ⎰⎰ e bxdx ax sin ⎰ (4)* 有理函数的积分:四种类型(5)* 三角有理函数的积分:① ⎰⎰==du u R xdx x R ux )(cos )(sin sin② ⎰⎰-==du u R xdxx R ux )(sin )(cos cos③ ⎰⎰+++==2222tan 221),11,1()tan ,cos ,(sin udu u uuuR dx x x x R ux④ ⎰⎰++-+==22222tan12)11,12()cos ,(sin uduuu uu R dx x x R x u注: 含有三角函数的偶次幂,一般应先降幂。

基本的3种不定积分方法

基本的3种不定积分方法

基本的3种不定积分方法不定积分是微积分中的一个重要概念,它是求解函数原函数的过程。

在求不定积分时,通常会遇到各式各样的函数形式,因此需要运用不同的方法来求解。

在本文中,将介绍基本的三种不定积分方法:代入法、分部积分法和换元法。

1.代入法:代入法是一种简单而常用的不定积分方法,它适用于特定的函数形式。

当被积函数是一个复合函数的时候,可以通过代入法来求积分。

具体来说,就是将整个或部分被积函数进行代入。

举个例子,如果要求解函数f(x)=2x^3的不定积分∫f(x)dx,可以通过代入法进行计算。

将x^3看作一个整体,令u=x^3,那么f(x)可以写成f(u)=2u。

所以∫f(x)dx=∫2udx=2∫udx=2∫dx^3=(2/4)x^4+C=x^4/2+C。

2.分部积分法:分部积分法是求解一些函数积分时常用的方法。

它基于求导法则d(uv)/dx=u(dv/dx)+v(du/dx)的逆过程。

根据此法则,可以将一个积分转化为一个简化的形式。

具体的计算步骤如下:步骤1:将被积函数f(x)表示为两个函数的乘积,即f(x)=u(x)v'(x)。

步骤2:计算出u(x)的导数du/dx和v(x)的不定积分∫v'(x)dx。

步骤3:将上述结果带入分部积分公式∫f(x)dx=uv-∫v(x)du/dx中,即∫f(x)dx=u(x)v(x)-∫v(x)du/dx。

举个例子,如果要求解函数f(x)=xln(x)的不定积分∫f(x)dx,可以通过分部积分法来计算。

将f(x)表示为f(x)=ln(x)×x,令u=ln(x),v'=x,则du/dx=1/x,∫v'(x)dx=∫xdx=(1/2)x^2、将上述结果带入分部积分公式∫f(x)dx=uv-∫v(x)du/dx中,得到∫f(x)dx=xln(x)-(1/2)x^2+C。

3.换元法:换元法是不定积分中常用的一种方法,它通过引入一个新的变量来简化被积函数的形式。

第四章不定积分Microsoft Word 文档

第四章不定积分Microsoft Word 文档

不定积分一 原函数与不定积分的概念1 原函数的定义: 如果在区间I 上,可导函数()F x 的导函数为()f x , 即对x I ∀∈, 都有()()F x f x '=或()()dF x f x dx '=则函数()F x 称为()f x 在区间I 上的一个原函数。

注 如果函数()f x 有原函数()F x ,则有无数多个原函数,且其中任意两个原函数相差一个常数,因而()f x 全部原函数可表示为:()F x c + (其中c 为任意常数)2 原函数存在的充分条件:设()f x 是区间I 上连续函数,则()f x 在区间I 上存在原函数。

3 不定积分定义在区间I 上, 函数()f x 的原函数的全体称为()f x 在区间I 上的不定积分, 记作()f x dx ⎰,即有()()f x dx F x c =+⎰ (其中()()F x f x '=)注:1不定积分与原函数是两个不同概念.不定积分是全体原函数集合,原函数是一个函数。

2函数()f x 的原函数的图形称为()f x 的积分曲线。

3不定积分定义给出求不定积分基本方法:求出()f x 的一个原函数()F x ,则()()f x dx F x c =+⎰【例】 若()f x 的导函数是sin x ,则()f x 的一个原函数为 (A )1+sin x (B )1sin x - (C )1+cos x (D )1cos x -解: 方法1 已知()sin f x x '=,而sin cos xdx x C =-+⎰,所以()0cos f x x C =-+又()()0cos sin f x dx x C dx x C x C =-+=-++⎰⎰,取00C=,1C =。

