小学三年级数学分类枚举知识点讲解
三年级.分类枚举doc

三年级:简单的枚举
A组:
例1:从小明家到学校有两条路可走,从学校到人民公园有4条路可走,从小明家经过学校到人民公园,有几种不同的走法?
例2:亮亮有不同的3件上衣,两条不同的裤子,3双不同的鞋子,最多可搭配成多少种不同的装束?
例3:用9、8、7这三个数字可以组成多少个没有重复数字的两位数?
例4:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
例5:一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?
B组:
1、小强从家到学校有3条路可走,从学校到少年宫有两条路可走,小强从家经过学校到少年
宫有几种走法?
2、小敏有3件不同的上衣,4条不同的裙子,问她共有多少种不同的穿法?
3、小红有3种不同的上衣,4条不同的裙子,两双不同的鞋子,最多可搭配成多少种不同的
装束?
4、用数字6、7、8可以组成多少个没有重复数字的三位数?分别是哪几个数?
5、用
6、3、1这三个数字可以组成多少个没有重复数字的两位数?
6、用8、6、5、2这四个数字可以组成多少个没有重复数字的三位数?
7、6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
8、有8位小朋友,要互通一次电话,他们一共打了多少次电话?
9、一个长方形的周长是30厘米,如果它的长和宽都是整粒米数,那么这个长方形的面积有
多少种可能值?
10、把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?
11、一本科技书有100页,你知道这些页码中共有多少个数字1吗?。
小学奥数 加法原理之分类枚举(一) 精选练习例题 含答案解析(附知识点拨及考点)

1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲知识要点教学目标7-1-1.加法原理之分类枚举(一)2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。
三年级数学思维专题训练—分类枚举(含答案解析)

三年级数学思维专题训练—分类枚举1、自然数12、135、1349这些数有一个共同的特点,相邻两个数字,左边的数字小于右边的数字,我们取名为“上升数”。
用5、6、7、8这四个数,可以组成个“上升数”。
2、用数字1、2、3、4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数大。
3、将各位数字之和等于10的整数称为“快乐数”。
请问在100至1000之间共有多少个“快乐数”?4、婷婷到游乐园玩,游乐园有一张价目表(见下表):爸爸只让婷婷玩20分钟,那么,婷婷共有多少种不同的搭配方式可以玩?请你一一列举出来。
5、老实带着佳佳、芳芳和明明做计算练习。
老师先分别给他们一个数,然后让他们每人取3张写有数的卡片。
佳佳取的是3、6、7,芳芳取的是4、5、6,明明取的是4、5、8。
这是老师让他们分别取自己卡片上的两个数相乘,再加上开始老师给他们的数。
如果老师开始时给他们的数依次是234、235、236,而且他们计算都正确,那么可能算出个不同的数。
6、在1——10这10个自然数中,每次取出两个不同的数,使他们的和是3的倍数,共有种不同的取法。
7、从1、2、3、4、5、6这些数中,任取两个数,使其和不能被3整除,则有种取法。
8、从1——10这10个正整数中,每次取出两个不同的数,使他们的和是4的倍数,共有种不同的取法。
9、有7个数:5、17、19、37、39、46、66。
从中挑选几个,使他们的和为100,至少挑选个。
10、把数1、2、3、4、5、6分为三组(不考虑组内数的顺序也不考虑组间的顺序),每组两个数,每组的数之和互不相等且都不等于6,共有种分法。
11、有3枚1元、3枚5角、1枚1角的硬币,使用其中的若干枚硬币,能够正好支付的不同金额共有种。
12、1997的数字和是1+9+9+7=26,小于2000的四位数中,数字和等于26的四位数共有个。
13、从1克、3克、9克、27克、81克五种砝码中,每次取出一个或几个不同的砝码,放在天平的同一端来称量物体的重量,一共可以称出31种重量。
【课本】三年级(上)第02讲 枚举法中的字典排列

