第四节电缆以及架空导线截面选.doc

第四节电缆以及架空导线截面选.doc
第四节电缆以及架空导线截面选.doc

一、电网的结构

架空线和电缆是工厂高低压配电网最普通的两种户外结构形式。

架空线和电缆线路相比主要优点:

1) 设备简单,造价低。架空线与电缆比较,电缆线的造价约为架空线的 4 倍。

2)线路架空设置,易于发现问题及故障检修和维护;电缆设在地下,故障查寻较难,

修复工作量大。

架空线路的不足在于:

1)占空间较大,导线和大地的高度及与邻近建筑物的距离随电压增高而增大,造成变

配电所出线困难,工程实际中可采用电缆线出线;

2)架空线路受外界气候影响大,对地下电缆线影响小,电缆线适于易燃易爆场所;

3)架空线影响厂区环境美化,这也是厂区供电采用电缆线路的原因之一。

按照供电电压和用户的重要程度,架空线路可分为三级,如表 3 — 1 所示。

表 3 - 1 架空线路的等级

架空电力线路

架空线路等级

额定电压 /kV电力用户级别

超过 110所有等级Ⅰ

35 ~110一级和二级

35 ~110三级

1 ~20所有各级

所有各级

为了保证导线在运行中有足够的机械过载能力,要求导线的截面积不能太小。因为导

线截面积越小,其机械过载能力也越小,所以在规程中对上述不同等级的线路和不同材料的

导线分别规定了最小的允许截面积,如表 3 - 2 所示。

表 3 - 2 允许的导线最小截面积或直径

线路等级

导线结构导线材料

ⅠⅡⅢ

铜10mm2 6 mm2

青铜φ3.5mm φ2.5mm 单股线不允许

钢φ3.5mm φ2.75mm

铝及其合金不允许10mm2

铜16mm2 10mm2 6mm2

青铜16mm2 10mm2 6mm2 多股线

钢16mm2 10mm2 10mm2

铝及其合金25mm2 16mm2 16mm2 选择架空线的导线截面,机械强度是重要的重要条件之一。当线路通过居民区,横跨

越铁路、公路时,最小允许截面应放大,第 1 和第Ⅱ类线路采用铜线截面为16mm2 ,铝线截面为 35mm2 。

导线常用的材料是铜、铜锡合金(青铜 )、铝、铝合金及钢。

铜导电性能好,抗腐蚀能力强,容易焊接,但铜线的价格高;铝线的最大缺点是机械

强度低,允许应力小,为了加强铝线的机械强度,往往采用绞线,有时用抗张强度为1200N /mm2的钢作为芯线,铝线绞在钢芯外面,作导电主体,这种线称为钢芯铝绞线。

常用字母代号表示不同材料的导线,铜导线(T),铝导线( L),钢线( G)。铜绞线( TJ),铝绞线(LJ),钢芯铝绞线(LGJ)。

电缆有导电和绝缘层两部分组成,电缆线路的结构问题实际上就是电缆的敷设方法。

电缆户外敷设有三种类型:

直接埋地 (图 3 — 20) 、电缆沟敷设和混凝土管敷设方法,后者用于有受到外界承重容易损伤的场所。

一、导线截面的选择

导线截面的选择,即根据实际工况给出满足技术与经济条件的电线或电缆截面。

导线选择的内容可概括为两方面:

1 .确定供电网络结构,导线型号、使用环境和敷设方式;

2.选择确定导线截面实际截面大小。

从导线安全运行的角度出发,至少应考虑满足两个基本的要求:架空线路的承受机械

强度的能力和导线发热最高允许工作温度。承受机械强度能力决定了导线的最小允许截面,

参见表 3 — 2 。此外,还要校验线路电压损失大小,即按电压损失要求选择截面法及依据初

投资与年运行费综合经济方案比较和经济电流密度法选导线截面等。

1.依据发热选择导线截面

导线传输一定负荷时,其电流通过线路电阻,耗能使导线温度升高,会导致绝缘老化

和机械强度降低。因此,各类导线通常都规定其允许长期工作的最高温度。当周围介质温度一定时,某一截面的导线必然有其最大允许电流,这一电流(载流量 )通常是由导线生产厂家列表给出,以备查用;附表 2 - 1~2 -4 及附表 6-3 列出部分导线允许载流量。

依据发热要求,截面为S 的导线,在实际介质温度下的载流量必须满足:

(3 -1 )

式中 Ial 导线允许载流量;

Ic 计算电流。

周围介质温度按下述条件确定:

(1)空气温度按最热月份下午 l 点的平均温度确定。

(2)地下温度按 0.8m 深处的土壤月平均最高温度考虑,若电缆穿钢管则应按空气温度考虑。

当导线敷设地点实际环境温度不同于

表中规定的导线允许载流量基准数值时,按3 - 2 式对导线所能通过的允许电流进行修正:

( 3- 2)

式中I’al 实际介质温度下导线允许通过的电流;

Ial 表中所列基准介质温度下导线允许通过的电流;

θ2导线正常工作时允许的最高温度。

在供、配电设计时,导线截面应根据计算电流和导线敷设地实际环境温度查表确定,

例如杭州地区温度为37 ℃。选用电缆线还需作在短路故障条件下的发热校验。

例 3 -1 设有一回10kV LJ型架空线路向两个负荷点供电,线路长度和负荷情况如图

3 - 21 所示。已知架空线的线间均距为1m ,最高环境温度为37 ℃,试按发热选择 AB 段导

线截面。

解:设线路AB和BC段选同一截面LJ 型铝绞线,AB 段导线负荷最大电流为:

查附表 2- 1 :户外裸绞线LJ-25 在 35 °C 条件下,载流量为119A ,40 °C 条件下载流量为 109A ,现求 37 °C 条件下的载流量,由附表 2 - 1 ,查得该导线25 °C 条件下的载流量 135A ;

依据 3 - 2 :

>114(A)

若不考虑其它因素选LJ-25 导线能满足发热条件,且满足机械强度要求。

2.线路电压损失计算:

1 ) .带一个集中负荷线路的电压损失

三相负荷平衡时,三相供电线路中每相的电流值相等,且每相电流、电压相位也相同。线路电压损失的分析方法是:先计算出一相的电压损失,再换算成三相线路的电压损失。

单个集中负荷的供电线路单线图如图3- 22 a) ,图b) 为相应电压相量图:

电压降落():表示线路始端电压

与末端电压

的几何差(矢量)为,其值为

(3 -3 )

电压损失(UX ):表示线路中阻抗元件两端电压的数值差,即UA 与 UB 的差值,记为

(3 -4 )

在工程计算中,由于值很小,所以电压损失可近似取线路电压降落的横向分量,即

(3 -5 )

由于实际运算时,负荷一般用功率表示,

,即

;由式( 3- 5 )得:

(3 -6 )

式中pB B 点的三相有功功率(kW );

qB B 点的三相无功功率(kvar );

R、 X 线路 AB 之间的电阻和感抗(Ω);

I 负荷电流( kA );

B 点负荷的功率因数;UB B 点相电压( kV );

UX 单相相电压损失(V );

线电压的损失U=UX ,即

式中p B 点的三相有功功率(kW );

q B 点的三相无功功率(kvar );

(3 -7 )电压损失也常用相对于额定电压UN 的百分数表示,即

(3 -8 )式中UN额定线电压(kV);

σu 电压损失相对值或百分数。

2).带 n 个集中负荷线路的电压损失

图 3 -23 所示为两个集中负荷的线路,P1、 Q1 和 P2 、Q2 为线段

上通过的有功、无功功率;r1 、 x1 和 r2 、x2 分别为线段和

的电阻与电抗; p1 、q1 和 p2 、q2 为支线 1

第四节电缆及架空导线截面选

为了保证导线在运行中有足够的机械过载能力,要求导线的截面积不能太小。因为导线截面积越小,其机械过载能力也越小,所以在规程中对上述不同等级的线路和不同材料的 选择架空线的导线截面,机械强度是重要的重要条件之一。当线路通过居民区,横跨越铁路、公路时,最小允许截面应放大,第1和第Ⅱ类线路采用铜线截面为16mm2 ,铝线截面为35mm2。

导线常用的材料是铜、铜锡合金(青铜)、铝、铝合金及钢。 铜导电性能好,抗腐蚀能力强,容易焊接,但铜线的价格高;铝线的最大缺点是机械强度低,允许应力小,为了加强铝线的机械强度,往往采用绞线,有时用抗张强度为1200N /mm2的钢作为芯线,铝线绞在钢芯外面,作导电主体,这种线称为钢芯铝绞线。 常用字母代号表示不同材料的导线,铜导线(T),铝导线(L),钢线(G)。铜绞线(TJ),铝绞线(LJ),钢芯铝绞线(LGJ)。 电缆有导电和绝缘层两部分组成,电缆线路的结构问题实际上就是电缆的敷设方法。电缆户外敷设有三种类型:

直接埋地(图3—20)、电缆沟敷设和混凝土管敷设方法,后者用于有受到外界承重容易损伤的场所。 一、导线截面的选择 导线截面的选择,即根据实际工况给出满足技术与经济条件的电线或电缆截面。 导线选择的内容可概括为两方面: 1.确定供电网络结构,导线型号、使用环境和敷设方式; 2.选择确定导线截面实际截面大小。 从导线安全运行的角度出发,至少应考虑满足两个基本的要求:架空线路的承受机械强度的能力和导线发热最高允许工作温度。承受机械强度能力决定了导线的最小允许截面,参见表3—2。此外,还要校验线路电压损失大小,即按电压损失要求选择截面法及依据初投资与年运行费综合经济方案比较和经济电流密度法选导线截面等。 1.依据发热选择导线截面 导线传输一定负荷时,其电流通过线路电阻,耗能使导线温度升高,会导致绝缘老化和机械强度降低。因此,各类导线通常都规定其允许长期工作的最高温度。当周围介质温度一定时,某一截面的导线必然有其最大允许电流,这一电流(载流量)通常是由导线生产厂家列表给出,以备查用;附表2-1~2-4及附表6-3列出部分导线允许载流量。 依据发热要求,截面为S的导线,在实际介质温度下的载流量必须满足:

35KV 10KV导线截面选择

7导线截面的选择 第一节 35KV 架空线选择 (1)按经济电流密度选择导线截面 本设计中年最大负荷利用小时数为6000小时,查表得Jec=0.9 每回35kV 供电线路的计算负荷: A U S I N N 79.2835 32.1745330=?== 按经济电流密度选择导线截面: 23099.319 .079.28mm J I A ec ec === 选最接近的标准截面35mm 2 (2)校验机械强度 查表可得,钢芯铝绞线架空裸导线在35kV 的允许最小截面为35 mm 2,因此选型LGJ-35满足机械强度要求。 (3)按导线载流量条件校验导线截面 查表,在选择LGJ-35时,其30℃时的允许持续载流量=159A >28.79A ,满足发热条件。 (4)校验电压损失 工厂总降压变电站高压侧架空线路的长度为15Km ,查表得LGJ-35的o R =0.89/km Ω, o X =0.41/km Ω(按线间几何均距2.5m 计),35kv 侧回路的

KW P 54.148530=,var 95.93230K Q =,因此 压降)()V U l X Q l R P U N 35.730030030=??+??=? %5%2%1003500035 .730%<=?=?U 满足电压损耗要求 结论:经上述计算复核决定采用二回路LGJ-35导线接入系统。 第二节 10KV 供电线路导线选择 1、供电给变电所II 的10kV 线路 采用YJL22-10kV 型交联聚乙烯绝缘铝芯电缆架空敷设方式。 (1)按经济电流密度选择导线截面 本设计中年最大负荷利用小时数为6000小时,J ec =1.54。 供电给变电所Ⅰ的10kV 线路负荷: KW P 12.582 30= var 85.22130k Q = A KV S ?=96.62230 A U S I N 61.3310 396.62233030=?== 23082.21mm J I A ec ec == 选最接近的标准截面25mm 2,选最接近的标准截面25mm 2,即YJL 22 ? 10kV ? 3 × 25mm 2 型3芯交联聚乙烯绝缘铝芯电缆。 (2)按导线载流量条件校验导线截面 由线路最大负荷时的计算电流A U S I N 61.3310 396.62233030=?==,室外环境温度为30℃,查表,在选择YJV22 ? 10kV ? 3 × 25mm 2 时,其30℃时的允许持续载流量为100A >33.61A ,满足发热条件。 (3)校验电压损失 工厂总降压变电站至变电所Ⅰ的距离约0.5km ,查表得25mm 2的铝芯电缆的o R =1.44/km Ω,

