(完整版)初中的数学《最值问题》典型例题

合集下载

初中数学最值问题专题

初中数学最值问题专题

中考数学最值问题【例题1】(经典题)二次函数y二2 (x-3) 2-4的最小值为.【例题2】(2018江西)如图,AB是。

的弦,AB=5,点C是。

上的一个动点,且NACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是___ .C【例题3】(2019湖南张家界)已知抛物线y=ax2+bx+c (a不0)过点A(1, 0), B(3, 0)两点,与y 轴交于点C, OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM^BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当^PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q为线段OC上的一动点,问AQ+ 2 QC是否存在最小值若存在,求出这个最小值;若不存在,请说明理由.1.(2018河南)要使代数式V-2^37有意义,则乂的( )A.最大值为2B.最小值为2C.最大值为-D.最大值为°3 3 2 22.(2018四川绵阳)不等边三角形AABC的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为。

3.(2018齐齐哈尔)设a、b为实数,那么“2+“〃 +从一” 的最小值为04.(2018云南)如图,MN是。

的直径,MN=4, NAMN=40° ,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.C5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1WxV15)之间的函数关系式,并求出第几天时销售利润最大(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少元,则第15天在第14天的价格基础上最多可降多少元6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R (元),售价每只为P (元),且R、P与x的关系式分别为R = 500 + 30x , P = 170 —2x。

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。

一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。

y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

初中数学几何最值专题16:加权费马点(最全修正版)

初中数学几何最值专题16:加权费马点(最全修正版)

加权费马点
【例题精讲】
例1、在△ABC中,BC=4.AC=3√2,∠ACB=45°,P为三角形ABC内部一点,求AP+BP+√2PC的最小值
解析提示:
总结:
例2、(1)问题提出:如图1,已知等边△ABC的边长为2,D为BC的中点,P是AD上一动点,则BP+AP 的最小值为.
(2)问题探究:如图2,在Rt△ABC中,∠BAC=90°,∠ABC=30°,AC=,在三角形内有一点P满足∠APB=∠BPC=120°,求PA+PB+PC的值.
(3)问题解决:如图3,某地在脱贫攻坚乡村振兴中因地制宜建造了3个特色农产品种植基地A,B,C.现需根据产品中转点P修建通往种植基地A,B,C的道路PA,PB,PC,方便农产品的储藏运输,根据地质设计,PB路段每米造价是PA的倍,PC路段每米造价是PA的2倍.已知AB=BC=2000米,∠ABC=30°,要使修建3条道路费用最小,即求PA+PB+2PC的最小值.
解析提示:
总结:
针对训练
1、在等边三角形ABC中,边长为4,P为三角形ABC内部一点,求AP+BP+√2PC的最小值
2、如图,在△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC。

求:(1)PA+PB+PC的最小值;
(2)PA+PB+√2PC的最小值;
(3)PA+PB+√3PC的最小值;
(4)PA+2PB+√3PC的最小值;
(5)2PA+PB+√3PC的最小值;
(6)3PA+4PB+5PC的最小值;。

初中数学竞赛:最值问题求法应用举例[附答案]

初中数学竞赛:最值问题求法应用举例[附答案]

最值问题求法例题(1)、若实数a ,b ,c 满足a2 + b2+ c2= 9,则代数式(a - b)2 + (b —c)2 +(c - a)2的最大值是()A.27 B、 18 C、15 D、 12例题(2)、如果对于不小于8的自然数N ,当3N+1是一个完全平方数时,N + 1都能表示成K个完全平方数的和,那么K的最小值是()A、 1B、 2C、 3D、 4例题(3)、设a、b为实数,那么a2+ab+b2-a-2b的最小值是——————————。

例题(4)、已知实数a、b满足a2+ab+b2=1 ,则a2-ab+b2的最小值和最大值的和是————————。

例题5、若a、b满足3a+5∣b∣= 7 ,则S= 2a-3∣b∣的最大值为-------------------,最小值为--------------------。