基础例题:在上一讲中我们学习了简单的枚举法——直接把所有情况一一列举出来.但如果问题较为复杂,直接枚举很有可能产生重复或者遗漏,这时就需要有一些特别的方法来帮助我们枚举出所有情况.本讲就主要介绍两种枚举的方法:字典排列法和树形图法.同学们可以翻一下英汉字典,不难发现字典中单词排列的规律:整本字典按首字母从a 到z 排列,我明天先吃什么呢?先吃汉堡,不不,还是先吃玉米,哎,还是先吃饼干吧!到底先吃什么呢?共有多少种不同的吃法?这里的东西可真好吃,肚子好胀哦!我要带回去一些慢慢吃。
如果我把这三个东西都带回去,一天吃1个,还可以再吃3天呢? 第二讲枚举法中的字典排列第3个字母,第4个字母……所谓“字典排列法”,就是指在枚举时,像字典里的单词顺序那样排列出所有答案.例如,用1、2、3各一次可以组成多少个不同的三位数?用字典排列法枚举时,每个位置都按从小到大排列,枚举的顺序是:123,132,213,231,312,321.下面我们用字典排列法来解决几个问题.例题1.卡莉娅、墨莫、小高三个人去游乐园玩,三人在藏宝屋中一共发现了5件宝物,三人找到的宝物数量共有多少种不同的可能?(可能有人没有发现宝物)分析:每个人最少找到几件宝物?最多呢?练习:1.老师准备了6个笔记本奖励萱萱、小高和墨莫三人,每人至少得到1本笔记本,请问:老师有多少种不同的奖励方法?例题2.老师要求每个同学写出3个自然数,并且要求这3个数的和是8.如果两个同学写出的3个自然数相同,只是顺序不一样,则算是同一种写法.试问:同学们最多能得出多少种不同的写法?分析:注意顺序不同算一种写法,也就是三个数分别为(1、2、5)、(2、5、1)和(5、1、2)都算同一种写法.练习:2.三个大于0的整数之和(数与数可以相同)等于10,共有多少组这样的三个数?用字典排序法枚举的时候,判断题目要求到底是“交换顺序后算作两种”还是“交换顺序后仍然是同一种”非常关键.往往题目中要求“交换顺序后仍然是同一种”,那么枚举的每个结果里就没有明确的顺序关系;反之,那么枚举时要注意每个结果中应该都符合一定的顺序关系.在求解计数问题时,审题非常关键.往往一字之差就会有天壤之别.枚举法是解决计数问题的基础,但是对于比较复杂的问题,如果直接枚举很容易出现重复或者遗漏.这时就需要预先把所有情形分成若干小类,针对每一小类进行枚举.例题3如下图所示,有7个按键,上面分别写着:1、2、3、4、5、6、7这七个数字.请问:(1)从中选出2个按键,使它们上面的数字的差等于2,一共有多少种选法?(2)从中选出2个按键,使它们上面的数字的和大于9,一共有多少种选法?分析:第二问中的和大于9是什么意思?也就是最小等于10,那最大又是多少?和共有几种可能?练习3有一次,著名的探险家大米得到一个宝箱,但是宝箱有密码锁,密码锁下边有一行小字:密码是和大于11的两个数,而且这两个数不能相同.不用考虑数的先后顺序,你知道密码共有多少种可能吗?例题4数一数下图中包含星星的长方形(包括正方形)有多少个?分析:含星星的长方形会由几个小方格组成呢?我们可以依据长方形的种类进行分类.练习4数一数下图中包含星星的正方形有多少个?在分类时,一定注意类与类之间有没有重复的部分,或者还有没有漏掉的情况.只有在分类已经做到“不重不漏”的前提下,才能够进行进一步的枚举.例题5妈妈买来7个鸡蛋,每天至少吃2个,吃完为止.如果天数不限.可能的吃法1 2 3 4 5 6 7一共有多少种?分析:虽然题目对天数没有限制,但要求每天至少吃2个.照此推算,最多能吃几天?例题6午餐的时候,食堂为同学们准备了苹果、桃子和桔子三种水果,每种都有很多.东东想要挑3个水果吃.请问东东有多少种不同的选法?分析:仔细审题,挑的3个水果能不能是同种的水果?若要分类枚举,应该如何分类呢?课堂内外字典是如何排序的?在英语字典中,两个单词的位置是这样决定的:从第一个字母开始比较,如果相同,那么就看下一个字母;如果不同,那么就按照从a到z的顺序进行排列.比如说:book和look这两个单词,第一个字母分别是b和l,b排在l前面,所以book排在look之前.再比如说:book和boat这两个单词,前两个字母都是bo,所以就看第三个字母,o在a之后,所以字典里book出现在boat之后.再来看看中文字典,现在的中文字典主要采用的都是按拼音字母的顺序进行排序,方法与英语字典相同.其实在使用拼音之前我国古代的字典一般都是按照部首以及笔画来排序的,比如著名的《康熙字典》就是这样排序的:先按部首排序,每个部首之中再按剩下的笔画数从少到多进行排序.中文字典除了按拼音、部首等顺序排列之外,还有四角号码、笔顺等多种排序方法.作业1.有4支完全相同的铅笔要分给3位同学,每位同学至少分1支,共有多少种不同的分法?2.有面值分别为1元、10元和50元的纸币若干,每种面值的纸币张数都大于3.如果从中任取3张,那么能组成的钱数共有多少种?3.老师要求墨莫写4篇作文,题目不限,但是每天至少写1篇.那么墨莫完成这些作文共有多少种不同的可能?4.爷爷要墨莫多吃水果,于是给了他8个苹果,要求每天至少吃2个,吃完为止.那么墨莫一共有多少不同的吃法?5.体育馆里有很多足球和篮球,体育老师要小高从里面拿4个,请问小高有多少种不同的选择?。