导线和电缆选择

导线和电缆选择 导线和电缆的选择是供配电设计中的重要内容之一。导线和电缆是分配电能的主要器件,选择得合理与否,直接影响到有色金属的消耗量与线路投资,以及电力网的安全经济运行,提倡选用铜线,以减少损耗,节约电能,特制在易爆炸、腐蚀严重的场所,以及用于移动设备、检测仪表、配电盘的二次接线等,必须采用铜线。 导线和电缆的选择,必须满足用电设备对供电安全可靠和电能质量的要求,尽量节省投资,降低年运行费,布局合理,维修方便。 导线和电缆的选择包括两个方面:①型号选择;②截面选择。 高压侧母线选择 进线方式有两种:架空进线和电缆进线。根据实际情况,我们选用了架空进线。 根据下面导线和电缆型号的选择原则,经组内讨论研究决定,在高压侧母线,我们选用了铝绞线(LJ),型号为LJ-10。 综合个方面性能指标,以及选择原则,铝绞线性能较好,重量轻,对风雨抵抗力较强,这一点非常实用与室外,且其价格较低,适用场合更广泛,因此我们选用了铝绞线。 导线和电缆型号的选择原则 导线和电缆型号的选择应根据其使用环境、工作条件等因素来确定。 1.常用架空线路导线型号及选择 户外架空线路6kV及以上电压等级一般采用裸导线,380V电压等级一般采用绝缘导线裸导线常用的型号及适用范围为: (1)铝绞线(LJ) 该导线导线性能较好,重量轻,对风雨作用的抵抗力较强,但对化学腐蚀作用的抵抗力较差。多用于6~10kV的线路,其受力不大,杆距不超过100~125m。 (2)钢芯铝绞线(LGJ) 该导线的外围为铝线,芯子采用铜线,这就解决了铝绞线机械强度差的问题。由于交流电的趋肤效应,电流通过导线时,实际只从铝线经过,钢芯铝绞线的截面就是其中铝线的截面。在机械强度要求较高的场所和35kV及以上的架空线路上多被采用。 (3铜绞线(TJ) 该导线导电性能好,机械强度好,对风雨和化学腐蚀作用的抵抗力较强,但价格较高,是否选用应根据实际需要而定。 (4)防腐钢芯铝绞线(LGJF) 具有钢芯铝绞线的特点,同时防腐线性能好,一般用于沿海地区、咸水湖及化工工业地区等周围有腐蚀性物质的高压和超高压架空线路上。 导线和电缆截面的选择原则 导线和电缆界面的选择必须满足安全、可靠和经济的条件。 (1)按允许载流量选择导线和电缆截面 在导线和电缆(包括母线)通过正常最大负载电流(即计算电流)时,其发热温度不应该超过正常运行时的最高允许温度,以防止导线或电缆因过热而引起绝缘损坏或老化。这就要求通过导线或电缆的最大负荷电流不应大于其允许载流量。 (2)按允许电压损失选择导线和电缆截面 在导线和电缆(包括母线)通过正常最大负荷电流(即计算电流)时,线路上产生的电压损失不应超过正常运行时允许的电压损失,以保证供电质量。这就要求按允许电压损失选择导线和电缆截面。

电缆截面选择的注意事项(改).

关于电缆截面选择的注意事项 摘要:本文结合建筑电气设计的实践经验,详细探讨配电设计中对于低压电缆截面选择遇见的设计问题,并提出相应措施,以供类似工程的电气设计参考。 前言:据《低压配电设计规范》GB50054-2011第3.2.2条规定,选择导体截面,应符合1 按敷设方式及环境条件确定的导体载流量,不应小于计算电流; 2 导体应满足线路保护的要求;笔者根据自已多年工作实践中遇到的几个容易忽视的问题,谈谈以下自已的看法并对这些问题加以分析。 1、不同工作温度的电缆,电线共用电缆槽盒内敷设时导体截流量的降低系数的适用问题 实际工程中我们经常利用金属线槽作为电缆,电线的主要敷设方式,有的设计人员把低压电力电缆,电线共用金属线槽多回路成束敷设,然后把电缆、电线沿线槽敷设时初始载流量允许值乘以《民用建筑电气设计规范》JGJ 16-2008表7.4.4-1 多回路或多根多芯电缆成束敷设的校正系数,作为各回路的电缆,电线设计载流量。笔者认为这种载流量计算方法并不能符合《布线系统载流量》GB/T 16895.15-2002第523.4条“电缆束的降低系数适用于具有相同最高运行温度的绝缘导体或电缆束,含有不同允许最高运行温度的绝缘导体或电缆束,束中所有绝缘导体或电缆的载流量应根据其中允许最高运行温度最低的那根电缆的温度来选择,并用适当的电缆束降低系数来校正”这一规定。

例如BV导线或VV电缆与YJV电缆共用线槽敷设时,BV导线或VV电缆的最高运行温度为70度,而YJV电缆的最高运行温度为90度,那么YJV电缆的初始载流量应按最高运行温度70度时的载流量选取,然后再乘以“多回路或多根多芯电缆成束敷设的校正系数”。比如《建筑电气常用数据》04DX101-1图集6-6页查得YJV-4*35+1*16电缆单回路敷设在线槽内,环境温度35度时的载流量为122A,由于YJV电缆与BV或VV电缆共用线槽成电缆束敷设,所以YJV-4*35+1*16电缆载流量由04DX101-1图集6-9页查得仅为93A,即工作温度70时YJV电缆载流量仅为90度工作温度时的载流量的75%,导致了未能充分利用YJV电缆截面。 《布线系统载流量》GB/T 16895.15-2002表52-B2注释1)“表52-C1至52-C4的敷设方法B1和B2给出的载流量值仅指单回路而言,当在电缆槽盒内敷设多回路时,不论槽盒内有无隔板,表52-E1中的电缆束降低系数都是适用的”。由此条文可以得知,当YJV电缆与BV电线、VV电缆共用线槽敷设时,不论线槽内有无隔板分隔电缆与电线回路,YJV电缆应按允许最高运行温度70度时的载流量来选择,并用适当的电缆束降低系数来校正载流量。 2、沿电缆槽盒内敷设的电缆束含有不同导体截面的绝缘导体或 电缆时,应沿不同金属线槽敷设,以免小截面电缆过负荷 大多设计人员习惯将同一路径不同大小截面的电缆共用金属线槽成束敷设,并以电缆的初始载流量乘以“多回路或多根多芯电缆成束敷设的校正系数”,这种计算方式同样不符合《布线系

