精选浙江专用2018版高考数学大一轮复习第八章立体几何8.3空间点直线平面之间的位置关系教师用书

合集下载

【精选】浙江版高考数学一轮复习专题8.3空间点线面的位置关系讲

【精选】浙江版高考数学一轮复习专题8.3空间点线面的位置关系讲

第03节空间点、线、面的位置关系【考纲解读】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.对点练习:下列命题:①三个点确定一个平面;②一条直线和一点确定一个平面;③两条相交直线确定一个平面;④两条平行线确定一个平面;⑤若四点不共面,则必有三点不共线.其中正确命题是________.【答案】③④⑤2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况. 平面与平面的位置关系有平行、相交两种情况. 平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 对点练习:【2016高考浙江理数】已知互相垂直的平面交于直线l .若直线m ,n 满足则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C【解析】由题意知,.故选C .3.异面直线所成的角 异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角). ②范围:.异面直线的判定方法:判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过该点的直线是异面直线; 反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 对点练习:【2017课标II ,理10】已知直三棱柱中,,,,则异面直线与所成角的余弦值为( )A .B .C .D .【答案】C4.直线与平面所成角1.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e·n||e||n|.对点练习:【2017浙江,19】(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,,CD⊥AD,PC=AD=2DC=2CB ,E 为PD 的中点.(Ⅰ)证明:平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题解析:MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD=1.在△PCD 中,由PC=2,CD=1,PD=得CE=,在△PBN 中,由PN=BN=1,PB=得QH=,在Rt△MQH 中,QH=,MQ=,所以sin∠QMH=, 所以直线CE 与平面PBC所成角的正弦值是.5.二面角1.求二面角的大小(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.(2)如图2、3,分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小(或).对点练习:【2017浙江,9】如图,已知正四面体D–ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,,分别记二面角D–PR–Q,D–PQ–R,D–QR–P的平面角为α,β,γ,则A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【答案】B【解析】【考点深度剖析】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型多为选择题或填空题,少有在大题中间接考查.平面的基本性质是立体几何的基础,而两条异面直线所成的角、线面角、二面角和距离是高考热点,在浙江卷中频频出现.【重点难点突破】考点一平面的基本性质【1-1】下列叙述中错误的是().A. 若且,则B. 三点,,确定一个平面C. 若直线,则直线与能够确定一个平面D. 若,且,,则【答案】B【1-2】【江西卷】如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.【答案】4【解析】取CD的中点为G,由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内.所以直线EF与正方体的前、后侧面及上、下底面所在平面相交.故直线EF与正方体的六个面所在的平面相交的平面个数为4.【1-3】在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:点C1,O,M共线.【答案】见解析.【解析】如图所示,∵A1A∥C1C,∴A1A,C1C确定平面A1C.∵A1C平面A1C,O∈A1C,∴O∈平面A1C,而O=平面BDC1∩线A1C,∴O∈平面BDC1,∴O在平面BDC1与平面A1C的交线上.∵AC∩BD=M,∴M∈平面BDC1,且M∈平面A1C,∴平面BDC1∩平面A1C=C1M,∴O∈C1M,即C1,O,M三点共线.【1-4】如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC 的交线.【答案】见解析.【领悟技法】公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定,作图时充分利用几何体本身提供的面面平行等条件,可以更快地确定交线的位置.证明四点共面的基本思路:一是直接证明,即利用公理或推论来直接证明;二是先由其中不共线的三点确定一个平面,再证第四个点也在这个平面内即可.要证明点共线或线共点的问题,关键是转化为证明点在直线上,也就是利用公理3,即证点在两个平面的交线上.或者选择其中两点确定一直线,然后证明另一点也在直线上.【触类旁通】【变式1】如果平面外有两点、,它们到平面的距离都是,则直线和平面的位置关系一定是().A. 平行B. 相交C. 平行或相交D.【答案】C【变式2】如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC =1∶2.(Ⅰ)求证:E ,F ,G ,H 四点共面;(Ⅱ)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线. 【答案】见解析.【解析】(Ⅰ)∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD .在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH . ∴E ,F ,G ,H 四点共面.(Ⅱ)∵EG ∩FH =P ,P ∈EG ,EG 平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点. 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线.【变式3】如图,在四面体ABCD 中 ,E ,G 分别为BC ,AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =DH ∶HA =2∶3.求证:EF ,GH ,BD 交于一点.【答案】见解析.设GH和EF交于一点O.因为O在平面ABD内,又在平面BCD内,所以O在这两个平面的交线上.因为这两个平面的交线是BD,且交线只有这一条,所以点O在直线BD上.这就证明了GH和EF的交点也在BD上,所以EF,GH,BD交于一点.综合点评:(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上或选择某两点确定一条直线,然后证明其他点都在这条直线上.考点二空间两直线的位置关系【2-1】【2018届浙江省嘉兴市第一中学高三9月测试】设是两条不同的直线,时一个平面,则下列说法正确的是()A. 若则B. 若则C. 若则D. 若则【答案】C【2-2】【2017届浙江省ZDB联盟高三一模】已知平面和共面的两条不同的直线,下列命题是真命题的是()A. 若与所成的角相等,则B. 若,,则C. 若,,则D. 若,,则【答案】D【解析】本题考查空间直线与直线的位置关系如图甲示,直线与平面均成角,但与不平行,故错;如图乙示,,直线,且,但与不平行,故错;如图丙示,,且但,故错;如图丁示,,由知;又,则;又共面,则故正确答案为.【2-3】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【答案】②③④【2-4】如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是()A.与是异面直线 B.平面C.D.平面【答案】C【领悟技法】空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、平行公理及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.【触类旁通】【变式1】【2017届浙江省丽水市高三下学期测试】设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A. 若,,且,则B. 若,,,则C. 若,,,则D. 若,,,则【答案】C【解析】A,若m∥α,n⊥β,且α⊥β,则m、n平行、相交、或异面,不正确;B,α∥β,mα,nβ,m,n共面时,m∥n,不正确;C,m⊥α,n⊥β,m⊥n,利用平面与平面垂直的判定定理,可得α⊥β,正确;D,m⊥n,mα,nβ,则α、β平行或相交,不正确。

(浙江版)2018年高考数学一轮复习(讲+练+测): 专题8.3 空间点、线、面的位置关系(测)

(浙江版)2018年高考数学一轮复习(讲+练+测): 专题8.3 空间点、线、面的位置关系(测)