(二)、直接运用a 2+b 2≥ 2ab ( a +b ≥ 2ab )性质求最值。

例题(6)、若X > 0,则函数Y =3X +31X+21++XX 的最小值。

例题(7)、已知 a 、b 、c 、d 均为实数,且a +b +c +d = 4 ,a 2+b 2+c 2+d 2 =316,求a 的最小值与最大值。

(三)、用一元二次方程根的判别式Δ=b 2-4ac (结合韦达定理)求最值。

例题(8)、已知实数a 、b 、c 满足a +b +c = 2 ,abc = 4 ,○1求a 、b 、c 中最大者的最小值 ;○2求∣a ∣+∣b ∣+∣c ∣的最小值。

例题(9)、求函数Y = 12156322++++X X X X 的最小值。

(四)、用绝对值的几何意义和取零点、分段讨论法求最值。

例题(10)、a b c d e是一个五位自然数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a<b<c<d ,则│a-b │+│b-c │+│c -d │+│d -e │的最大值是 ———。

初中数学专题《四边形中的最值问题》专项训练30道含答案解析

初中数学专题《四边形中的最值问题》专项训练30道含答案解析

专题18.8 四边形中的最值问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!一.选择题(共10小题)1.(2022春•重庆期末)如图,矩形ABCD中,AB=23,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是( )A.43+3B.221C.23+6D.45【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=AB2+BC2=43,∴AC=2AB,∴∠ACB=30°,AC=2AB=43,∵∠BCE=60°,∴∠ACE=90°,∴AE=(43)2+62=221,故选:B.2.(2022•灞桥区校级模拟)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是( )2 A.5B.7C.72D.72【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=AM,CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=22推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,AM,∴AD=22∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,,∴AD的最大值为722故选:D .3.(2022春•中山市期末)如图,在边长为a 的正方形ABCD 中,E 是对角线BD 上一点,且BE =BC ,点P 是CE 上一动点,则点P 到边BD ,BC 的距离之和PM +PN 的值( )A .有最大值aB .有最小值22a C .是定值a D .是定值22a 【分析】连接BP ,作EF ⊥BC 于点F ,由正方形的性质可知△BEF 为等腰直角三角形,BE =a ,可求EF ,利用面积法得S △BPE +S △BPC =S △BEC ,将面积公式代入即可.【解答】解:如图,连接BP ,作EF ⊥BC 于点F ,则∠EFB =90°,∵正方形的性质可知∠EBF =45°,∴△BEF 为等腰直角三角形,∵正方形的边长为a ,∴BE =BC =a ,∴BF =EF =22BE =22a ,∵PM ⊥BD ,PN ⊥BC ,∴S △BPE +S △BPC =S △BEC ,∴12BE ×PM +12BC ×PN =12BC ×EF ,∵BE =BC ,∴PM +PN =EF =22a .则点P 到边BD ,BC 的距离之和PM +PN 的值是定值22a .故选:D .4.(2022春•三门峡期末)如图,在矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A.2B.4C.2D.22【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP 的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,CE.∴P1P2∥CE且P1P2=12当点F在EC上除点C、E的位置处时,有DP=FP.CF.由中位线定理可知:P1P∥CE且P1P=12∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=2,AD=1,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=1.∴BP1=2.∴PB的最小值是2.故选:C.5.(2022春•滨湖区期末)如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ,连接PD、AQ,则PD+AQ的最小值为( )A.45B.89C.10D.72【分析】过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,根据菱形的性质和勾股定理可得BM=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,可得B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),然后证明△ABP≌△ADQ(SAS),可得AP=AQ=A′P,连接A′D,AP,A′P,由A′P+PD>A′D,可得A′,P,D三点共线时,PD+A′P取最小值,所以PD+AQ 的最小值=PD+A′P的最小值=A′D,利用勾股定理即可解决问题.