常用电缆种类及选型计算方法

电缆种类及选型计算 电缆种类及选型计算 一、电缆的定义及分类 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线 2.绕组线 3.电力电缆 4.通信电缆和通信光缆 5.电气装备用电线电缆 电线电缆的基本结构: 1.导体传导电流的物体,电线电缆的规格都以导体的截面表示 2.绝缘外层绝缘材料按其耐受电压程度 二、工作电流及计算 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ)

P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A) 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素(0.8);I-相线电流(A) 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW 功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五) 百上二(百以上乘以二) 二五三五四三界(二五乘以四,三五乘以三) 七零九五两倍半(七零和九五线都乘以二点五) 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九) 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,

导线与电缆的选择

导线与电缆的选择 在建筑电气工程中,需要大量的导线和电缆,正确选择导线和电缆,是保证用电安全可靠必不可少的重要条件。在选择导线和电缆中,既要重视它的可靠性,还要考虑它的经济性。 导线、电缆(包括照明变压器及其它电器的容量)的选择,其依据是照明装置的负荷计算。照明计算的负荷,是整个照明装置的最高负荷,它由下式来求得: 白炽灯、卤钨灯:P=mP0 有镇流器的放电光源:P=Mp0(1+a) P表示照明计算负荷 P0表示照明装置的连接容量,即连接于照明线路上的光源总容量 m 表示同时系数(即最高负荷时,同时点着的照明器容量对所有接入照明线路的照明器总容量之比) a 表不镇流器的功率损耗系数, 各种放电光源镇流器功率损耗系数可参见下表 导线、电缆型号的选择,还必须根据使用环境和敷设方式而定。在各种不同的环境就要求选择相应的导线、电缆,同时也要求与之相适应的安装敷设方式,以确保各种环境下的用电安全,下面列出了按环境选择导线、电缆及其敷设方式的表。 导线、电缆其负荷的计算与温度、环境有很大关系,导线、电缆的截面积选择就很关键,

下面就列出常用绝缘电线长期负荷下的允许载流量的相关表格 1、BV BLV BVR 型单芯电线单根敷设载流量(在空气中敷设)导线电高允许温度65度, 2、RV RVV RVB RVS RFB RFS BVV BLVV型塑料线和护套线单根敷设载流量

3、BV BLV型单芯电线穿铁管敷设载流量导线最高允许工作温度65度,周围环境温度 4、绝缘导线在环境温度35度时的安全载流量 以上各表是在一定环境温度和敷设条件下给出的,当环境温度和敷设条件变化时,所列载流量需要乘以校正系数。 I2=ηI1 I2表示实际载流量 I1表示表列载流量

高压电缆截面选择计算书

电缆截面选择计算 1.计算条件 A.环境温度:40℃。 B.敷设方式: 穿金属管敷设; 金属桥架敷设; 地沟敷设; 穿塑料管敷设。 C.使用导线:铜导体电力电缆 6~10kV高压:XLPE(交联聚乙烯绝缘)电力电缆。 380V低压:PVC(聚氯乙烯绝缘)或XLPE电力电缆。 2.导线截面选择原则 导线的载流量 1)载流量的校正 A.温度校正 K1=√(θn-θa)/(θn-θc)式中:θn:导线线芯允许最高工作温度,℃; XLPE绝缘电缆为90℃,PVC绝缘电缆为70℃。 θa:敷设处的环境温度,℃; θc:已知载流量数据的对应温度,℃。 2)敷设方式的校正

国标《电力工程电缆设计规范》GB50217-94中给出了不同敷设方式的校正系数。综合常用的几种敷设方式的校正系数,并考虑到以往工程的经验及经济性,取敷设方式校正系数K2= 3)载流量的校正系数 K=K1×K2 电力电缆载流量表 表1 6~10kV XLPE绝缘铜芯电力电缆载流量表 表2 1kV PVC绝缘电力电缆载流量表

3×50mm2115813×300mm2375263表3 1kV XLPE绝缘电力电缆载流量表 电缆规格 空气中 40℃(A)电缆桥架中 40℃(A) 电缆规格 空气中 40℃(A 电缆桥架 中40℃(A) 3×4mm233233×70mm2176123 3×6mm241293×95mm2213149 3×10mm257403×120mm2246172 3×16mm276533×150mm2279195 3×25mm298683×185mm2319223 3×35mm2119833×240mm2374262 3×50mm21431003×300mm2426298 短路保护协调 1)6~10kV回路电力电缆短路保护协调 S≥I×√t×102/C 式中:S:电缆截面,mm2; I:短路电流周期分量有效值,A; t:短路切除时间,秒。 C:电动机馈线C=15320;其他馈线C=13666 2)380V低压回路电力电缆短路保护协调 配电线路的短路保护协调 S≥I×√t/K

架空输电线路中导线的选型..