第03节 空间点、线、面的位置关系班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。

)1.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )A .B .C .D .【答案】A 【解析】2.【2016高考浙江文数】已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m∥α,n⊥β,则( ) A.m∥l B.m∥nC.n⊥lD.m⊥n 【答案】C 【解析】 由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .3. 【2017届浙江省杭州市高三4月检测(二模)】设α, β是两个不同的平面, m 是一条直线,给出下列命题:①若m α⊥, m β⊂,则αβ⊥;②若//m α, αβ⊥,则m β⊥.则( ) A. ①②都是假命题 B. ①是真命题,②是假命题 C. ①是假命题,②是真命题 D. ①②都是真命题 【答案】B【解析】如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,所以①正确;若//m α , αβ⊥ ,则m 与α 不一定垂直,所以②错误.故选择B.4. 已知两直线,及两个平面,,给出下列四个命题,正确的命题是( ). A. 若,则 B. 若,,则C. 若,则D. 若,则【答案】B【解析】中,与可能相交,不一定是平行的故错误.中,两条线垂直于两个垂直的平面,则两条线应是垂直关系,故正确. 中,与可能平行,故错误. 中,可能在上,此时不满足 错误.故选.5.【2017年福建省数学基地校】已知m 、n 是两条不同直线, α、β为两个不同平面,那么使//m α成立的一个充分条件是( ) A. //m β, //αβ B. m β⊥, αβ⊥C. m n ⊥, n α⊥, m α⊄D. m 上有不同的两个点到α的距离相等 【答案】C6.【浙江省嘉兴市高三教学测试】已知直线l ,m 和平面α,下列命题正确的是( ) A.若//,,l m αα⊂则//l m B.若//,,l m m α⊂ 则//l αC.若,,l m m α⊥⊂ 则l α⊥D.若,,l m αα⊥⊂ 则l m ⊥ 【答案】D7. 设为空间不重合的直线, ,,αβγ是空间不重合的平面,则下列说法准确的个数是( ) ①//,//,则//;②⊥,⊥,则//;③若//,//,//m l m l αα则;④若l ∥m , l α⊂, m β⊂,则α∥β; ⑤若,//,,//,//m m l l αββααβ⊂⊂则 ⑥//,//αγβγ,则//αβ A. 0 B. 1 C. 2 D. 3 【答案】C【解析】试题分析:①显然正确;②可能相交;③l 可能在平面α内;④l 可能为αβ、两个平面的交线,两个平面αβ、可能相交;⑤αβ、可能相交;⑥显然正确,故选C . 8.【2017届浙江台州中学高三10月月考】正方体1111D C B A ABCD -中,M 是1DD 的中点,O 为底面ABCD 的中心,P 为棱11A B 上的任意一点,则直线OP 与直线AM 所成的角为( )A.45B.60C.90D.与点P 的位置有关 【答案】C.【解析】如下图所示建立空间直角坐标系,不妨设正方体的棱长为2,设(,0,0)P x ,(1,1,2)O ,(0,2,1)M ,(0,0,2)A ,∴(1,1,2)OP x =---,(0,2,1)AM =-,∴(1)012(2)(1)0OP AM x ⋅=-⋅-⨯+-⨯-=,即OP AM ⊥,故夹角为 C. 9. 如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( ).A. BD∥平面CB 1D 1B. AC 1⊥BDC. AC 1⊥平面CB 1D 1D. 异面直线AD 与CB 1角为60° 【答案】D10.【温州市十校联合体期末联考】空间四边形ABCD 中,AD=BC=2,E,F 分别是AB,CD 的中点,EF = 3,则异面直线AD,BC 所成的角为( )A .30°B . 60°C .90°D .120°D【答案】B【解析】设G 为AC 的中点,由已知中AD=BC=2,E 、F 分别是AB 、CD 的中点,若EF,根据三角形中位线定理,我们易求出∠EGF 为异面直线AD 、BC 所成的角(或其补角),解三角形EGF 即可得到答案.11.【安徽蚌埠市高二期末】在正四棱锥P-ABCD 中,PA=2,直线PA 与平面ABCD 所成角为60°,E 为PC 的中点,则异面直线PA 与BE 所成角为( ) A .90 B .60 C . 45 D .30【答案】C12. 如图,正方体的棱线长为,线段上有两个动点,,且,则下列结论中错误的是( ).A. B. 平面C. 三棱锥的体积为定值D. 的面积与的面积相等【答案】D【解析】连接,则,所以平面,则,故A正确;因为平面,所以平面,故B正确;因为三棱锥的底面是底边为,高为棱长的三角形,面积为,三棱锥的高为点到平面的距离,所以三棱锥的体积是定值,故C正确;显然的面积与的有相同的底边,且到的距离是棱长1,且到的距离是,即两三角形的面积不相等,故D错误;;故选D.二、填空题(本大题共4小题,每小题5分,共20分。

性质课件浙江高考数学第八章立体几何8.3直线、平面平行的判定与

性质课件浙江高考数学第八章立体几何8.3直线、平面平行的判定与

-17-
考点一
考点二
考点三
(2)(2018北京高三模拟)如图,在五面体ABCDEF中,四边形ABCD 为菱形,且∠BAD=60°,对角线AC与BD相交于点O;OF⊥平面 ABCD,BC=CE=DE=2EF=2.
①求证:EF∥BC; ②求直线DE与平面BCFE所成角的正弦值.
-18-
考点一
考点二
考点三
-3-
2018 2017 2016 2015 2014 在高考中,直线与平面、平面与平面平行常在解答题 中的第 1 问考查.题型全面,试题难度中等,考查线线、 考向分析 线面、面面平行的相互转化,并且考查空间想象能力 以及逻辑思维能力. 年份
-4知识梳理 双击自测
1.直线与平面平行的判定与性质
判 定 图形 条件 结论 a∩α=⌀ a ∥α a⊂α,b⊄ α , a ∥b b∥α a ∥α a∩α=⌀ a⊂β,α∩ β=b a ∥b 定 义 定 理 性 质
关闭
当m⊄α,n⊂α时,由线面平行的判定定理可知,m∥n⇒m∥α;但反过来不成 立,即m∥α不一定有m∥n,m与n还可能异面.故选A. A
解析
关闭
答案
-8知识梳理 双击自测
3.设平面 α∥ β,A,C ∈αBD ,B,D ∈ β,,直线AB与CD交于点S,若 如图 (1),由 α∥ β 可知 ∥ AC ������������ ������������ 9 ������������ -34则CS= AS=18,BS=9,CD=34, . ∴ ������������ = ������������ ,即18 = ������������ . ∴SC=68.
①证明:因为四边形ABCD为菱形,
所以AD∥BC.因为BC⊄平面ADEF,AD⊂平面ADEF, 所以BC∥平面ADEF.因为平面ADEF∩平面BCEF=EF, 所以EF∥BC. ②解:因为FO⊥平面ABCD,所以FO⊥AO,FO⊥OB. 又因为OB⊥AO, 所以以O为坐标原点,OA,OB,OF分别为x轴、y轴、z轴建立空间 直角坐标系,取CD的中点M,连接OM,EM.易证EM⊥平面ABCD. 又因为BC=CE=DE=2EF=2,所以可得出以下各点坐标:

【位置】浙江专用2020版高考数学大一轮复习第八章立体几何83空间点直线平面之间的位置关系教师用书

【位置】浙江专用2020版高考数学大一轮复习第八章立体几何83空间点直线平面之间的位置关系教师用书

【关键字】位置(浙江专用)2018版高考数学大一轮复习第八章立体几何 8.3 空间点、直线、平面之间的位置关系教师用书1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.【知识拓展】1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线笔直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面笔直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( ×)(3)两个平面ABC与DBC相交于线段BC.( ×)(4)经过两条相交直线,有且只有一个平面.( √)(5)没有公共点的两条直线是异面直线.( ×)1.下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3答案 C解析②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.2.(2016·浙江)已知互相笔直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( ) A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.3.已知a,b是异面直线,直线c平行于直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 C解析由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.4. (教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=2,AD=2,AE=2,则BC和EG 所成角的大小是______,AE和BG所成角的大小是________.答案45°60°解析∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF===1,∴∠EGF =45°,∵AE 与BG 所成的角等于BF 与BG 所成的角即∠GBF ,tan ∠GBF ===,∴∠GBF =60°. 题型一 平面基本性质的应用例1 (1)(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.(2)已知,空间四边形ABCD (如图所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证: ①E 、F 、G 、H 四点共面;②三直线FH 、EG 、AC 共点.证明 ①连接EF 、GH ,如图所示,∵E 、F 分别是AB 、AD 的中点,∴EF ∥BD .又∵CG =13BC ,CH =13DC , ∴GH ∥BD ,∴EF ∥GH ,∴E 、F 、G 、H 四点共面.②易知FH 与直线AC 不平行,但共面,∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC .又∵平面EFHG ∩平面ABC =EG ,∴M ∈EG ,∴FH 、EG 、AC 共点.思维升华 共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.如图,正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E、C、D1、F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E、C、D1、F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.题型二判断空间两直线的位置关系例2 (1)(2015·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2) 如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( ) A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)答案(1)D (2)D (3)②④解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l 至少与l1,l2中的一条相交.(2) 连接B1C,B1D1,如图所示,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,又BD∥B1D1,∴MN∥BD.∵CC1⊥B1D1,AC⊥B1D1,∴MN⊥CC1,MN⊥AC.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(3)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉平面GMN,因此GH与MN异面.所以图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )A.0 B.1 C.2 D.3(2)(2016·南昌一模)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是( )A.a与b异面,b与c异面⇒a与c异面B.a与b相交,b与c相交⇒a与c相交C.α∥β,β∥γ⇒α∥γD.a⊂α,b⊂β,α与β相交⇒a与b相交答案(1)B (2)C解析 (1)在空间中,若a ⊥b ,a ⊥c ,则b ,c 可能平行,也可能相交,还可能异面,所以①②错,③显然成立.(2)如图(1),在正方体中,a 、b 、c 是三条棱所在直线,满足a 与b 异面,b 与c 异面,但a ∩c =A ,故A 错误;在图(2)的正方体中,满足a 与b 相交,b 与c 相交,但a 与c 不相交,故B 错误;如图(3),α∩β=c ,a ∥c ,则a 与b 不相交,故D 错误.题型三 求两条异面直线所成的角例3 (2016·重庆模拟) 如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.答案 π3解析 如图,将原图补成正方体ABCD -QGHP ,连接GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中,AG =GP =AP ,所以∠APG =π3. 引申探究在本例条件下,若E ,F ,M 分别是AB ,BC ,PQ 的中点,异面直线EM 与AF 所成的角为θ,求cos θ的值.解 设N 为BF 的中点,连接EN ,MN ,则∠MEN 是异面直线EM 与AF 所成的角或其补角.不妨设正方形ABCD 和ADPQ 的边长为4,则EN =5,EM =26,MN =33.在△MEN 中,由余弦定理得cos∠MEN =EM 2+EN 2-MN 22EM ·EN=24+5-332×26×5=-130=-3030. 即cos θ=3030. 思维升华 用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.(2017·杭州第一次质检) 如图,△ABC 是等腰直角三角形,AB =AC ,∠BCD =90°,且BC =3CD =3.将△ABC 沿BC 边翻折,设点A 在平面BCD 上的射影为点M ,若点M 在△BCD 的内部(含边界),则点M 的轨迹的最大长度等于________;在翻折过程中,当点M 位于线段BD 上时,直线AB 和CD 所成的角的余弦值等于________.答案 32 66解析 当平面ABC ⊥平面BCD 时,点A 在平面BCD 上的射影为BC 的中点M ,当点A 在平面BCD 上的射影M 在BD 上时,因为AB =AC ,所以BM =MC ,因为BC =3CD =3,所以∠DBC =30°,所以由∠BCD =90°得BM =MD ,点M 的轨迹的最大长度等于12CD =32,将其补为四棱锥,所以AB =322,AE =AM 2+EM 2=322,又因为∠EBA 为直线AB 和CD 所成的角,所以cos∠EBA =AB 2+BE 2-AE 22AB ·BE =66. 18.