【解答】解:如图,过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,∵四边形ABCD是菱形,∴AB=BC=AD=5,∠ABC=∠ADC,∵菱形ABCD的面积为20,边长为5,∴AM=4,在Rt△ABM中,根据勾股定理得:BM=AB2−AM2=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,∴B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),∵PC=CQ,BC=CD,∴BP=DQ,在△ABP和△ADQ中,AB=AD∠ABC=∠ADC,BP=DQ∴△ABP≌△ADQ(SAS),∴AP=AQ=A′P,连接A′D,AP,A′P,∵A′P+PD>A′D,∴A′,P,D三点共线时,PD+A′P取最小值,∴PD+AQ的最小值=PD+A′P的最小值=A′D=(8−3)2+(4+4)2=89.故选:B.6.(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是( )A.2B.1C.5−1D.5−2【分析】根据正方形的性质可得AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,然后利用“HL”证明Rt△ADM和Rt△BCN全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△DCE和△BCE全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AFD=90°,取AD的中点O,连接OF、OC,根据直角AD=1,利用勾股定理列式求出OC,然三角形斜边上的中线等于斜边的一半可得OF=12后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,AD=BCAM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠1=∠2,在△DCE和△BCE中,BC=CD∠DCE=∠BCE,CE=CE∴△DCE≌△BCE(SAS),∴∠2=∠3,∴∠1=∠3,∵∠ADF+∠3=∠ADC=90°,∴∠1+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,AD=1,则OF=DO=12在Rt△ODC中,OC=DO2+DC2=12+22=5,根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=5−1.故选:C.7.(2022•龙华区二模)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为13−2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的判定和性质即可得到PE=PC;故②正确;连接EF,推出点E、P、F、C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且EPCF四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO =1AE,推出点P在以O为圆心,AE为直径的圆上,当OC最小时,CP的值最小,根2据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【解答】解:连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E、P、F、C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且E、P、C、F四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,AE,∴AO=PO=12∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当OC最小时,CP的值最小,∵PC ≥OC ﹣OP ,∴PC 的最小值=OC ﹣OP =OC −12AE ,∵OC =22+(72)2=652,在Rt △ADE 中,AE =42+12=17,∴PC 的最小值为652−172,故④错误,故选:B .8.(2022•南平校级自主招生)如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F .则EF 的最小值为( )A .4B .4.8C .5.2D .6【分析】先由矩形的判定定理推知四边形PEAF 是矩形;连接PA ,则PA =EF ,所以要使EF ,即PA 最短,只需PA ⊥CB 即可;然后根据三角形的等积转换即可求得PA 的值.【解答】解:如图,连接PA .∵在△ABC 中,AB =6,AC =8,BC =10,∴BC 2=AB 2+AC 2,∴∠A =90°.又∵PE ⊥AB 于点E ,PF ⊥AC 于点F .∴∠AEP =∠AFP =90°,∴四边形PEAF 是矩形.∴AP =EF .∴当PA 最小时,EF 也最小,即当AP ⊥CB 时,PA 最小,∵12AB •AC =12BC •AP ,即AP =AB ⋅AC BC =6×810=4.8,∴线段EF 长的最小值为4.8;故选:B .9.(2022春•崇川区期末)如图,正方形ABCD 边长为1,点E ,F 分别是边BC ,CD 上的两个动点,且BE =CF ,连接BF ,DE ,则BF +DE 的最小值为( )A .2B .3C .5D .6【分析】连接AE ,利用△ABE ≌△BCF 转化线段BF 得到BF +DE =AE +DE ,则通过作A 点关于BC 对称点H ,连接DH 交BC 于E 点,利用勾股定理求出DH 长即可.【解答】解:连接AE ,如图1,∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°.又BE =CF ,∴△ABE ≌△BCF (SAS ).∴AE =BF .所以BF +DE 最小值等于AE +DE 最小值.作点A 关于BC 的对称点H 点,如图2,连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点.根据对称性可知AE =HE ,所以AE +DE =DH .在Rt △ADH 中,AD =1,AH =2,∴DH =AH 2+AD 2=5,∴BF +DE 最小值为5.故选:C .10.