架空输电线路中导线的选型 牟俊 (中工武大设计研究有限公司,武汉市,430072) 摘要:随着社会科技的进步发展,架空输电线路中导线的形式越来越多样化,导线受环境、材质、输送容量等多种因素的影响,在实际应用中如何选择合适的导线? 关键词:输电线路;导线;选型;经济电流密度 0引言 在架空输电线路的设计中,导线的选型至关重要,架空输电线路工程本是导线与杆塔结合的艺术,目前国家电网提出打造坚强可靠、经济高效、清洁环保、透明开放、友好互动的现代电网。对目前导线产品的多样性,每种产品优缺点不同,我们需要根据输送容量和线路环境因素,选择经济适用的导线。 1、导线的选型原则 送电线路的导线和地线长期在旷野、山区或湖海边缘运行,需要经常耐受风、冰等外荷载的作用,气温的剧烈变化以及化学气体等的侵袭,同时受国家资源和线路造价等因素的限制。因此,在设计中特别是大跨越地段,对电线的材质、结构等必须慎重选取。 选定电线的材质、结构一般应考虑以下原则: ⑴导线材料应具有较高的导电率。但考虑国家资源情况,一般不应采用铜线。

⑵导线和地线应具有较高的机械强度和耐振性能。 ⑶导线和地线应具有一定的耐化学腐蚀,抗氧化能力。 ⑷选择电线材质和结构时,除满足传输容量外还应保证线路的造价经济和技术合理。 2、导线截面的选择 架空送电线路导线截面一般按经济电流密度来选择,并应根据事故情况下的发热条件、电压损耗、机械强度和电晕进行校验。必要时,通过技术经济比较确定;但对110KV 及以下线路,电晕往往不成为选择导线截面的决定因素。 1)按经济电流密度选择导线截面 按经济电流密度选择导线截面所用的输送容量,应考虑线路投入运行后5~10年电力系统的发展规划,在计算中必须采用正常进行方式下经常重复出现的最大负荷。但在系统还不明确的情况下,应注意勿使导线截面选的过小。 导线截面的计算公式为 S =cos φ3J U P e (1~1) 式中 S ——导线截面,mm 2 P ——输送容量,kw U e ——线路额度电压,kv J ——经济电流密度,A/ mm 2 cos φ—功率因素

电线及电缆截面的选择及计算要点

低压导线截面的选择,有关的文件只规定了最小截面,有的以变压器容量为依据,有的选择几种导线列表说明,在供电半径上则规定不超过0.5km。本文介绍一种简单公式作为导线选择和供电半径确定的依据,供电参考。 1低压导线截面的选择 1.1选择低压导线可用下式简单计算: S=PL/CΔU%(1) 式中P——有功功率,kW; L——输送距离,m; C——电压损失系数。 系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V供电时,铜导线为14,铝导线为8.3。 (1)确定ΔU%的建议。根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。 因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。 (2)确定ΔU%的计算公式。根据电压偏差计算公式,Δδ%=(U2

-U n)/U n×100,可改写为:Δδ=(U1-ΔU-U n)/U n,整理后得: ΔU=U1-U n-Δδ.U n (2) 对于三相四线制用(2)式:ΔU=400-380-(-0.07×380)=46.6V,所以ΔU%=ΔU/U1×100=46.6/400×100=11.65;对于单相220V,ΔU=230-220-(-0.1×220)=32V,所以ΔU% =ΔU/U1×100=32/230×100=13.91。 1.2低压导线截面计算公式 1.2.1三相四线制:导线为铜线时, S st=PL/85×11.65=1.01PL×10-3mm2(3) 导线为铝线时, S sl=PL/50×11.65=1.72PL×10-3mm2(4) 1.2.2对于单相220V:导线为铜线时, S dt=PL/14×13.91=5.14PL×10-3mm2(5) 导线为铝线时, S dl=PL/8.3×13.91=8.66PL×10-3mm2(6) 式中下角标s、d、t、l分别表示三相、单相、铜、铝。所以只要知道了用电负荷kW和供电距离m,就可以方便地运用(3)~(6)式求出导线截面了。如果L用km,则去掉10-3。 1.5需说明的几点 1.5.1用公式计算出的截面是保证电压偏差要求的最小截面,实际选用一般是就近偏大一级。再者负荷是按集中考虑的,如果负荷分散,所求截面就留有了一定裕度。

导体和电缆选择总结(By Maple)

导体和电缆选择 注:以下内容是结合了导体和电缆选择2013年版讲义和部分网友的统计、历年的一些案例题型,再加上个人对配电手册和规范相关内容的理解总结而成。“总结是最好的复习”,希望大家也多多形成自己的总结。如果有错误纰漏请联系Maple (QQ:27183269),大家共同努力。 一. 内容和依据 A.高压导体选择:GB 50060-2008《3~110kV 高压配电装置设计规范》 DL/T 5222-2005《导体和电器选择设计技术规定》 (适用范围:3~500kV ;考试重点:3~35kV 配电装置导体。) B.低压导体选择:GB 50054-1995《低压配电设计规范》 (低压配电装置硬母线的短路稳定校验:参照高压导体。 三相平衡系统中的谐波电流效应:见GB/T 16895.15-2002 《建筑物电气装置 第5部分: 电气设备的选择和安装 第523节: 载流量》。) C.电缆线路设计:GB 50217-2007《电力工程电缆设计规范》 (适用范围:500kV 及以下;考试重点:10kV 及以下。) D.架空线路设计:GB 50061-2010《66kV 及以下架空电力线路设计规范》 二.选择导体要考虑的因素: 选择导体的技术条件: 电流、电晕、动稳定或机械强度、热稳定、允许电压降、经济电流密度 选择导体的环境条件: 环境温度(屋内和屋外)、日照、 风速、污秽、海拔 三.如何计算并选择裸导体的载流量? 1. 计算或已知回路的最大持续工作电流。各种回路的工作电流见电气手册一次P232 表8‐3。 2. 查DL/T5222附录D 裸导体的载流量,注意计算条件(无风无日照70℃ 和有风有日照 80℃)。 3. 根据以下条件计算校正系数(DL/T5222 7.1.5): a. 按海拔和环境温度校正查综合校正系数,见DL/T5222附录表D11; 注:该表很重要,经常考,注意单纯温度的修正也是查该表。 b. 对屋外导体,应计及日照影响,见DL/T5222 6.0.3及附录D (最高允许温度80℃的载流量已计及);日照对屋外电器的影响,缺乏数据时可按电气额定电流的 80%选择设备。 c. 采用多导体结构时,应考虑邻近效应和热屏蔽的影响‐ 4. 按第一步计算出的最大持续电流,除以第三部得出的校正系数,得出需要选择的裸导体载流量最小值,在附录D 中选择符合要求的截面最小的型号。从载流量表可以看出竖放比平放载流量要大,所以同样的截面大小选竖放(竖放的动稳定性要差)。 注:h 为宽度,b 为厚度 B y M a p l e