方法2 对(A )(B )(C )(D )中每一个函数求二阶导。

3.不定积分的基本运算性质设函数()f x 及()g x 的原函数都存在,则()()()()f x g x dx f x dx g x dx αβαβ+=+⎡⎤⎣⎦⎰⎰⎰,其中,αβ是实常数。

基本的3种不定积分方法

基本的3种不定积分方法

基本的3种不定积分方法基本的三种不定积分方法是:代入法、分部积分法和换元法。

这些方法都用于求解函数的不定积分,即求函数的原函数。

1.代入法:代入法是基本的一种不定积分方法。

它通过选取适当的变量代换,将被积函数转化为更容易求解的形式。

首先,通过观察被积函数的形式,选取一个变量代换来简化函数。

例如,如果被积函数中有一个较为复杂的根式,我们可以选取一个新的变量,使得根式可以被表示为新变量的幂函数。

然后对新变量进行求导和求逆,并用新变量替代原变量进行积分。

举个例子,如果我们计算不定积分∫(x/(1+x²)) dx,我们可以选取u=1+x²,使得被积函数可以表示为 du/dx。

然后我们对等式两边同时求导,得到 du=2xdx,进而得到∫(x/(1+x²)) dx = ∫(1/u) du。

通过代入法,我们将原来的被积函数转化为了一个更简单的函数进行积分。

2.分部积分法:分部积分法是另一种常用的求不定积分的方法。

它是导数乘积的逆运算,通过将一个积分分解为两个函数的乘积,以便其中一个函数的导数形式可以被简化。

分部积分法的公式为∫(u dv) = uv - ∫(v du)。

其中 u 和 v 分别为两个待定函数,du 和 dv 分别为其导数。

具体应用分部积分法时,我们首先选择一个函数 u 作为被积函数的导数,然后选取另一个函数 dv,使得 dv 尽可能简单。

然后我们计算出u 的导数 du 和 v 的不定积分。

例如,对于不定积分∫(x sinx) dx,我们可以选取 u=x,dv=sinx。

然后计算出 du=dx 和v=∫sinx dx=-cosx。

最后根据分部积分法公式,我们得到∫(x sinx) dx = -xcosx + ∫cosx dx = -xcosx + sinx + C。

通过分部积分法,我们将原来的被积函数分解为两个函数的乘积,以便其中一个函数可以更容易地被积分。

3.换元法:换元法是一种常用的不定积分方法。

浅谈无理函数不定积分的求解方法.docx

浅谈无理函数不定积分的求解方法.docx

浅谈无理函数不定积分的求解方法摘要:我们将自变量包含在根式之下的函数称为无理函数。

这样的特点使得无理函数不定积分,在通常情况下求解较为复杂。

对于一个无理函数来说,大多数情况下,较常见的情况是同一个无理函数有多个求不定积分的方法,如何从多种不定积分求解方法中选出最优的解法,就是一个我们需要考虑的问题了。

本文旨在将以往的无理函数不定积分求解方法进行综述,探讨各个方法在求解上的应用与具体使用过程。

同时,总结了对一些常见的无理函数不定积分类型的常用解法。

为无理函数不定积分的求解提供一种思路。

关键字:无理函数不定积分计算方法Abstract: We usually call the function which have one or more arguments under the radical as irrational function. The feature of irrational function makes the irrational function integral become tough problem for we to solve. For an irrational function, in most cases, the more common situation is the same irrational function with multiple indefinite integral method. So, how to select an optimal solution from a variety of indefinite integral method, is a problem that we need to consider.This article aims to past the irrational function of indefinite integral solution method to carry on the summary, discusses the application of various methods on solving the use with specific process. At the same time, summarizes the irrational function of some common indefinite integral types of commonly used method. In order to provide a way to solve the irrational function indefinite integral problems.key words:irrational function indefinite integral method1. 无理函数不定积分的求解方法通常情况下,我们对无理函数不定积分的求解通常都会先对无理函数部分做前置处 理工作。

高等数学 第3章不定积分

高等数学 第3章不定积分

4、基本积分表 由于微、积分是互逆的两种运算,故利用导数公 式,不难得到基本初等函数的积分公式。
例4
解:
练习:
答:
例5
解:
例6
解:
经验之一:
整理为“多项式”形式是解决只含有幂 函数的积分方法之一
例7 解:
例8 解:
经验之二: 当含有指数函数或对数函数时,尽可能 化为公式形式积分。
经验:当被积函数为三角函数的奇次方时,我 们常分离出其中一个,放在微分因子中。
例24
解:
例25
解:
例26
解:
例27
解:
经验:降次总是一种求三角函数积分的有效方法。
例28
解:
例29
解:
经验: 利用三角恒等式转化被积函数也是方法之一
例30 解:
例31 解:
(二)第二换元积分法
但必须满足:
定理3.4(第二换元积分法) 证明:
例32
根式代换法
解:
例33
解:
(待续)