第2讲方案类问题中的枚举思想-三年级数学上册数学思想方法系列(人教版)(含解析)

第2讲方案类问题中的枚举思想-三年级数学上册数学思想方法系列(人教版)(含解析)第2讲方案类问题中的枚举思想-三年级数学上册数学思想方法系列(人教版)第2讲用“列举法”解决问题列举法是一种常见的分析问题、解决问题的方法,一般的要根据问题的要求一一列举问题答案。
运用列举法解决问题时,不重复、不遗漏、有顺序、有规律地进行列举,运用列举法解决问题的关键是要正确分类。
要注意以下两点:一是分类要全,不能造成遗漏:二是列举要清,要将每一个符合条件的对象都列举出来。
涉及到实际问题常常是半开放式的方案型问题,符合情况的方案不止一种,逐一列举之后,选取最优方案。
【例题1】1.在2种面包和3种饮料中,选择1种饮料和1种面包有()种搭配,把你的搭配方法用线连一连表示出来。
思路分析:从3种不同的饮料中选一种有3种选法;从2种不同的面包中选一种有2种选法;共有3×2种选法。
最贵的搭配是最贵的饮料搭配最贵的面包,把最贵的饮料价钱加上最贵的面包价钱即可。
规范解答:3×2=6(种)【例题2】2.生活中的数学,看图回答问题。
(1)小亚:你知道吗,1斤4两是多少克呢?1斤4两=( )克(2)小亚妈妈说:“1斤=500克,1两=50克”,那么,1斤=( )两。
(3)小亚妈妈买了一些蔬菜,请你用“克”作单位表示这些蔬菜的质量。
蔬菜名称质量用“斤”、“两”作单位用“克”作单位蘑菇8两( )克青椒半斤( )克白萝卜4斤( )克合计三种蔬菜一共重( )千克( )克。
思路分析:根据1斤=500克,1两=50克,据此即可解答。
规范解答:(1)1斤4两=500+50+50+50+50=700克(2)1斤=10两(3)8两=2400克【例题3】3.实验小学29人乘车去机场,面包车限乘客8人,小轿车限乘客3人,哪种乘车方案能恰好把这些人全部运走?思路分析:根据条件列举出符合条件的乘车方案。
可从全部乘面包车开始,直到面包车是0辆为止,有序列表如下:乘车方案面包车/辆小轿车/辆可乘总人数1 4 0 4×8=32(人)2 3 2 3×8+2×3=30(人)3 2 5 2×8+5×3=31(人)4 1 7 1×8+7×3=29(人)5 0 10 10×3=30(人)规范解答:从上面的表格中可知,乘1辆面包车和7辆小轿车这种乘车方案能恰好把这些人全部运走。
三年级寒假奥数培优讲义——3-08-简单枚举3-讲义-学生

第8讲简单枚举【学习目标】1、熟悉简单枚举的常见题型;2、提升学生逻辑推理、解决问题的能力。
【知识梳理】1、概念:枚举根据问题要求,一一列举问题解答。
运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。
2、注意事项:(1)分类要全,不能遗漏;(2)枚举要清,不能重复。
【典例精析】【例1】一个长方形的周长是30米,如果它的长和宽都是整米数,那么这个长方形有多少种可能?【趁热打铁-1】一个长方形的周长是26米,如果它的长和宽都是整米数,那么这个长方形有多少种可能?【例2】有4位同学,寒假中互相通一次电话,他们一共打了多少次电话?【趁热打铁-2】5个足球队进行比赛,每两队比赛一场,共要进行多少次比赛?【例3】从往返于成都和上海的动车包括起终点共24个站,那么一共有多少种车票?【趁热打铁-3】从A地到B地中间一共有C、D、E、F、G5个站,则AB两地之间一共能卖____种不同的票样.【例4】有一个六层台阶,若每一次可以上一层或两层,那么登上六层台阶共有多少种不同的办法?【趁热打铁-4】有一个五层台阶,若每一次可以上一层或两层,那么登上五层台阶共有多少种不同的办法?【例5】老师拿着苹果、桃子和梨3个水果发给小明、小冬和小华,一共有几种不同的发法?【趁热打铁-5】小明、小冬和小华站成一排拍照,一共有几种排法?【例6】有9个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛____场.【趁热打铁-6】在一次篮球比赛中,6个队进行循环赛,需要比赛____场.【例7】用1克、3克、9克三个砝码(砝码只能放在一个秤盘上),可以秤出几种不同重量的物体?【趁热打铁-7】用1克、2克、5克三个砝码(砝码只能放在一个秤盘上),可以秤出几种不同重量的物体?【例8】学生食堂有主食3种、肉类4种、蔬菜3种,从其中各选1种配成盒饭,可以配成____种.【趁热打铁-8】有3件上衣,2条裤子.要配成一套衣服,不同的搭配方法共有____种.【例9】数一数,图中有多少个三角形?【趁热打铁-9】数一数下面的图形.有____个长方形.【例10】用3、4、5、6四个数字可以组成多少个不同的四位数?【趁热打铁-10】用3、5、6四个数字可以组成多少个不同的三位数?【过关精炼】1、一个长方形的周长是20米,如果它的长和宽都是整米数,那么这个长方形有多少种可能?2、有5位同学,寒假中互相通一次电话,他们一共打了多少次电话?3、李丹有3顶凉帽和4条连衣裙,有种搭配方法。
