高考物理牛顿运动定律题20套(带答案)及解析

高考物理牛顿运动定律题20套(带答案)及解析

一、高中物理精讲专题测试牛顿运动定律

1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可

视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:

(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?

【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】

(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =

(2)木板静止后,滑块匀减速运动,根据动能定理有:2102

mgs mv μ-=- 解得0.25m s =

(3)从滑块滑上木板到共速时,由能量守恒得:220111

()22

mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=

2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v 0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x 将发生变化.取g =10m/s 2,sin37°=0.6,cos37°=0.8.

(1)求物块与木板间的动摩擦因数μ;

(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离.

【答案】(1) 0.75(2) 4m 【解析】 【详解】

(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75

(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax

解得:()

2

02sin cos v x g θμθ=+

令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m

3.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为

1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静

止(

)2

10/g m s

=,求:

()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.

【答案】(1)0.7(2)40.5J 【解析】 【分析】

()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运

动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.

()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能

量守恒求热量. 【详解】

()1长木板加速过程中,由牛顿第二定律,得

1212mg mg ma μμ-=;

11m v a t =;

木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;

由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=

()2小物块减速过程中,有:

13mg ma μ=; 031m v v a t =-;

在整个过程中,由系统的能量守恒得

2012

Q mv = 联立解得40.5Q J =

【点睛】

本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.

4.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:

(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】

(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时

间为t ′.根据平抛运动规律有:2

12

h gt =,2s v t '= 解得:2 1.5m/s 2g

v s

h

== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:

22.5m/s Mg

a M

μ=

=

设两木块碰撞前A 的速度大小为v ,根据运动学公式,得

0 2.0m/s v v at =-=

(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:

2Mv Mv mv =+1

解得:2

10.80m/s Mv mv v M

-=

=.

5.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:

(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】

(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=

1

2

a 1t 12 解得A 在2s 内的位移为x=2m ;

(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;

绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;

由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s

电场力的功率P=Fv ,解得P=60W

6.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:

(1)小球在A 点时的速度大小;

(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】

(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:

cos sin (sin cos )F mg F mg ma θθμθθ--+=

代入数据得:24m/s a =

小球在A 点时的速度8m/s A v at ==

(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:

2211sin37(1cos37)22

B A FR mgR mv mv -︒-+︒=

- 解得:2m/s B v =

小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:

2

N B

v mg F m R

-=

解得:F N =12N ,轨道对球的力竖直向上

由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.

7.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由

静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F 1、F 2和F 3大小分别为20.8N 、20.4N 和18.4N ,货物受到的阻力恒为其重力的0.02倍.g 取10m/s 2.计算: (1)货物的质量m ;

(2)货物上升过程中的最大动能E km 及东东家阳台距地面的高度h . 【答案】(1) m =2kg (2)2

112

km E mv J == h =56m 【解析】 【分析】 【详解】

(1)在货物匀速上升的过程中 由平衡条件得2F mg f =+ 其中0.02f mg = 解得2kg m =

(2)设整个过程中的最大速度为v ,在货物匀减速运动阶段 由牛顿运动定律得33–mg f F ma += 由运动学公式得330v a t =- 解得1m v s = 最大动能2

11J 2

m k E mv =

= 减速阶段的位移331

0.5m 2

x vt =

= 匀速阶段的位移2253m x vt ==

加速阶段,由牛顿运动定律得11––F mg f ma =,由运动学公式得2

112a x v =,解得

1 2.5m x =

阳台距地面的高度12356m h x x x =++=

8.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块

(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;

(3)甲、乙在整个运动过程发生的位移大小之比.

【答案】(1) g(sin α-μcos α) (2)

()

2sin sin cos h

g θθμθ- (3)1:1 【解析】 【详解】

(1) 由牛顿第二定律可得F 合=Ma 甲 Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)

(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h

=212

mv v=cos 21sin gh θμ

θ⎛⎫

- ⎪⎝

a 乙=g (sin θ-μcos θ) t =

()

2sin sin cos h

g θθμθ-

(3) 如图,由动能定理得Mgh -μ·Mg cos α·

sin h

α-μ·Mg (OP -

cos sin h αα

)=0

mgh -μmg cos θ·θsin h

-μmg (OQ -

cos sin h θθ

)=0 OP=OQ

根据几何关系得222211x h OP x h OQ ++甲乙

9.如图所示,质量为 m =1 kg 的长方体金属滑块夹在竖直挡板 M 、N 之间,M 、N 与金属滑块间动摩擦因数均为 μ=0.2,金属滑块与一劲度系数为k =200N/m 的轻弹簧相连接,轻