构造模型判断空间线面位置关系典例 已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题: ①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中所有正确的命题是________.(填序号)思想方法指导 本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析 借助于长方体模型来解决本题,对于①,可以得到平面α、β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m ⊥α,α∥β可得m ⊥β,因为n ∥β,所以过n 作平面γ,且γ∩β=g ,如图(4)所示,所以n 与交线g 平行,因为m ⊥g ,所以m⊥n,故④正确.答案①④1.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则“α∥β”是“a⊥b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若a⊂α,b⊥β,α∥β,则由α∥β,b⊥β⇒b⊥α,又a⊂α,所以a⊥b;若a⊥b,a⊂α,b⊥β,则b⊥α或b∥α或b⊂α,此时α∥β或α与β相交,所以“α∥β”是“a⊥b”的充分不必要条件,故选A.2.(2016·福州质检)在三棱柱ABC-A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1、EF、BC 分别有交点P、M、N,如图,故有无数条直线与直线A1B1、EF、BC都相交.3.对于任意的直线l与平面α,在平面α内必有直线m,使m与l( )A.平行B.相交C.垂直D.互为异面直线答案 C解析不论l∥α,l⊂α,还是l与α相交,α内都有直线m使得m⊥l.4.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M既不在AC上,也不在BD上答案 A解析由于EF∩HG=M,且EF⊂平面ABC,HG⊂平面ACD,所以点M为平面ABC与平面ACD的一个公共点,而这两个平面的交线为AC,所以点M一定在直线AC上,故选A.5.设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a 的取值范围是( )A.(0,2) B.(0,3)C.(1,2) D.(1,3)答案 A解析此题相当于一个正方形沿着对角线折成一个四面体,长为a的棱长一定大于0且小于2.故选A.6.(2016·宁波二模)下列命题中,正确的是( )A.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条答案 D解析对于A,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故A错误.对于B,设a,b确定的平面为α,显然a⊂α,故B错误.对于C,当a⊂α时,直线a与平面α内的无数条直线都平行,故C错误.易知D正确.故选D.7.(2016·昆明模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.答案24解析如图,若要出现所成角为60°的异面直线,则直线需为面对角线,以AC为例,与之构成黄金异面直线对的直线有4条,分别是A′B,BC′,A′D,C′D,正方形的面对角线有12条,所以所求的“黄金异面直线对”共有12×42=24对(每一对被计算两次,所以要除以2). 8.(2016·南昌高三期末) 如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形.∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值为________. 答案 5 2解析 连接A 1B ,将△A 1BC 1与△CBC 1同时展开形成一个平面四边形A 1BCC 1,则此时对角线CP +PA 1=A 1C 达到最小,在等腰直角三角形△BCC 1中,BC 1=2,∠CC 1B =45°,在△A 1BC 1中,A 1B =40=210,A 1C 1=6,BC 1=2,∴A 1C 21+BC 21=A 1B 2,即∠A 1C 1B =90°.对于展开形成的四边形A 1BCC 1,在△A 1C 1C 中,C 1C =2,A 1C 1=6,∠A 1C 1C =135°,由余弦定理有,CP +PA 1=A 1C =2+36-122cos 135°=50=5 2.9. 如图是正四面体(各面均为正三角形)的平面展开图,G 、H 、M 、N 分别为DE 、BE 、EF 、EC 的中点,在这个正四面体中,①GH 与EF 平行;②BD 与MN 为异面直线;③GH 与MN 成60°角;④DE 与MN 垂直.以上四个命题中,正确命题的序号是________.答案 ②③④解析 把正四面体的平面展开图还原,如图所示, GH 与EF 为异面直线,BD 与MN 为异面直线,GH 与MN 成60°角,DE ⊥MN .10.(2015·浙江)如图,三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.答案 78解析 如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK .∵M 为AD 的中点,∴MK ∥AN ,∴∠KMC 为异面直线AN ,CM 所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理求得AN =DN =CM =22, ∴MK = 2.在Rt△CKN 中,CK =22+12= 3. 在△CKM 中,由余弦定理,得cos∠KMC =CM 2+MK 2-CK 22CM ·MK=22+222-322×2×22=78. *11.(2016·郑州质量预测) 如图,矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是________.①BM 是定值;②点M 在某个球面上运动;③存在某个位置,使DE ⊥A 1C ;④存在某个位置,使MB ∥平面A 1DE .答案 ③解析 取DC 中点F ,连接MF ,BF ,MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos∠MFB 是定值,所以M 是在以B 为圆心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;A 1C 在平面ABCD 中的投影与AC 重合,AC 与DE 不垂直,可得③不正确.12. 如图所示,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.解 如图所示,取AC 的中点F ,连接EF ,BF ,在△ACD 中,E 、F 分别是AD 、AC 的中点,∴EF ∥CD .∴∠BEF 或其补角即为异面直线BE 与CD 所成的角.在Rt△EAB 中,AB =AC =1,AE =12AD =12, ∴BE =52.在Rt△EAF 中,AF =12AC =12,AE =12, ∴EF =22. 在Rt△BAF 中,AB =1,AF =12,∴BF =52. 在等腰三角形EBF 中,cos∠FEB =12EF BE =2452=1010. ∴异面直线BE 与CD 所成角的余弦值为1010. *13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q .求证:(1)D 、B 、F 、E 四点共面;(2)若A 1C 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 证明 (1) 如图所示,因为EF 是△D 1B 1C 1的中位线, 所以EF ∥B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,B 1D 1∥BD ,所以EF ∥BD .所以EF ,BD 确定一个平面.即D 、B 、F 、E 四点共面.(2)在正方体ABCD -A 1B 1C 1D 1中,设平面A 1ACC 1确定的平面为α,又设平面BDEF 为β.因为Q ∈A 1C 1,所以Q ∈α.又Q ∈EF ,所以Q ∈β.则Q 是α与β的公共点,同理,P 点也是α与β的公共点.所以α∩β=PQ .又A 1C ∩β=R ,所以R ∈A 1C ,则R ∈α且R ∈β.则R ∈PQ ,故P ,Q ,R 三点共线.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

