七年级数学平面直角坐标系

合集下载

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时—平面直角坐标系(答案卷)知识点一:有序数对:1.有序数对的概念:由两个数a与b组成的数对。

记做。

2.有序数对的应用:利用有序数对可以表示物体的位置。

表示方法有:定位法;定位法;定位法;定位法。

【类型一:有序数对的理解】1.张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.(4、3)B.3,4C.(3,4)D.(4,3)2.如图是小唯关于诗歌《望洞庭》的书法展示,若“湖”的位置用有序数对(2,3)表示,那么“螺”的位置可以表示为()A.(5,8)B.(5,9)C.(8,5)D.(9,5)3.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)【类型二:用有序数对表示位置】4.以下能够准确表示渠县地理位置的是()A.离达州市主城区73千米B.在四川省C.在重庆市北方D.东经106.9°,北纬30.8°5.下列不能确定点的位置的是()A.东经122°,北纬43.6°B.礼堂6排22号C.地下车库负二层D.港口南偏东60°方向上距港口10海里6.下列数据不能确定物体位置的是()A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°7.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A,B,C的位置如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇B相对于游船的位置可表示为(﹣60°,2),小艇C相对于游船的位置可表示为(0°,﹣1)(向东偏为正,向西偏为负),下列关于小艇A相对于游船的位置表示正确的是()A.小艇A(30°,3)B.小艇A(﹣30°,3)C.小艇A(30°,﹣3)D.小艇A(60°,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是()嘉嘉:目标B的位置为(3,210°);琪琪:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确知识点二:平面直角坐标系:1.平面直角坐标系的概念:如图:平面内,两条相互,且的数轴组成平面直角坐标系。

平面直角坐标系教案15篇

平面直角坐标系教案15篇

平面直角坐标系教案平面直角坐标系教案15篇在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是教学活动的依据,有着重要的地位。

我们应该怎么写教案呢?以下是小编帮大家整理的平面直角坐标系教案,欢迎阅读,希望大家能够喜欢。

平面直角坐标系教案1一教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。

平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。

本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。

2、教学目标根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。

知识能力:①认识平面直角坐标系,了解点与坐标的对应系;②在给定的直角坐标系中,能由点的位置写出点坐标。

数学思考:①通过寻找确定位置,发展初步的空间观念;②通过学习用坐标的位置,渗透数形结合思想解决问题:通过运用确定点坐标,发展学生的应用意识。

情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;②通过介绍数学家的故事,渗透理想和情感的教育。

3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:重点:认识平面坐标系难点:根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。

人教版七年级数学下册《用坐标表示地理位置》平面直角坐标系PPT

人教版七年级数学下册《用坐标表示地理位置》平面直角坐标系PPT

知识要点
知识点一:用坐标表示地理位置 利用平面直角坐标系绘制区域内一些地点分布情况平面图的 过程: (1)建立坐标系:选择一个适当的 参照点 为坐标原点,确定 x轴和y轴的 正 方向; (2)根据具体问题确定 单位长度 ;
(3)在坐标平面内画出这些点,写出各点的 坐标 和各个地 点的名称. 温馨提示:①选择坐标原点时,要以能简捷地确定平面内点的 坐标为原则;②一般将正北作为y轴正方向,将正东作为x轴正 方向;③应使尽可能多的点落在坐标轴上,使点的坐标比较简 单.
,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么
这个地点就用代码010045表示.按这种表示方式,南偏东45°
方向78 km的位置,可用路上经过的地方:葡萄园,杏林,桃林,梅林,山楂林,枣林,梨 园,苹果园.图略.
5.【例2】小花和爸爸、妈妈周末到动物园游玩,回到家后,她 利用平面直角坐标系画出了动物园的景区地图,如图所示.可 是她忘记了在图中标出原点和x轴、y轴,只知道马的坐标为( -3,-3),你能帮她建立平面直角坐标系并求出其他各景点的 坐标吗?
2.(北师8上P56改编)如图是象棋棋盘的一部分,若“帅”位于点 (1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( C )
A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2)
知识点三:用方向和距离表示地理位置 用方向和距离表示地理位置的方法: (1)找到 参照点 ; (2)在该点建立方向标; (3)测量出方位角和两点之间的距离; (4)根据 方位角 和 距离 表示出平面内的点(x,y). 温馨提示:描述方位角时,通常写成北偏东(西)或南偏东(西)的 形式.
9.(人教7下P79、北师8上P60)如图,这是一所学校的平面示意 图,建立适当的平面直角坐标系,并写出教学楼、校门和图书 馆的坐标.