弹簧下端固定,挡板M 固定不动,挡板N 与一智能调节装置相连接(调整挡板与滑块间的压力).起初滑块静止,挡板与滑块间的压力为0.现有一质量也为m 的物体从距滑块L =20 cm 处自由落下,与滑块瞬间完成碰撞后粘在一起向下运动.为保证滑块下滑过程中做匀减速运动,且下移距离为l =10 cm 时速度减为0,挡板对滑块的压力需随滑块下移而变化,不计空气阻力,弹簧始终在弹性限度内.g 取10 m/s 2,求:

(1)下落物体与滑块碰撞过程中系统损失的机械能; (2)当滑块下移距离为d =5 cm 时挡板对滑块压力的大小;

(3)已知弹簧的弹性势能的表达式为E p =

12

kx 2

(式中k 为弹簧劲度系数,x 为弹簧的伸长或压缩量),求滑块速度减为零的过程中,挡板对滑块的摩擦力所做的功. 【答案】(1) 1J (2) 25N (3) -1J 【解析】

(1)设物体与滑块碰撞前瞬间速度为v 0,对物体下落过程由机械能守恒定律得

2012

mgl mv =

设碰后共同速度为v 1,由动量守恒定律得102mv mv =

根据能量守恒定律,下落物体与滑块碰撞过程中损失的机械能220111

222

E mv mv ∆=-⋅ 上式联立数据带入得1E ∆=J .

(2)设滑块下移时加速度为a ,由运动学公式得2

102v al -=

起初滑块静止时,有01mg F k x ==∆ 当滑块下移距离为5d =cm 时 弹簧的弹力()1F k x d =∆+

对其受力分析如下图所示,由牛顿第二定律得()

222f mg F F ma -+= 滑动摩擦力f N F F μ= 解得25N F =N .

(3)由功能关系可得

()2

2211111122222

k x l k x mv mgl W ∆+-∆-⨯=+ 解得1W =-J .

答:(1)下落物体与滑块碰撞过程中系统损失的机械能是1J ; (2)当滑块下移距离为d =5cm 时挡板对滑块压力的大小是25N ; (3)滑块速度减为零的过程中,挡板对滑块的摩擦力所做的功是-1J .

10.如图所示为一升降机由静止开始下降..过程中的速度图像,升降机及其载重总质量为2.0t .

(1)由图象判断出升降机在哪段时间内出现超重、失重现象;

(2)分别求出第2S 内、第5S 内、第7S 内悬挂升降机的钢索的拉力大小.(g 取10m/s 2

) 【答案】(1)6s -8s 超重;0—2s 失重 (2)41.210N ⨯ 4210N ⨯ 2.8×104N 【解析】

试题分析:当物体对接触面的压力大于物体的真实重力时,就说物体处于超重状态,此时有向上的加速度;当物体对接触面的压力小于物体的真实重力时,就说物体处于失重状态,此时有向下的加速度;速度时间图象的斜率表示加速度,根据牛顿第二定律求出各段时间内悬挂升降机的钢索的拉力大小.

(1)由速度时间图象可知,0-2s 内,升降机向下做匀加速运动,加速度向下,处于失重状态,6s-8s 内升降机减速下降,加速度方向向上,处于超重状态. (2)由加速度定义:∆=∆v

a t

根据图象得0~2s 内2218

/4/2

v a m s m s t ∆=

==∆ 根据牛顿第二定律得:4?

11 1.210F mg ma N =-=⨯

2s ~6s 内,加速度a 2=0,即匀速运动 悬挂升降机的钢索的拉力F 2=mg =2×104 N 6s ~8s 内,加速度为:22308/4/2

v a m s m s t ∆-=

==-∆ 根据牛顿第二定律得:4

33 2.810?

F mg ma N =-=⨯ 点睛:本题主要考查了对超重失重现象的理解及牛顿第二定律的直接应用,属于基础题.