高考数学一轮复习讲练测(浙江版):专题8.3 空间点、线、面的位置关系(讲)答案解析

高考数学一轮复习讲练测(浙江版):专题8.3 空间点、线、面的位置关系(讲)答案解析

【最新考纲解读】【考点深度剖析】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型多为选择题或填空题,少有在大题中间接考查.平面的基本性质是立体几何的基础,而两条异面直线所成的角和距离是高考热点,在新课标高考卷中频频出现.【课前检测训练】[判一判]1.判断下面结论是否正确(打“√”或“×”).(1)如果两个不重合的平面α,β有一条公共直线a,那么就说平面α,β相交,并记作α∩β=a.(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(3)两个平面α,β有一个公共点A,就说α,β相交于A点,并记作α∩β=A.(4)两个平面ABC 与DBC 相交于线段BC. (5)经过两条相交直线,有且只有一个平面. 答案: (1)√; (2)×;(3)×;(4)×;(5)√.2.空间四点中,三点共线是这四点共面的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A. [练一练]1.直线,m n 均不在平面,αβ内,给出下列命题: ①若,mn n α,则m α;②若,m βαβ,则m α;③若,m n n α⊥⊥,则m α;④若,m βαβ⊥⊥,则m α.则其中正确命题的个数是( )A. 1B.2C.3D.4 【答案】D2.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C 【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .3.【2016高考上海文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA1 (B)直线A1B1(C)直线A1D1(D)直线B1C1【答案】DB C与EF在同一平面内,是相交的,其他A,B,C中直线与EF都是异面【解析】只有11直线,故选D.4.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【答案】C【解析】由原来的直三棱柱补成一个正方体ABCD-A1B1C1D1,如图.∵AC1∥BD1,∴∠A1BD1即为异面直线BA1与AC1所成的角.∵△A1BD1为正三角形,∴∠A1BD1=60°.故选C.5.下列命题:①三个点确定一个平面;②一条直线和一点确定一个平面;③两条相交直线确定一个平面;④两条平行线确定一个平面;⑤若四点不共面,则必有三点不共线.其中正确命题是________.【答案】③④⑤【题根精选精析】考点一平面的基本性质【1-1】在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形【答案】D【1-2】【江西卷】如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.【答案】4【解析】取CD的中点为G,由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内.所以直线EF与正方体的前、后侧面及上、下底面所在平面相交.故直线EF与正方体的六个面所在的平面相交的平面个数为4.【1-3】在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:点C1,O,M共线.【答案】见解析.【解析】如图所示,∵A1A∥C1C,∴A1A,C1C确定平面A1C.∵A1C⊂平面A1C,O∈A1C,∴O∈平面A1C,而O=平面BDC1∩线A1C,∴O∈平面BDC1,∴O在平面BDC1与平面A1C的交线上.∵AC∩BD=M,∴M∈平面BDC1,且M∈平面A1C,∴平面BDC1∩平面A1C=C1M,∴O∈C1M,即C1,O,M三点共线.【1-4】如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.【答案】见解析.【基础知识】(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.【思想方法】公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定,作图时充分利用几何体本身提供的面面平行等条件,可以更快地确定交线的位置.证明四点共面的基本思路:一是直接证明,即利用公理或推论来直接证明;二是先由其中不共线的三点确定一个平面,再证第四个点也在这个平面内即可.要证明点共线或线共点的问题,关键是转化为证明点在直线上,也就是利用公理3,即证点在两个平面的交线上.或者选择其中两点确定一直线,然后证明另一点也在直线上.【温馨提醒】对于空间几何中的一些概念、公理、定理和推论的理解一定要结合图形,理解其本质,准确把握其内涵,特别是定理、公理中的限制条件,如公理3中“不共线的三点”,“不共线”是很重要的条件.另外,对于平面几何中的一些正确命题,包括一些定理推论,在空间几何中应当重新认定,有些命题因为空间中位置关系的变化,可能变为错误命题,学习中要养成分类讨论的习惯,再就是结合较熟悉的立体几何图形或现实生活中的实物进行辨析,也可利用手中的笔、书本等进行演示,验证.考点二空间两直线的位置关系【2-1】对于直线m、n和平面α,下列命题中的真命题是()A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥αB.如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交C.如果m⊂α,n∥α,m、n共面,那么m∥nD.如果m⊂α,n∥α,m、n共面,那么m与n相交【答案】C【2-2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【答案】②③④【解析】把正四面体的平面展开图还原.如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.【2-3】在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条【答案】D【2-4】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).【答案】③④【解析】A ,M ,C 1三点共面,且在平面AD 1C 1B 中,但C ∉平面AD 1C 1B ,因此直线AM 与CC 1是异面直线,同理AM 与BN 也是异面直线,AM 与DD 1也是异面直线,①②错,④正确;M ,B ,B 1三点共面,且在平面MBB 1中,但N ∉平面MBB 1,因此直线BN 与MB 1是异面直线,③正确. 【基础知识】直线与直线的位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况. 平面与平面的位置关系有平行、相交两种情况. 平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 【思想方法】(1)点共线问题的证明方法:证明空间点共线,一般转化为证明这些点是某两个平面的公共点,再依据公理3证明这些点都在这两个平面的交线上. (2)线共点问题的证明方法:证明空间三线共点,先证两条直线交于一点,再证第三条直线经过这点,将问题转化为证明点在直线上.(3)点线共面问题的证明方法:①纳入平面法:先确定一个平面,再证有关点、线在此平面内;②辅助平面法:先证有关点、线确定平面α,再证明其余点、线确定平面β,最后证明平面α,β重合. 【温馨提醒】空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、平行公理及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决. 考点三 异面直线所成的角【3-1】【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(D)13【答案】A【解析】如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n所成的角即为1,A B BD 所成的角,即为60︒,故,m n 选A.【3-2】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .16B .36 C .13D .33【答案】B【3-3】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点. (1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________. (2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________. 【答案】 (1)60°或30° (2)45°【解析】 (1)法一 如图,取AC 的中点P ,连接PM ,PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠PMN =30°,即AB 与MN 所成的角为30°.综上直线AB 和MN 所成的角为60°或30°.法二 由AB =CD ,可以把该三棱锥放在长方体AA 1BB 1-C 1CD 1D 中进行考虑,如图, 由M ,N 分别是BC ,AD 的中点,所以MN ∥AA 1,即∠BAA 1(或其补角)为AB 与MN 所成的角.连接A 1B 1交AB 于O ,所以A 1B 1∥CD ,即∠AOA 1(或其补角)为AB 与CD 所成的角.所以∠AOA 1=60°或120°,由矩形AA 1BB 1的性质可得∠BAA 1=60°或30°.所以直线AB 和MN 所成的角为60°或30°.(2)取AC 的中点P ,连接PM ,PN ,则PM 綉12AB ,所以∠MPN (或其补角)为AB 与CD 所成的角,由于AB ⊥CD ,所以∠MPN =90°.又AB =CD ,所以PM =PN ,从而∠PMN =45°,即AB 与MN 所成的角为45°.【基础知识】异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角). ②范围:]2,0(.异面直线的判定方法:判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过该点的直线是异面直线; 反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.【思想方法】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是]2,0( ,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提醒】1.解决立体几何问题常用的方法是空间问题的平面化,转化为平面问题后就可以用我们熟悉的方法来解决,这体现了空间立体几何的转化与化归的思想.2.高考中对异面直线所成角的考查,一般出现在综合题的某一步,其步骤为:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0°<θ≤90°,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.【易错问题大揭秘】【易错试题常警惕】易错典例:在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1B 1,A 1D 1的中点,则A 1B 与EF 所成角的大小为________.易错点:两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角..分析:如图,连接B 1D 1,D 1C ,B 1C .由题意知EF 是△A 1B 1D 1的中位线,所以EF ∥B 1D 1. 又A 1B ∥D 1C ,所以A 1B 与EF 所成的角等于B 1D 1与D 1C 所成的角.因为△D 1B 1C 为正三角形,所以∠B 1D 1C =π3. 故A 1B 与EF 所成角的大小为π3. 温馨提醒:1.正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.2. 不共线的三点确定一个平面,一定不能丢掉“不共线”条件.3.两条异面直线所成角的范围是(0,]2.4.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.【针对训练1】已知三棱锥A -BCD 中,AB =CD ,且直线AB 与CD 所成的角为60°,点M ,N 分别是BC ,AD 的中点,则直线AB 和MN 所成的角为________.【答案】60°或30°则∠MPN =60°或∠MPN =120°,若∠MPN =60°,因为PM ∥AB ,所以∠PMN(或其补角)是AB 与MN 所成的角.性质可得∠BAA1=60°或30°.所以直线AB 和MN 所成的角为60°或30°.为N,则异面直线B′M与CN所成的角是________.【解析】而∠B′MB+∠MB′B=90°,从而∠B′MB+∠QBM=90°,∴∠MHB=90°.。