三年级数学奥赛起跑线第7讲分类枚举
三年级数学奥赛起跑线第7讲分类枚举
第7讲分类枚举
1、以下图中有多少个三角形:
[来源:1ZXXK]
2、小明,小红和小军三人比赛跑步,没有两人同时到达终点,三人比赛的结果共有几种情况?
3、用0,1,2,3能组成多少个不同的三位数?
4、从北京到南京的特快列车,中途要停靠9个站,有几种不同票价的车票?
[来源:Z*xx*]
5、用3张10元和2张50元一共可以组成多少种币值〔组成的钱数〕?[来源:学#科#网Z#X#X#K]
6、中、日、韩、朝进行四国足球赛,每两队踢一场,一共要踢多少场?
7、丽丽有红、蓝、黑帽子各一顶,红、蓝、黑围巾各一条。
冬天,丽丽每天載一顶帽子,围一条围巾,有几种不同的搭配方式?
8、用分类枚举的方法〔书中例5〕表示2019年日期,六位数字各不相同的共有多少天?
9、用1、2、3、4、5这5个数字组成各个数位上数字都不相同的五位数,这样的五位数共有多少个?
[来源:学§科§网]
10、有一种游戏,根据通过一关时间的多少可以得到2分,3分,5分积分中的一种,如果打完第三关,共有多少种不同的积分?[来源:1ZXXK]。
小学奥数知识点拨 精讲试题 加法原理之分类枚举(一).学生版
7-1-1.加法原理之分类枚举(一)教学目标1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.知识要点一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有种不同做法,第二类方法中有种不同做1m 2m 法,…,第k 类方法中有种不同做法,则完成这件事共有种不同方法,这就是加k m 12k N m m m =+++……法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例 1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【例 2】和为15的两个非零自然数共有对。
第19讲---简单枚举
王牌例题
【例题1】小华到学校有3条路,从学校到公园又4条路,从家 到公园有几种不同的走法?
【思路导航】画示意图,把小华的不同走法一一列举如下:
1
7
家
2
学
6
校
5
公 园
3
4
编号 1 2 3 4 5 6 7 8 9 10 11 12
11 1 1 2 2 22 3 3 3 3 走法
45 6 7 4 5 67 4 5 6 7
解:有 3×4=12 种走法。
王牌例题
【例题1】小华到学校有3条路,从学校到公园又4条路,从家 到公园有几种不同的走法?
【思路导航】画示意图,把小华的不同走法一一列举如下:
1
7
ห้องสมุดไป่ตู้
家
2
学
6
校
5
公 园
3
4
【方法提炼】小华完成“从家到学校再到公园”这一事情, 必须分两步来完成:
小学奥数 三年级
包含与排除:
A CB
A与B合并在一起的数量 一般地,若已知A,B,C三部分的数量,其中C为A,B的重复部 分,在求A和B合在一起的数量时,就要在A+B中减去A和B互相包含的 部分C。即:
A与B合并在一起的数量=A+ B- C 这种方法称为包含排除法。
总体=各部分之和—重复的部分
包含与排除: A
【思路导航】爱吃鸡腿的人数A =40 爱吃鱼的人数B =32
爱吃蔬菜的人数C =40
A+B+C=40+32+40=112
两两重复的人数和 =28+22+30=80
奥数班三年级第1讲 枚举法a
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
4 8 12 16 20 24 28
6
【典型例题】
9克 3克
1克
用1个砝码: 1克
3克
9克
用2个砝码: 1+3=4克 1+9=10克 3+9=12克
用3个砝码: 1+3+9=13克
一共:
3+3+1=7种
5
【典型例题】 例3:课外小组组织30人做游戏,按1~30号排队报数。第一次报数后, 单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出 来一个人,到第几次这些人全部站出来?最后站出的人应该是第几号?