导线截面选择

从配电变压器到用电负荷的线路有架空线路和电缆线路两种形式。无论室内或室外的配电导线及电缆截面的选择方法是一样的。 10.3.1选择导线截面的原则: 1.电力电缆缆芯截面选择的基本要求: (1)最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。 (2)最大短路电流作用时间产生的热效应,应满足热稳定条件。 (3)连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。 (4)较长距离的大电流回路或35kV以上高压电缆,当符合上述条件时,宜选择经济截面,可按“年费 用支出最小”原则。 (5)铝芯电缆截面,不宜小于4mm2。 (6)水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。 导线截面的选择应同时满足机械强度、工作电流和允许电压降的要求。其中导线承受最低的机械强度的要求是指诸如导线的自重、风、雪、冰封等而不致于断线;导线应能满足负载长时间通过正常工作最大电流的需要;及导线上的电压降应不超过规定的允许电压降。一般公用电网电压降不得超过额定电压的5%。 电力电缆为何发生电压降,什么场合考虑电压降? 电力电缆电压降是一个非常重要的问题不可忽视,在购买时一定要考虑压降问题,否则有可能发生不能正常启动现象。发生这种现象我想大家都不想看到,既然都不想看到这种事情发生,在购买时考虑降压是必要的。 1.电力线路为何会产生“电压降”? 英语中,“Voltage drop”就是电压降,“drop”是“往下拉”的意思。 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料(铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的5%时一般是不会对线路的电力驱动产生后果的。例如380V的线路,如果电压降为19V,也即电路电压不低于361V,就不会有很大的问题。当然我们是希望这种压力降越小越好。因为压力间本身是一种电力损耗,虽然是不可避免,但我们总希望压力降是处于一个可接受的范围内。 2.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略“压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上,有些用户在电力线路配置问题上往往只是很在意如何选用电缆(型号,规格),而往往忽略、忽视了电缆压降的问题。一旦电缆敷设后在启动设备时方才发现:或因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态。而到这种情况出现时就会显得非常被动。那么在哪些情况下需要事先考虑电压降的问题呢? 首先,较长电力线路需要考虑压降的问题。所谓“长线路”一般是指电缆线路大于500米。其次,对电压精度要求较高的场合也要考虑压降。例如,有些电力设备对电压有要求,当压降超过了设备许可范围,设备就无法启动。还有就是电缆用于驱动重要的机械设备,当电压低于某一数值时,设备虽仍可运转,但因是处于“低电压”状态,时间长了会损坏设备。如果设备价格昂贵,或者设备损坏后会造成较大经济损失时,就必须事先关注压降的问题。 电力电缆芯截面选择不当时,造成影响可靠运行、缩短使用寿命、危害安全、带来经济损失等弊病,不容忽视。电缆缆芯持续工作温度,关系着电缆绝缘的耐热寿命,一般按30~40年使用寿命,并依据不同绝缘材料特性确定工作温度允许值。当工作温度比允许值大时,相应的使用寿命缩短,如交联聚乙烯工作温度较允许值增加约8℃,对应载流量增加7%,则使用寿命降低一半。电缆缆芯持续工作温度,

导线和电缆截面的选择

导线和电缆截面的选择

导线和电缆截面的选择 各级电压电力线路输送容量及距离的大致范围 额定电压(KV) 输送功率(KW) 输送距离(Km) 0.22 50以下0.15以下 0.38 100以下0.6以下 10 200—2000 6-20 35 2000-10000 35-50 63 10000-20000 60-100 一.根据设计经验,选择导线和电缆截面 ⒈10KV及以下高压线路及低压动力线路 ①按发热条件来选择截面; ②校验电压损耗; ③校验机械强度; ④对于绝缘导线和电缆还应满足工作电压的要求; 2.低压照明线路 ①按电压损耗条件选择截面; ②校验发热条件; ③校验机械强度; ④对于绝缘导线和电缆还应满足工作电压的要求; 3.对长距离大电流及35KV以上的高压线路 ①按经济电流密度选择经济截面; ②校验电压损耗;

③校验发热条件; ④校验机械强度; ⑤对于绝缘导线和电缆还应满足工作电压的要求; 二.选择导线和电缆的条件说明 1. 发热条件 ①三相系统相线截面的选择 导线和电缆(包括母线)在通过正常最大负荷电流即计算电流时产生的发热温度,不应超过其正常运行时的最高允许温度。 按发热条件选择三相系统中的相线截面时,应使其允许载流量I al 不小于通过相线的计算电流I 30,即: I al ≥I 30 其中I 30= ? UCOS P 3 P —负载功率(W) U —负载线电压(V) ?COS --负载功率因率 如果导线敷设地点的环境温度与导线允许载流量所采用的环境温度不同时,则导线的允许载流量应乘以温度校正系数。(即I al *K θ) K θ= θθθθ-'-al al al θ--导线额定负荷时的最高允许温度; 0 θ--导 线的允许载流量所采用的环境温度; '0θ--导线敷设地点实际的环境温度; 在室外,环境温度一般取当地最热月平均最高气温; 在室内,环境温度一般取当地最热月平均最高气温加5℃;

电线及电缆截面的选择及计算

1 低压导线截面的选择 选择低压导线可用下式简单计算: S=PL/CΔU%(1) 式中P——有功功率,kW; L——输送距离,m; C——电压损失系数。 系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V 供电时,铜导线为14,铝导线为。 (1)确定ΔU%的建议。根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。 因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。 (2)确定ΔU%的计算公式。根据电压偏差计算公式,Δδ%=(U2-U n)/U n×100,可改写为:Δδ=(U1-ΔU-U n)/U n,整理后得: ΔU=U1-U n-Δδ.U n(2) 对于三相四线制用(2)式:ΔU=400-380-(-×380)=,所以ΔU% =ΔU/U1×100=400×100=;对于单相220V,ΔU=230-220-(-×220)=32V,所以ΔU% =ΔU/U1×100=32/230×100=。 低压导线截面计算公式 三相四线制:导线为铜线时, S st=PL/85×=×10-3mm2(3) 导线为铝线时, S sl=PL/50×=×10-3mm2(4) 对于单相220V:导线为铜线时,