高考数学一轮复习第八章立体几何8.3空间点、直线、平面之间的位置关系课件文新人教B版

高考数学一轮复习第八章立体几何8.3空间点、直线、平面之间的位置关系课件文新人教B版

-13考点1 考点2 考点3
对点训练1如图,空间四边形ABCD中,点E,F分别是AB,AD的中 点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.
(1)求证:E,F,G,H四点共面; (2)设EG与FH交于点P,求证:P,A,C三点共线.
-14考点1 考点2 考点3
证明 (1)∵E,F分别为AB,AD的中点, ∴EF∥BD.
-12考点1 考点2 考点3
解题心得1.点线共面问题的证明方法: (1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内; (2)辅助平面法:先证明有关点、线确定平面α,再证明其余点、线 确定平面β,最后证明平面α,β重合. 2.证明多线共点问题,常用的方法是:先证明其中两条直线交于一 点,再证明交点在第三条直线上.证明交点在第三条直线上时,第三 条直线应为前两条直线所在平面的交线,可以利用公理3证明.
在△BCD
������������ 中,������������
1 2 3 4 5
4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列 四个命题,其中正确的命题是 .(填序号) ①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③ a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b
关闭
③④
答案
-8知识梳理 双基自测 自测点评
关闭
(1)AC=BD
(2)AC=BD 且 AC⊥BD
解析 答案
-9知识梳理 双基自测 自测点评
1.做有关平面基本性质的判断题时,要抓住关键词,如“有且只 有”“只能”“最多”等. 2.两个不重合的平面只要有一个公共点,那么这两个平面一定相 交且得到的是一条直线. 3.异面直线是指不同在任何一个平面内,没有公共点的直线.不能 错误地理解为不在某一个平面内的两条直线就是异面直线.