七年级数学坐标系知识点

七年级数学坐标系知识点

七年级数学坐标系知识点坐标系是数学中非常重要的概念,它不仅在数学中使用广泛,在物理、地理、计算机科学等领域中也都有着广泛的应用。

在七年级数学中,学习坐标系也是非常基础的知识点,那么本文将从以下几个方面介绍七年级数学坐标系知识点。

一、直角坐标系直角坐标系是最基本也是最常用的坐标系,它由两条相互垂直的数轴构成,水平方向的数轴称为x轴,垂直方向的数轴称为y 轴。

x轴和y轴的交点称为原点O。

在直角坐标系中,每个点都可以表示为(x, y)的形式,其中x表示该点在x轴上的坐标,y表示该点在y轴上的坐标。

二、点的坐标点的坐标是指在坐标系中表示该点的x和y的数值。

例如在直角坐标系中,点A的坐标为(2, 3),其中2表示A点在x轴上的坐标,3表示A点在y轴上的坐标。

三、求两点间距离公式两点之间的距离可以使用勾股定理求解。

在直角坐标系中,假设A(x1, y1)和B(x2, y2)为两个点,那么点A和点B之间的距离公式为:√((x2-x1)²+(y2-y1)²)。

四、平面直角坐标系的四象限平面直角坐标系将坐标平面分为四个象限,以原点为中心,x 轴为分界线,分别记作第一象限、第二象限、第三象限和第四象限。

第一象限位于x轴和y轴的右上方,x轴和y轴的正方向分别是向右和向上。

第二象限位于x轴和y轴的左上方,x轴的正方向向右,y轴的正方向向下。

第三象限位于x轴和y轴的左下方,x 轴和y轴的正方向分别是向左和向下。

第四象限位于x轴和y轴的右下方,x轴的正方向向右,y轴的正方向向下。

五、直线方程的表示方法在直角坐标系中,直线的方程可以用不同的表示方式来表示。

其中,常见的方式有斜截式方程、截距式方程和一般式方程。

斜截式方程表示为y = kx + b,其中k为直线的斜率,b为直线在y轴上的截距。

截距式方程表示为y = kx + b,其中k为直线的斜率,b为直线在x轴上的截距。

一般式方程表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

人教版七年级数学下册期末复习第五讲 平面直角坐标系单元复习(PPT课件ppt)

人教版七年级数学下册期末复习第五讲 平面直角坐标系单元复习(PPT课件ppt)

考点二 坐标与平移 例3 在平面直角坐标系中,将点A(x,y)向左平移5个单位长 度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的 坐标是(D ) A. (2,5) B. (-8,5) C. (-8,-1) D. (2,-1) 解析:在坐标系中,点(﹣3,2)先向右平移5个单位得( 2,2),再把(2,2)向下平移3个单位后的坐标为(2, ﹣1),则A点的坐标为(2,﹣1).故选:D.
例7 如图,A(﹣1,0),C(1,4),点B在x轴上,且
AB=4.(2)求△ABC的面积; (3)在y轴上是否存在点P,使以A.B、P三
点为顶点的三角形的面积为12?若存在,请直
接写出点P的坐标;若不存在,请说明理由.
解:(2)点C到x轴的距离为4.则S∆ABC=
4 4 =8 2

(3)设P到x轴距离为m,则S∆ABP=
例4 如图,把△ABC经过一定的变换得到△A′B′C′,如果 △ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的 坐标为 (a+3,b+2).
解析:由图可知A(-3,-2)移动到A′(0,0), 横坐标加3,纵坐标加2,所以P(a,b) 对应的P′(a+3,b+2).
考点三 坐标系中的几何图形面积 例5 已知,如图在平面直角坐标系中,S△ABC=24,OA= OB,BC=12. (1)求点B的坐标; (2)求△AOC的面积.
例6 已知如图,四边形ABCD的四个顶点的坐标分别为 A(0,0)、B(9,0)、C(7,5)、D(2,7).试 计算四边形ABCD的面积. 解:S四边形ABCD=S△ADE+S梯形CDEF+S△CFB
=7+ 1 ×(5+7)×5+5=42

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题A 卷•基础知识班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-19. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

人教版七年级数学下册7.1.2《平面直角坐标系》教学设计

人教版七年级数学下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版七年级数学下册第七章第一节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。

这部分内容是学生学习函数、几何等知识的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

二. 学情分析七年级的学生已具备一定的数学基础,但对于平面直角坐标系的理解和应用还需要通过实例来加强。

学生在学习过程中应能够借助图形直观地理解坐标系,掌握各象限内点的坐标特征,并能够运用坐标系解决实际问题。

三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征及坐标轴上的点的坐标特征。

2.过程与方法:通过实例分析,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。

2.难点:坐标系在实际问题中的应用。

五. 教学方法1.情境教学法:通过实例引入坐标系的概念,让学生在实际情境中理解坐标系的含义。

2.合作学习法:引导学生分组讨论,共同探究坐标系的性质,培养学生的合作意识。

3.问题驱动法:提出问题,引导学生思考,激发学生的探究精神。

六. 教学准备1.教学素材:准备相关实例,如图形、图片等,用于导入和巩固环节。

2.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的实例,如商场地图、停车场示意图等,引导学生思考如何用数学工具表示这些实例中的点。