导线及截面选择OK

220kV及以下架空送电线路导线及截面选择 2010年1月修编

第一篇导线分类 对导线材料的要求: a、导电率高,以利于减少能损和电压降; b、耐热性能高,以提高输送容量;(正常情况下:铝70℃、铝合金150℃); c、机械强度高,弹性系数E大,有一定柔软性,易弯曲; d、有良好的抗疲劳性,耐震性能好; e、耐磨蚀性好,使用寿命长; f、重量轻,耐磨; g、价格低廉。 常用导线材料的性能比较: 可以看出: a、铜是导电性能最好,机械强度高,耐蚀性能强的一种导线材料,但其重量大,价昂,一般不用于架空送电线。 b、铝的导电率稍差,重量轻,耐腐蚀,资源丰富,价格低廉,但缺点是抗拉强度低。

c、铝镁合金与铝的性能相近,但价格较高。 d、钢的导电性能最差,但机械强度很高,价格低,主要用来制作钢绞线、铝包钢地线。 根据以上分析,在送电线路中最常用的是一种复合材料的导线,即钢芯铝绞线。它在电气性能、机械强度和经济价格上都占有明显的优势。其构造是芯线为钢绞线,外层为铝绞线。 导线的结构和种类 导线从结构上看,有单股和多股之分。一般只有铁和铜的小截面才有单股。 1983年制定(以前标准为GB1179-74)与IEC的规定一致。 a、表示方法: LJ-150 铝绞线 LGJ-300/50 钢芯铝绞线 LGJF-300/50 防腐型钢芯铝绞线 b、规格及技术规数据见GB 1179-83 表2, 16种 表4, 51种 c、材料 铝股——用绳度标高的电工铝 GB3955-83 钢芯——镀锌钢绞线GB3428——82 防腐涂料——呈中性,滴点不应低于110℃

d、最外层绞向:右向 e、工艺质量 绞合应均匀,紧密; 焊接:铝股7股以下不允许有接头 7股以上允许,两接头间不可小于15m。 钢丝不允许接头 f、成品交货:长度允许偏差±5% 每一合同中的短线(不小于1/3制造长度)允许有5% g、厂家: 沈阳电缆厂新疆电缆厂 杭州电缆厂德旧电缆厂 江苏远东电缆厂武汉电缆厂 上海电缆厂昆明电缆厂 ACSR/AS) a、结构:是一种钢芯铝绞线,但其钢芯不是用镀锌钢丝绞合的,而是用铝包钢丝绞合的。铝包钢是在一种高强钢丝的外面,挤包上铝的覆盖层。 b、表示方法:与钢芯铝绞线相同。如LGJ-400/50 c、与钢芯铝交线的比较:

电线电缆的选型及方法

电线电缆的选型及方法 ⒈型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性等; 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,应考虑发热,电压损失,经济电流密度,机械强度等条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格的选用参见下表: 电线电缆规格选用参考表

3、同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 4、本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应× 1/3。 3、当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起动电机时,应选用大2~3个规格。 5、本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。 6、以上数据仅供参考,最终设计和确定电缆的型号和规格应参照有关专业资料或电工手册。 7.运输中严禁从高处扔下电缆或装有电缆的电缆盘,特别是在较低温度时(一般为5℃左右及以下),扔、摔电缆将有可能导致绝缘、护套开裂。 8.尽可能避免在露天以裸露方式存放电缆,电缆盘不允许平放。 9.吊装包装件时,严禁几盘同时吊装。在车辆、船舶等运输工具上,电缆盘要用合适方法加以固定,防止互相碰撞或翻倒,以防止机械损伤电缆。 10.电缆严禁与酸、碱及矿物油类接触 ,要与这些有腐蚀性的物质隔离存放.贮存

架空线路导线截面选择的简便方法

架空线路导线截面选择的简便方法 当按允许电压降选择架空线路导线截面时,依常规的方法必须经过几个步骤计算才能完成,不够简便。据有关电压损失的计算公式并稍加推导,得出较为简便的计算公式,并制有 10千伏线路的 P—T—S曲线,以供参考。 一、计算公式 根据负荷功率法计算公式: 式中:ΔU——电压损耗(伏); P、q——通过线路的有功及无功功率(千瓦,千乏); Ue——线路额定电压(千伏); L——线路长度(公里); p——20 ?C时导线电阻率(欧·毫米2/公里)。铝ρ=31. 5;铜ρ=18.8;钢芯铝绞线P=35·6 ; S——导线截面积(毫米2): ——线路平均电抗(欧/公里)。 x o

计算时可取:0.38千伏线路x。=0.35欧/公里; 6~10千伏线路x。= 0.38欧/公里;35千伏线路x。=0。4 3欧/公里。 m%——电压损耗百分数; tgΦ——功率因数角a中的正切值。 (例题1)某公社计划兴建一条10千伏架空线路,L=10公里,P=500千瓦,cosa=0.8,线间几何均距为 10 0厘米,要求线路电压降不大于5%,应选何种导线? 解:使用铝绞线。根据公式(1)得: 选用LJ-50导线,由表2查得S=49.5毫米2,x。=0。355欧/公里。 由于所选标称截面大于需要截面,实际电抗小于计算电抗,故实际电压降必小于5%。 内公式(2)得实际电压降;

三、结语、 1.按公式(1)计算导线截面,通常只需计算一次便可确定,比一般介绍的方法快捷简便。 2.当10千伏架空线路接允许电压降不大于5%的条件选择导线截面对,使用P~L~S曲线十分方便,节省计算时间。 3.P—L一S曲线对于农村电网规划中的35千伏变电所布局和供电半径的确定也有较大的参考意义。