高考数学大一轮复习第八章立体几何8-3空间点直线平面之间的位置关系教师用书文新人教

【2019最新】精选高考数学大一轮复习第八章立体几何8-3空间点直线平面之间的位置关系教师用书文新人教1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.【知识拓展】1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( ×)(3)两个平面ABC与DBC相交于线段BC.( ×)(4)经过两条相交直线,有且只有一个平面.( √)(5)没有公共点的两条直线是异面直线.( ×)1.下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3答案C解析②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )A.m∥l B.m∥nC.n⊥l D.m⊥n答案C解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.3.已知a,b是异面直线,直线c平行于直线a,那么c与b( ) A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案C解析由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.4.(教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=2,AD=2,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.答案45°60°解析∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF ===1,∴∠EGF=45°,∵AE与BG所成的角等于BF与BG所成的角即∠GBF,tan∠GBF===,∴∠GBF=60°.5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.答案4解析EF与正方体左、右两侧面均平行.所以与EF相交的侧面有4个.题型一平面基本性质的应用例1 (1)(2016·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.(2)已知空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC,CH=DC.求证:①E、F、G、H四点共面;②三直线FH、EG、AC共点.证明①连接EF、GH,如图所示,∵E、F分别是AB、AD的中点,∴EF∥BD.又∵CG=BC,CH=DC,∴GH∥BD,∴EF∥GH,∴E、F、G、H四点共面.②易知FH与直线AC不平行,但共面,∴设FH∩AC=M,∴M∈平面EFHG,M∈平面ABC.又∵平面EFHG∩平面ABC=EG,∴M∈EG,∴FH、EG、AC共点.思维升华共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.如图,正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E、C、D1、F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E、C、D1、F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.题型二判断空间两直线的位置关系例2 (1)(2015·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)答案(1)D (2)D (3)②④解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.(2)连接B1C,B1D1,如图所示,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,又BD∥B1D1,∴MN∥BD.∵CC1⊥B1D1,AC⊥B1D1,∴MN⊥CC1,MN⊥AC.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(3)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )A.0 B.1 C.2 D.3(2)(2016·南昌一模)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是( )A.a与b异面,b与c异面⇒a与c异面B.a与b相交,b与c相交⇒a与c相交C.α∥β,β∥γ⇒α∥γD.a⊂α,b⊂β,α与β相交⇒a与b相交答案(1)B (2)C解析(1)在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错,③显然成立.(2)如图(1),在正方体中,a、b、c是三条棱所在直线,满足a与b 异面,b与c异面,但a∩c=A,故A错误;在图(2)的正方体中,满足a与b相交,b与c相交,但a与c不相交,故B错误;如图(3),α∩β=c,a∥c,则a与b不相交,故D错误.题型三求两条异面直线所成的角例3 (2016·重庆模拟)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.答案π3解析如图,将原图补成正方体ABCD-QGHP,连接GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,在△AGP中,AG=GP=AP,所以∠APG=.引申探究在本例条件下,若E,F,M分别是AB,BC,PQ的中点,异面直线EM 与AF所成的角为θ,求cos θ的值.解设N为BF的中点,连接EN,MN,则∠MEN是异面直线EM与AF所成的角或其补角.不妨设正方形ABCD和ADPQ的边长为4,则EN=,EM=2,MN=.在△MEN中,由余弦定理得cos ∠MEN=EM2+EN2-MN22EM·EN==-=-.即cos θ=.思维升华用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( )A. B. C. D.33答案B解析画出正四面体ABCD的直观图,如图所示.设其棱长为2,取AD的中点F,连接EF,设EF的中点为O,连接CO,则EF∥BD,则∠FEC就是异面直线CE与BD所成的角.△ABC为等边三角形,则CE⊥AB,易得CE=,同理可得CF=,故CE=CF.因为OE=OF,所以CO⊥EF.又EO=EF=BD=,所以cos∠FEC===.16.构造模型判断空间线面位置关系典例已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是________.思想方法指导本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析借助于长方体模型来解决本题,对于①,可以得到平面α、β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g 平行,因为m⊥g,所以m⊥n,故④正确.答案①④1.在下列命题中,不是公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线答案A解析选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.(2016·福州质检)在三棱柱ABC-A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线( ) A.不存在B.有且只有两条C.有且只有三条D.有无数条答案D解析在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1、EF、BC分别有交点P、M、N,如图,故有无数条直线与直线A1B1、EF、BC都相交.3.对于任意的直线l与平面α,在平面α内必有直线m,使m与l( )A.平行B.相交C.垂直D.互为异面直线答案C解析不论l∥α,l⊂α,还是l与α相交,α内都有直线m使得m⊥l.4.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M既不在AC上,也不在BD上答案A解析由于EF∩HG=M,且EF⊂平面ABC,HG⊂平面ACD,所以点M为平面ABC与平面ACD的一个公共点,而这两个平面的交线为AC,所以点M一定在直线AC上,故选A.5.设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是( )A.(0,) B.(0,)C.(1,) D.(1,)答案A解析此题相当于一个正方形沿着对角线折成一个四面体,长为a的棱长一定大于0且小于.故选A.6.下列命题中,正确的是( )A.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a 平行的直线有且只有一条答案D解析对于A,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故A错误.对于B,设a,b确定的平面为α,显然a⊂α,故B错误.对于C,当a⊂α时,直线a与平面α内的无数条直线都平行,故C 错误.易知D正确.故选D.7.(2016·昆明模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.答案24解析如图,若要出现所成角为60°的异面直线,则直线需为面对角线,以AC为例,与之构成黄金异面直线对的直线有4条,分别是A′B,BC′,A′D,C′D,正方形的面对角线有12条,所以所求的“黄金异面直线对”共有=24对(每一对被计算两次,所以要除以2).8.如图是正四面体(各面均为正三角形)的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析把正四面体的平面展开图还原,如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN. 9.(2015·浙江)如图,三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC =2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.答案78解析如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理求得AN=DN=CM=2,∴MK=.在Rt△CKN中,CK==.在△CKM中,由余弦定理,得cos∠KMC=CM2+MK2-CK22CM×MK==.*10.(2017·郑州质检)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是________.①BM是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.答案③解析取DC中点F,连接MF,BF,MF∥A1D且MF=A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED 可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.11.如图,在正方体ABCD—A1B1C1D1中,O为正方形ABCD的中心,H 为直线B1D与平面ACD1的交点.求证:D1、H、O三点共线.证明如图,连接BD,B1D1,则BD∩AC=O,∵BB1綊DD1,∴四边形BB1D1D为平行四边形,又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,∵平面ACD1∩平面BB1D1D=OD1,∴H∈OD1.即D1、H、O三点共线.12.如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.解如图所示,取AC的中点F,连接EF,BF,在△ACD中,E、F分别是AD、AC的中点,∴EF∥CD.∴∠BEF或其补角即为异面直线BE与CD所成的角.在Rt△EAB中,AB=AC=1,AE=AD=,∴BE=.在Rt△EAF中,AF=AC=,AE=,∴EF=.在Rt△BAF中,AB=1,AF=,∴BF=.在等腰三角形EBF中,cos∠FEB===.∴异面直线BE与CD所成角的余弦值为.*13.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明(1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面.即D、B、F、E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且R∈β.则R∈PQ,故P,Q,R三点共线.。

浙江高考数学一轮复习第八章立体几何82空间点线面的位置关系课件


注意 异面直线所成的角的范围是
0,
π 2
,所以空间两直线垂直有
两种情况——异面垂直和相交垂直.
2021/4/17
浙江高考数学一轮复习第八章立体几何 82空间点线面的位置关系课件
9
知能拓展
考法一 平面的基本性质及应用
例1 已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD= P,A1C1∩EF=Q. 求证:(1)D,B,F,E四点共面; (2)若A1C交平面DBFE于R点,则P,Q,R三点共线. 解题导引
2021/4/17
浙江高考数学一轮复习第八章立体几何 82空间点线面的位置关系课件
11
方法总结 1.证明点共线问题的方法: (1)公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再 根据公理3证明这些点都在交线上. (2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上. 2.证明线共点问题的方法:先证两条直线交于一点,再证明第三条直线经过 该点. 3.证明点、直线共面问题的方法: (1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内. (2)辅助平面法:先证明部分点、线确定平面α,再证明其余元素确定平面β, 最后证明平面α,β重合.
13
∴∠AEO(或其补角)为异面直线AE与PD所成的角.
又OE= 1 PD= 1 ,AE= 3 AB= 3 ,OA= 1AC= 1 12 12 = 2 ,∴在△OAE中,由
22
2
2
22
2
余弦定理得cos∠AEO= AE2 OE2 -OA2 = 3 .即异面直线AE与PD所成角的
2AE OE
3
余弦值为 3 .
浙江高考数学一轮复习第八章立体几何8.2空间点线面的位置关系课件