高中物理牛顿运动定律的应用题20套(带答案)含解析

高中物理牛顿运动定律的应用题20套(带答案)含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求: (1)物体与传送带间的动摩擦因数; (2) 0~8 s内物体机械能的增加量; (3)物体与传送带摩擦产生的热量Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得: 可解得:μ=0.875. (2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移 0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为 (3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为: 0~6 s内物体位移为: 则0~6 s内物体相对于皮带的位移为 0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小, 代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.如图甲所示,质量为1kg m =的物体置于倾角为37θ?=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。(2 10/,sin 370.6,cos370.8g m s ? ? ===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少? 【答案】(1)0.5 (2)30N 【解析】 【详解】 (1)由速度时间图象得:物体向上匀减速时加速度大小: 22110-5 m/s 10m/s 0.5 a = = 根据牛顿第二定律得: 1sin cos mg mg ma θμθ+= 代入数据解得: 0.5μ= (2)由速度时间图象得:物体向上匀加速时: 2220m /s v a t ?= =? 根据牛顿第二定律得: 2sin cos F mg mg ma θμθ--= 代入数据解得: 30N F = 3.如图所示,一质量M=4.0kg 、长度L=2.0m 的长方形木板B 静止在光滑的水平地面上,在其右端放一质量m=1.0kg 的小滑块A (可视为质点)。现对A 、B 同时施以适当的瞬时冲量,使A 向左运动,B 向右运动,二者的初速度大小均为2.0m/s ,最后A 并没有滑离B 板。已知A 、B 之间的动摩擦因数μ=0.50,取重力加速度g=10m/s 2。求: (1)经历多长时间A 相对地面速度减为零;

高考物理牛顿运动定律的应用题20套(带答案)及解析

高考物理牛顿运动定律的应用题20套(带答案)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求: (1)物体与传送带间的动摩擦因数; (2) 0~8 s内物体机械能的增加量; (3)物体与传送带摩擦产生的热量Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得: 可解得:μ=0.875. (2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移 0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为 (3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为: 0~6 s内物体位移为: 则0~6 s内物体相对于皮带的位移为 0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小, 代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求: (1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ?= 【解析】 【分析】 物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】 (1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则: 222 011-22A B v v v L a a =+ 又: 011 -=A B v v v a a 解得:a B =6m/s 2 再代入F +μMg =ma B 得:F =1N 若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N 若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N (2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2 平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2 两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s

高考物理牛顿运动定律的应用题20套(带答案)

高考物理牛顿运动定律的应用题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求: (1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ; (3)小球向下运动到最低点时,物块M 所受的拉力大小T 【答案】(1)53F Mg mg =- (2) 65M m = (3)()85mMg T m M =+(4855 T mg =或8 11T Mg = ) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得5 3 F Mg mg = - (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得 65 M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T 牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma 解得85mMg T m M = +()(488 5511 T mg T Mg = =或) 【点睛】

【物理】物理牛顿运动定律题20套(带答案)及解析

【物理】物理牛顿运动定律题20套(带答案)及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v 0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x 将发生变化.取g =10m/s 2,sin37°=0.6,cos37°=0.8. (1)求物块与木板间的动摩擦因数μ; (2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】 (1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75 (2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax 解得:() 2 02sin cos v x g θμθ=+ 令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m 2.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为θ=37°的坡顶A 由静止开始自由下滑,滑至坡底B (B 处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C 处,如图所示.不计空气阻力,坡长为l =26 m ,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析 一、高中物理精讲专题测试牛顿运动定律 1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。已知圆轨道的半径R=0.5 m。(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)物块与斜面间的动摩擦因数μ; (2)物块到达C点时对轨道的压力F N的大小; (3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。 【答案】(1)μ=0.5 (2)F'N=4 N (3) 【解析】 【分析】 由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度; 【详解】 解:(1)由图乙可知物块上滑时的加速度大小为 根据牛顿第二定律有: 解得 (2)设物块到达C点时的速度大小为v C,由动能定理得: 在最高点,根据牛顿第二定律则有: 解得: 由根据牛顿第三定律得: 物体在C点对轨道的压力大小为4 N (3)设物块以初速度v1上滑,最后恰好落到A点 物块从C到A,做平抛运动,竖直方向:

水平方向: 解得 ,所以能通过C 点落到A 点 物块从A 到C ,由动能定律可得: 解得: 2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v 0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x 将发生变化.取g =10m/s 2,sin37°=0.6,cos37°=0.8. (1)求物块与木板间的动摩擦因数μ; (2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】 (1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75 (2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax 解得:() 2 02sin cos v x g θμθ=+ 令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m 3.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率

物理牛顿运动定律的应用题20套(带答案)及解析

物理牛顿运动定律的应用题20套(带答案)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则: (1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等); (3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L 【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。(3)木板的最小长度L 是0.7m 。 【解析】 【详解】 (1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右; (2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N (3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。 1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1= 2 A B v v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2 A B v v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。 2.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。(2 10/,sin 370.6,cos370.8g m s ︒ ︒ ===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少?