此时,为了计 算其它三角函数值, 可以借助辅助三角 形(如右)。
例34
解:
(待续)

例35
解:
被积函数定 义域为:x>a 或x<-a 此处先讨论 x>a的情形
由上例可知
(待续)

原式
思考x<-a的情形
三角代换法
高等数学
第3章 不定积分
主要内容:
一、不定积分的概念与性质 二、换元积分法 三、分部积分法 四、积分表的使用
一、不定积分的概念与性质
1、原函数的定义
如:
又如:
★注意:
★注意:

不定积分公式总结

不定积分公式总结

不定积分公式总结不定积分是微积分中的一项重要内容,它是定积分的逆运算。

在不定积分中,我们需要找到原函数,即原函数的导函数为被积函数。

在实际运算中,我们会使用一系列的公式和方法来求解不定积分。

以下是一些常用的不定积分公式总结。

1. 线性函数:对于形如 f(x) = ax + b 的线性函数,其不定积分为F(x) = (1/2)ax^2 + bx + C,其中 a、b 和 C 为常数。

2.幂函数:不定积分的幂函数公式为F(x)=(1/(n+1))x^(n+1)+C,其中n为实数且n≠-1、例如,对于x^3的不定积分,结果为F(x)=(1/4)x^4+C。

3. 指数函数:不定积分的指数函数公式为 F(x) = (1/a^x * ln,a,) + C,其中 a 为正实数且a ≠ 1、例如,对于 2^x 的不定积分,结果为 F(x) = (1/ln2)2^x + C。

4. 对数函数:不定积分的对数函数公式为 F(x) = x * (ln,x, - 1) + C。

5. 三角函数:不定积分的三角函数公式包括正弦函数、余弦函数、正切函数和余切函数等。

例如,正弦函数的不定积分为 F(x) = -cos(x) + C,余弦函数的不定积分为 F(x) = sin(x) + C。

6. 反三角函数:不定积分的反三角函数公式为 F(x) = arcsin(x) +C 或 F(x) = arccos(x) + C。

其中,arcsin(x) 表示 x 的反正弦函数。

7. 代换法:对于一些复杂的函数,我们可以通过代换来简化积分运算。

常用的代换方法包括令 u = g(x),然后求 du/dx,并将原函数中的x 替换为 u。

8.部分分式分解法:对于一些有理函数,我们可以将其进行部分分式分解,然后再分别求不定积分。

9. 分部积分法:分部积分法是一个用于简化一些积分的方法。

其公式为∫(u * dv) = uv - ∫(v * du)。

这个公式通过不断的选取 u 和dv 来进行迭代,从而简化复杂函数的积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分的四种计算方法
不定积分是高等数学中的一个重要概念,也是各类数学问题求解
的基础。

对于不定积分的计算方法,我们可以分为四种:代入法、换
元法、分部积分法和三角函数代换法。

代入法是最简单的一种方法,通过直接代入函数的原函数公式,
直接将被积函数带入,再进行简单的运算即可求出不定积分。

这种方
法适用于简单的函数,例如幂函数和指数函数。

换元法则是将原函数中的变量进行换元,将原来的自变量用新变
量来表示,再进行简单的变量代换和运算。

这种方法适用于含有较为
复杂的函数组合的问题。

分部积分法是将带积函数进行分解,分成两个函数相乘,再利用
积分的逆运算,将其转化为简单的不定积分式。

这种方法适用于含有
两个难以解决的函数的积分问题。

三角函数代换法是将复杂的三角函数替换成简单的三角函数来求
解不定积分,例如将sin(x)或cos(x)替换成tan(x/2),或者将sec(x)替换为tan(x/2)+C。

这种方法适用于含有三角函数较为复杂的积分问题。

上述四种方法均可互相结合,有时需要多种方法的协作才能求解
出复杂的不定积分问题。

通过选择合适的方法,我们可以更加高效而
准确地解决各类数学问题。

相关文档
最新文档