通过讨论,引入平面直角坐标系的概念。

2.呈现(10分钟)用投影仪展示平面直角坐标系的图形,引导学生观察并总结各象限内点的坐标特征及坐标轴上的点的坐标特征。

教师在黑板上板书各象限内点的坐标特征及坐标轴上的点的坐标特征。

3.操练(10分钟)学生分组讨论,每组选取一个实例,运用坐标系表示实例中的点,并总结坐标系的性质。

七年级下数学第七章_平面直角坐标系知识点总结

七年级下数学第七章平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

a,)3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。

象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

c) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;XXX在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。

七年级数学平面直角坐标系典型例题及答题技巧

七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。

《第七章 平面直角坐标系》试卷及答案_初中数学七年级下册_人教版_2024-2025学年

《第七章平面直角坐标系》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、在平面直角坐标系中,点A的坐标是(-3,4),点B的坐标是(2,-1)。

下列说法正确的是:A. 点A在第二象限,点B在第四象限B. 点A在第三象限,点B在第二象限C. 点A在第四象限,点B在第三象限D. 点A和点B都在x轴上2、在平面直角坐标系中,点C的坐标是(5,-2),点D的坐标是(-2,-2)。

下列说法正确的是:A. 点C和点D关于x轴对称B. 点C和点D关于y轴对称C. 点C和点D关于原点对称D. 点C和点D不关于任何坐标轴对称3、在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(4,-1)。

下列哪个点与点B关于原点对称?A.(-2,-3)B.(2,-3)C.(-4,1)D.(4,1)4、已知平面直角坐标系中,点P的坐标为(3,-4),点Q在x轴上,且点P与点Q关于x轴对称。

下列哪个坐标可能是点Q的坐标?A.(3,4)B.(-3,-4)C.(3,-4)D.(-3,4)5、在平面直角坐标系中,点P的坐标是(-3, 2)。

以下哪个点与点P关于y轴对称?A. (3, 2)B. (-3, -2)C. (3, -2)D. (-3, 2)6、在平面直角坐标系中,点A的坐标是(4, -5),点B的坐标是(-2, 3)。

以下哪个点与点A和点B等距离?A. (2, 0)B. (0, -2)C. (-1, 4)D. (-4, 1)7、在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-2)。

则线段AB的中点坐标是:A.(1,1)B.(1,2)C.(3,1)D.(2,2)8、在平面直角坐标系中,直线y = 2x + 1与x轴的交点坐标是:A.(-1/2,0)B.(0,1)C.(1,2)D.(-1,0)9、在平面直角坐标系中,点P的坐标是(-3,4),那么点P关于x轴的对称点的坐标是:A.(-3,-4)B.(3,4)C.(-3,3)D.(3,-4) 10、在平面直角坐标系中,若点A的坐标为(2,-3),点B的坐标为(-2,3),则线段AB的中点坐标是:A.(0,0)B.(1,0)C.(0,-1)D.(-1,1)二、计算题(本大题有3小题,每小题5分,共15分)第一题在平面直角坐标系中,已知点A(-3, 2)和点B(4, -1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系(有序数对)教案提纲
教学任务分析
教学流程安排
教学过程设计
教学目标:
1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。
2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意
识。

教学重点:理解有序数对的概念,用有序数对来表示位置。
教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时
教学过程
一、创设问题情境,引入新课
展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图
案,你知道它是怎么组成的吗?

原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵
就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方
法。

二、师生共同参于教学活动
(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众
根据入场券上的“排数”和“号数”准确入座。

师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?
生:不能,要确定还必须知道“排数”。
(2)教师书写平面图通知,由学生分组讨论。
今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),
(5,6)。
师:你们能明白它的意思吗?
学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。
师:请同学们思考以下问题:
①怎样确定你自己的座位的位置?
②排数和列数先后须序对位置有影响吗?
生:通过讨论,交流后得到以下共识:
①可用排数和列数两个不同的数来确定位置。
②排数和列数的先后须序对位置有影响。
(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确
定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这
种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

(4)在生活中还有用有序数对表示一个位置的例子吗?
学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予
肯定和鼓励。

例如:人们常用经纬度来表示,地球上的地点
三、巩固练习
让学生完成p46的练习。
四、布置作业
1、课本习题6,1,1。
2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,
如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图
中“怪兽”经过的其他几个位置吗?
1 2 3 4 5 6 7 8
五、教后反思
师:谈谈本节课,你有哪些收获?
由同学交流解决问题,教师设疑为以后的学习奠定基础。

相关文档
最新文档