高考物理牛顿运动定律的应用题20套(带答案)含解析

高考物理牛顿运动定律的应用题20套(带答案)含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体 施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。(2 10/,sin 370.6,cos370.8g m s ︒ ︒ ===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少? 【答案】(1)0.5 (2)30N 【解析】 【详解】 (1)由速度时间图象得:物体向上匀减速时加速度大小: 22110-5 m/s 10m/s 0.5 a = = 根据牛顿第二定律得: 1sin cos mg mg ma θμθ+= 代入数据解得: 0.5μ= (2)由速度时间图象得:物体向上匀加速时: 2220m /s v a t ∆= =∆ 根据牛顿第二定律得: 2sin cos F mg mg ma θμθ--= 代入数据解得: 30N F = 2.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:

(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】 (1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以: 112122 v v v L t t t =++ 代入数值得: L =16m 由平均速度的定义得: 16 8/2 L v m s t === (2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为: 22110 /10/1 v a m s m s t V V = == 则物体所受的合力为: F 合=ma 1=2×10N=20N . 1-2s 内的加速度为: a 2= 2 1 =2m /s 2, 根据牛顿第二定律得: a 1= mgsin mgcos m θμθ +=gsinθ+μgcosθ a 2= mgsin mgcos m θμθ-=gsinθ-μgcosθ 联立两式解得: μ=0.5,θ=37°. (3)0-1s 内,物块的位移: x 1= 12a 1t 12=1 2 ×10×1m =5m 传送带的位移为:

物理牛顿运动定律题20套(带答案)及解析

物理牛顿运动定律题20套(带答案)及解析 一、高中物理精讲专题测试牛顿运动定律 1.某物理兴趣小组设计了一个货物传送装置模型,如图所示。水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。传送带BC 间距 0.8L m =,以01/v m s =顺时针运转。两个转动轮O 1、O 2的半径均为0.08r m =,半径 O 1B 、O 2C 均与传送带上表面垂直。用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。求: (1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】 解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2 v mgcos θm r = 解得: v 0.8m /s = 对滑块在传送带上的分析可知:mgsin θμmgcos θ= 故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v = 解得:t 1s = (2)滑块从K 至B 的过程,由动能定理可知:2f 1 W W mv 2 -=弹 根据功能关系有: p W E =弹 解得:f W 0.68J = 2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =

高考物理牛顿运动定律题20套(带答案)

高考物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1. 如图所示,质量 M=0 . 4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡 板问的 距离L=0. 5m ,某时刻另一质量 m=0. 1kg 的小滑块(可视为质点)以v o =2m /s 的速度向右 滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑 块与长木板间的动摩擦因数 卩=0 2, 重力加速度g=10m /s 2,小滑块始终未脱离长木板。 求: m h» 卜 ------ I ----------------- J 十一…一 _…一…対 _______________ ________ J (1) 自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2) 长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1) 1.65m (2) 0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得:卜— 对长木板:|出巷二圧圧 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 號二I 解得: 1 x= 长木板位移: 解得:I - -: - I ■'•: 「: I ;! 两者达相同速度时长木板还没有碰竖直挡板 L-x = v\li 解得: t = ti + t2 = 1.655 (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共 同速度: ■― V 沉匕 I 1 1 1 }imgs =菱册响_ 云血 十 财}诃 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2. 如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。已知雪橇与水平雪道间的 动摩擦因数为 卩=0.1,妈妈的质量为 M = 60kg ,小红和雪橇的总质量为 m = 20kg 。在游戏 过程中妈妈用大小为 F = 50N ,与水平方向成 37°角的力斜向上拉雪橇。(g 10m/s 2 , sin37 =0.6, cos37 = 0.8)求: mvi - Mvi = (ni + M )V2 .? = 0928m

高中物理牛顿运动定律的应用题20套(带答案)及解析

高中物理牛顿运动定律的应用题20套(带答案)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2. (1).为使物块A 与木板发生相对滑动,F 至少为多少? (2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】 (1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力. 设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N 即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mg a m s m μ-==∕ 木板和B 的加速度大小为:B mg a M m = +μ=1m/s 2 设物块滑到木板右端所需时间为t ,则:x A -x B =L 即 22 1122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/s AB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B ' 机械能守恒: 12mv a 2+12mv B 2=12mv a '2+1 2 mv B '2 解得:v A '=2m/s v B '=8m/s 2.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运

相关文档
最新文档