高考数学大一轮复习第八章立体几何8.3空间点直线平面之间的位置关系课件文新人教版


0,. π2
3.直线与平面的位置关系有 直线在平面、内 直线与平面、相交 直线与 三平种面情平况行. 4.平面与平面的位置关系有 平行 、 相交 两种情况. 5.等角定理 空间中如果两个角的 两边分别对应平行,那么这两个角相等或互补.
知识拓展
1.唯一性定理 (1)过直线外一点有且只有一条直线与已知直线平行. (2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直. 2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中所有正确的命题是__①__④____.
思想方法指导
答案
解析
课时作业
1.在下列命题中,不是公理的是 答案 解析
√A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面 C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都
跟踪训练1 如图,正方体ABCD—A1B1C1D1中, E,F分别是AB和AA1的中点.求证: (1)E、C、D1、F四点共面; 证明
如图,连接EF,CD1,A1B. ∵E,F分别是AB,AA1的中点,∴EF∥A1B. 又A1B∥D1C,∴EF∥CD1, ∴E、C、D1、F四点共面.
(2)CE,D1F,DA三线共点. 证明
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交, 并记作α∩β=a.( √ ) (2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直 线.( × ) (3)两个平面ABC与DBC相交于线段BC.( × ) (4)经过两条相交直线,有且只有一个平面.( √ ) (5)没有公共点的两条直线是异面直线.( × )

2018版高考数学大一轮复习第八章立体几何83空间图形的基本关系与公理课件文


证明
思维升华
共面、共线、共点问题的证明 (1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有 条件分为两部分,然后分别确定平面,再证两平面重合. (2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上. (3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.
1.唯一性定理 (1)过直线外一点有且只有一条直线与已知直线平行. (2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直. 2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
√ (5)没有公共点的两条直线是异面直线.( )
×
×

×
考点自测
1.下列命题正确的个数为 ①梯形可以确定一个平面;
答案
解析
②若两条直线和第三条直线所成的角相等,则这两条直线平行;
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合.
A.0
B.1
C.2
D.3
②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.
∵EF∥CD1,EF<CD1,
∴CE与D1F必相交,
设交点为P,如图所示.
则由P∈CE,CE
ABCD,得P∈平面ABCD.
同理P∈平面ADD1A1.
又平面ABCD∩平面ADD1A1=DA,
∴P∈直线DA.∴CE,D1F,DA三线共点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(浙江专用)2018版高考数学大一轮复习 第八章 立体几何 8.3 空间点、直线、平面之间的位置关系教师用书

1.四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 2.直线与直线的位置关系 (1)位置关系的分类

 共面直线

 平行直线

相交直线异面直线:不同在任何一个平面内,没有公共点 (2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角). ②范围:0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 【知识拓展】 1.唯一性定理 (1)过直线外一点有且只有一条直线与已知直线平行. (2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直. 2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ ) (2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × ) (3)两个平面ABC与DBC相交于线段BC.( × ) (4)经过两条相交直线,有且只有一个平面.( √ ) (5)没有公共点的两条直线是异面直线.( × )

1.下列命题正确的个数为( ) ①梯形可以确定一个平面; ②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A.0 B.1 C.2 D.3 答案 C 解析 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确. 2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( ) A.m∥lB.m∥n C.n⊥lD.m⊥n 答案 C 解析 由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确. 3.已知a,b是异面直线,直线c平行于直线a,那么c与b( ) A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线 答案 C 解析 由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.

4. (教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=23,AD=23,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.

答案 45° 60° 解析 ∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF=EFFG=2323=1,∴∠EGF=45°, ∵AE与BG所成的角等于BF与BG所成的角即∠GBF,tan∠GBF=GFBF=232=3,∴∠GBF=60°.

题型一 平面基本性质的应用 例1 (1)(2016·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )

A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A 解析 若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A. (2)已知,空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=13BC,CH=13DC.求证: ①E、F、G、H四点共面; ②三直线FH、EG、AC共点. 证明 ①连接EF、GH,如图所示,

∵E、F分别是AB、AD的中点, ∴EF∥BD. 又∵CG=13BC,CH=13DC, ∴GH∥BD,∴EF∥GH, ∴E、F、G、H四点共面. ②易知FH与直线AC不平行,但共面, ∴设FH∩AC=M,∴M∈平面EFHG,M∈平面ABC. 又∵平面EFHG∩平面ABC=EG, ∴M∈EG,∴FH、EG、AC共点. 思维升华 共面、共线、共点问题的证明 (1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合. (2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上. (3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.

如图,正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证: (1)E、C、D1、F四点共面; (2)CE,D1F,DA三线共点. 证明 (1)如图,连接EF,CD1,A1B. ∵E,F分别是AB,AA1的中点,∴EF∥A1B.

又A1B∥D1C,∴EF∥CD1, ∴E、C、D1、F四点共面. (2)∵EF∥CD1,EF∴CE与D1F必相交, 设交点为P,如图所示. 则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD. 同理P∈平面ADD1A1. 又平面ABCD∩平面ADD1A1=DA, ∴P∈直线DA.∴CE,D1F,DA三线共点. 题型二 判断空间两直线的位置关系 例2 (1)(2015·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( ) A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 (2) 如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( ) A.MN与CC1垂直 B.MN与AC垂直 C.MN与BD平行 D.MN与A1B1平行 (3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)

答案 (1)D (2)D (3)②④ 解析 (1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交. (2) 连接B1C,B1D1,如图所示,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,

又BD∥B1D1,∴MN∥BD. ∵CC1⊥B1D1,AC⊥B1D1, ∴MN⊥CC1,MN⊥AC. 又∵A1B1与B1D1相交, ∴MN与A1B1不平行,故选D. (3)图①中,直线GH∥MN; 图②中,G、H、N三点共面,但M∉平面GHN, 因此直线GH与MN异面; 图③中,连接MG,GM∥HN,因此GH与MN共面; 图④中,G、M、N共面,但H∉平面GMN, 因此GH与MN异面. 所以图②④中GH与MN异面. 思维升华 空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.

(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( ) A.0 B.1 C.2 D.3 (2)(2016·南昌一模)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是( ) A.a与b异面,b与c异面⇒a与c异面 B.a与b相交,b与c相交⇒a与c相交 C.α∥β,β∥γ⇒α∥γ D.a⊂α,b⊂β,α与β相交⇒a与b相交 答案 (1)B (2)C 解析 (1)在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错,③显然成立. (2)如图(1),在正方体中,a、b、c是三条棱所在直线,满足a与b异面,b与c异面,但a∩c=A,故A错误;在图(2)的正方体中,满足a与b相交,b与c相交,但a与c不相交,故B错误;如图(3),α∩β=c,a∥c,则a与b不相交,故D错误.

题型三 求两条异面直线所成的角 例3 (2016·重庆模拟) 如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.

相关文档
最新文档