三年级奥数班
第1讲 枚举法解决问题
LOGO HERE
【知识点拨】
一般的,根据问题要求,一一列举问题的 解答,或者为了解决问题的方便把问题分成不遗 漏不重复的优先种情况,并加以解决,最终达到 解决整个问题的目的。这种分析问题解决问题的 方法,称之为枚举法。
注意:运用枚举法解决问题时,必须注意无重复, 无遗漏。为此必须要求有次序有规律的进行枚举。
1+1+1+2 1+2+2
1+1+2+1 2+1+2
1+2+1+1
2开头
1+2+2 2+1+1+1
2+1+2
一共 5+3=8种
2+2+1
8
【课堂精练】
1.商店出售饼干,现有每箱2千克重的,每箱1千克重的。顾客要买9千 克重的饼干,为了便于携带又不开箱,售货员有多少种发货办法?
1千克/箱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学三年级数学分类枚举知识点讲解
这篇小学三年级数学分类枚举知识点讲解是查字典数学网特地为大家整理的,希望对大家有所帮助!
小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。
她想数数有多少钱。
小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。
所以很快就数好了。
小芳数钱,用的就是分类枚举的方法。
这是一种很重要的数学思考方法,在很多问题的思考过程中都发挥了很大的作用。
下面就让我们一起来看看它的本领吧!
经典试题
例[1] 下图中有多少个三角形?
分析我们可以根据图形特征将它分成3类:
第一类:
有6个;
第2类:
有6个;
第3类:
有3个;
解6+6+3=15(个)图中有15个三角形。
例[2]下图中有多少个正方形?
分析根据正方形边长的大小,我们将它们分成4类。
第1类:由1个小正方形组成的正方形有24个;
第2类:由4个小正方形组成的正方形有13个;
第3类:由9个小正方形组成的正方形有4个;
第4类:由16个小正方形组成的正方形有1个。
解24+13+4+1=42。
图中有42个正方形。
例[3] 在算盘上,用两粒珠子可以表示几个不同的三位数:分别是哪几个数?
分析根据两粒珠子的位置,我们可将它们分成3类:
第1类:两粒珠子都在上档,可以组成505,550;
第2类:两粒珠子都在下档,可以组成101,110,200;
第3类:一粒在上档,另一粒在下档,可以组成510,501,150,105,600。
解可以表示101,105,110,150,200,501,505,510,550,600共10个三位数。
例[4] 用数字7,8,9可以组成多少个不同的三位数?分别是哪几个数?
分析根据百位上数字的不同,我们可以将它们分成三类:第1类:百位上的数字为7,有789,798;
第2类:百位上的数字为8,有879,897;
第3类:百位上的数字为9,有978,987。
解可以组成789,798,879,897,978,987共6个三位数。
例[5] 往返于南京和上海之间的沪宁高速列车沿途要停靠常
州、无锡、苏州三站。
问:铁路部门要为这趟车准备多少种车票?
分析我们可以根据列车的往与反把它们分成两大类(注:为了方便,我们将上述地点简称为宁、常、锡、苏、沪):
在第一大类中,我们又可以根据乘客乘车时所在起点站的不同分成4类。
第1类:从宁出发:宁常,宁锡,宁苏,宁沪,4种;
第2类:从常出发:常锡,常苏,常沪,3种;
第3类:从锡出发:锡苏,锡沪,2种;
第4类:从苏出发:苏沪,1种。
我们同样可用刚才的方法将回来的车票分类,聪明的小朋友可能已经想到了,它的种数与第一大类完全相同。
解(4+3+2=1)2=20(种)铁路部门要准备20种车票。
小结分类枚举的关键是正确分类,为此,必须注意两点:一、分类要全、枚举要清。
分类不全,就会造成遗漏。
如上面例1中,如果一不小心,把第3类丢了,就会造成差错。
当分类确定之后,要把每一类中每一个符合条件的对象都列举出来。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律
学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
二、分类要清。
因为如果分不清,使第1类中有第2类,第2类中有第3类,互相包含,那么就会有重复。
这样结果也就很难正确了。
要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励
他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。
以上就是由查字典数学网为您提供的小学三年级数学分类枚举知识点讲解,希望给您的写作带来帮助!
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。