导线选择参考

线截面选择 从配电变压器到用电负荷的线路有架空线路和电缆线路两种形式。无论室内或室外的配电导线及电缆截面的选择方法是一样的。 10.3.1选择导线截面的原则 1.电力电缆缆芯截面选择的基本要求 (1)最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。 (2)最大短路电流作用时间产生的热效应,应满足热稳定条件。 (3)连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。 (4)较长距离的大电流回路或35kV以上高压电缆,当符合上述条件时,宜选择经济截面,可按“年费用支出最小”原则。 (5)铝芯电缆截面,不宜小于4mm2。 (6)水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。 导线截面的选择应同时满足机械强度、工作电流和允许电压降的要求。其中导线承受最低的机械强度的要求是指诸如导线的自重、风、雪、冰封等而不致于断线;导线应能满足负载长时间通过正常工作最大电流的需要;及导线上的电压降应不超过规定的允许电压降。一般公用电网电压降不得超过额定电压的5%。电力电缆芯截面选择不当时,造成影响可靠运行、缩短使用寿命、危害安全、带来经济损失等弊病,不容忽视。电缆缆芯持续工作温度,关系着电缆绝缘的耐热寿命,一般按30~40年使用寿命,并依据不同绝缘材料特性确定工作温度允许值。当工作温度比允许值大时,相应的使用寿命缩短,如交联聚乙烯工作温度较允许值增加约8℃,对应载流量增加7%,则使用寿命降低一半。电缆缆芯持续工作温度,还涉及影响缆芯导体连接的可靠性,需考虑工程实际可能的导体连接工艺条件来拟定。 短路电流作用于缆芯产生的热效应,满足不影响电缆绝缘的暂态物理性能维持继续正常使用,且使含有电缆接头的导体连接能可靠工作,以及对分相统包电缆在电动力作用下不致危及电缆构造的正常运行,这就统称为符合热稳定条件。否则会出现了油纸绝缘铅包被炸裂、绝缘纸烧焦、电缆芯被弹出、电缆端部冒烟等故障。 “年费用支出最小”原则的评定方法,是参照原水电部82电计字第44号文颁发“电力工程经济分析暂行条例”,该文件推荐的年费用支出B的表达式如下:B=0.11Z+1.11N。式中Z-投资;N-年运行费。 系数是基于取经济使用年限为25年和施工年数按一年来计算的。限制铝芯小截面的使用,是基于过去工程实践中采用小于4~6mm2易出现损伤折断的缘故。对35kV以上高压单芯电缆、电缆使用方式造成附加发热、散热变差的情况,一般宜直接用计算或测试方式来确定允许载流量。 2.电缆载流量的测试 测试应具有科学性的主要特征是:电缆在稳定地持续电流作用下,反映测试特点的条件,应足以等效实际工况的有关影响因素,包含其环境温度应基本稳定。以400~500Hz中频励磁系统自动调节回路用的电缆为例,计入中频情况比工频时邻近效应与集肤效应较为增大影响,要比同截面在工频时的载流量降低至0.68~0.99倍;截面大时降低程度较显。单芯高压电缆交叉互联接地方式,其单元系统的三个区段,在工程实践中往往难以均等,一般可按下列公式计入金属护层的附加损耗影响。 Ps=ΔWs(ΔL/L)2 式中:Ps——电缆金属护层的附加损耗率;ΔWs——电缆金属护层两端完全接地时的金属护层环流损耗占缆芯导体损耗的比值;ΔL——该单元系统划分三区段中最大与最小长度之差;L——该单元系统三个区段长度之和。 塑料管较金属管的管材热阻系数大,且表面散热性差,用作电缆保护管时,对截流量的影响不容忽视。槽盒内电缆载流量校正系数K随盒体材料导热性、壁厚、电缆占积率和结构特征等因素而异。料包带用于阻止电缆延燃时,覆盖层厚度一般在1.5mm 以内,涂料、包带用作耐火防护时,或者采用石棉泥、防火包等构成较厚实的耐火层情况,伴随的热阻增大影响则不容忽视。电缆沟内埋砂时,砂的热阻系数不仅与砂粒的粗细以及其中土、细石等含量有关,还受含水量影响,但含水量不能只按初始条件,应考虑运行温度较高时的水份迁移影响。 3.环境温度的影响 国内外工程实践都曾显示,缆芯工作温度大于70℃的电缆直埋敷设运行一段时间后,由于电缆表皮温度在约50℃情况下,电缆近旁水份将逐渐迁移而呈干燥状态,导致热阻增大,出现缆芯工作温度超过额定值的恶性循环,影响电缆绝缘老化加速,以致发生绝缘击穿事故。 直埋敷设路由位于水泥或石板的路面下,其保水性对防止土壤水份迁移有相当作用。但沿通道近旁若有植树时,树根的吸水因素又易造成土壤干燥。一般对缺乏保水覆盖层情况的防止水份迁移对策,可采取经常性浇水或并行设置冷却水管,但经济上不

导线和电缆截面的选择

导线和电缆截面的选择 各级电压电力线路输送容量及距离的大致范围 一.根据设计经验,选择导线和电缆截面 ⒈10KV及以下高压线路及低压动力线路 ①按发热条件来选择截面; ②校验电压损耗; ③校验机械强度; ④对于绝缘导线和电缆还应满足工作电压的要求; 2.低压照明线路 ①按电压损耗条件选择截面; ②校验发热条件; ③校验机械强度; ④对于绝缘导线和电缆还应满足工作电压的要求; 3.对长距离大电流及35KV以上的高压线路 ①按经济电流密度选择经济截面; ②校验电压损耗; ③校验发热条件;

④校验机械强度; ⑤对于绝缘导线和电缆还应满足工作电压的要求; 二.选择导线和电缆的条件说明 1. 发热条件 ①三相系统相线截面的选择 导线和电缆(包括母线)在通过正常最大负荷电流即计算电流时产生的发热温度,不应超过其正常运行时的最高允许温度。 按发热条件选择三相系统中的相线截面时,应使其允许载流量I al 不小于通过相线的计算电流I 30,即: I al ≥I 30 其中I 30= ? UCOS P 3 P —负载功率(W) U —负载线电压(V) ?COS --负载功率因率 如果导线敷设地点的环境温度与导线允许载流量所采用的环境温度不同时,则导线的允许载流量应乘以温度校正系数。(即I al *K θ) K θ= 00 θθθθ-'-al al al θ--导线额定负荷时的最高允许温度; 0θ--导线的允许载流量所采用的环境温度; '0θ--导线敷设地点实际的环境温度; 在室外,环境温度一般取当地最热月平均最高气温; 在室内,环境温度一般取当地最热月平均最高气温加5℃; 对土中直埋的电缆,取当地最热月地下0.8—1m 的土壤平均温度,亦可近似地取当地最热月平均气温; 附表一:导体在正常和短路时的最高允许温度及热稳定系数

相关文档
最新文档