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为( )A.2B.2C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=2AB=22,∴d1+d2+d3最小=AC=22,故选:C.二.填空题(共10小题)11.(2022春•江城区期末)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是 3+13 .【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于的一半可得OE=12第三边可得OD过点E时最大.【解答】解:如图:取线段AB的中点E,连接OE,DE,OD,∵AB=6,点E是AB的中点,∠AOB=90°,∴AE=BE=3=OE,∵四边形ABCD是矩形,∴AD=BC=2,∠DAB=90°,∴DE=AE2+AD2=13,∵OD≤OE+DE,∴当点D,点E,点O共线时,OD的长度最大.∴点D到点O的最大距离=OE+DE=3+13,故答案为:3+13.12.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为 13 .【分析】连接BP,在BA的延长线上截取AE=AB=6,连接PE,CE,PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,则PC+QD=PC+PB=PC+PE≥CE,根据勾股定理可得结果.【解答】解:如图,连接BP,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,∴PC+QD=PC+PB,∴PC+QD的最小值转化为PC+PB的最小值,如图,在BA的延长线上截取AE=AB=6,连接PE,CE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,∴PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE=BE2+BC2=13.∴PC+DQ的最小值为13.故答案为:13.13.(2022•钱塘区一模)如图,在矩形ABCD中,线段EF在AB边上,以EF为边在矩形ABCD内部作正方形EFGH,连结AH,CG.若AB=10,AD=6,EF=4,则AH+CG的最小值为 62 .【分析】方法一:延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,可得四边形AA′EH是平行四边形,所以A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,根据勾股定理即可解决问题.方法二:过点G作GA′∥AH交AF于点A′,可得四边形AHGA′是平行四边形,进而可以解决问题.【解答】解:方法一:如图,延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,∵HE⊥AB,AA′⊥AB,∴AA′∥EH,∵A′A=EH,∴四边形AA′EH是平行四边形,∴A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,∵四边形EFGH是正方形,∴EF=FG=4,∴EG=42,∵A′D=AD+AA′=6+4=10,在Rt△A′DC中,DC=AB=10,∴A′C=A′D2+DC2=102,∴A′E+CG=A′C﹣EG=62.方法二:如图,过点G作GA′∥AH交AF于点A′,∴四边形AHGA′是平行四边形,∴AA′=HG=4,A′G=AH,∴A′B=AB﹣AA′=6,∵BC=6,∴A′C=62,∴AH+CG=A′G+CG≥A′C,则AH+CG的最小值为62.故答案为:62.14.(2022春•东城区期中)在正方形ABCD中,AB=5,点E、F分别为AD、AB上一点,且AE=AF,连接BE、CF,则BE+CF的最小值是 55 .【分析】连接DF,根据正方形的性质证明△ADF≌△ABE(SAS),可得DF=BE,作点D关于AB的对称点D′,连接CD′交AB于点F′,连接D′F,则DF=D′F,可得BE+CF=DF+CF=D′F+CF≥CD′,所以当点F与点F′重合时,D′F+CF最小,最小值为CD′的长,然后根据勾股定理即可解决问题.【解答】解:如图,连接DF,∵四边形ABCD是正方形,∴AD=AB,∠BAE=∠DAF=90°,在△ADF 和△ABE 中,AD =AB ∠FAD =∠EAB AF =AE,∴△ADF ≌△ABE (SAS ),∴DF =BE ,作点D 关于AB 的对称点D ′,连接CD ′交AB 于点F ′,连接D ′F ,则DF =D ′F ,∴BE +CF =DF +CF =D ′F +CF ≥CD ′,∴当点F 与点F ′重合时,D ′F +CF 最小,最小值为CD ′的长,在Rt △CDD ′中,根据勾股定理得:CD ′=CD 2+DD′2=52+102=55,∴BE +CF 的最小值是55.故答案为:55.15.(2022春•虎林市期末)如图,在Rt △ABC 中,∠BAC =90°,且BA =12,AC =16,点D 是斜边BC 上的一个动点,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 于点F ,点G 为四边形DEAF 对角线交点,则线段GF 的最小值为 245 .【分析】由勾股定理求出BC 的长,再证明四边形DEAF 是矩形,可得EF =AD ,根据垂线段最短和三角形面积即可解决问题.【解答】解:连接AD 、EF ,∵∠BAC =90°,且BA =9,AC =12,∴BC =AB 2+AC 2=122+162=20,∵DE ⊥AB ,DF ⊥AC ,∴∠DEA =∠DFA =∠BAC =90°,∴四边形DEAF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时,△ABC 的面积=12AB ×AC =12BC ×AD ,∴12×16=20AD ,∴AD =485∴EF 的最小值为485,∵点G 为四边形DEAF 对角线交点,∴GF =12EF =245;故答案为:245.。

(最新整理)初中的数学《最值问题》典型例题

(最新整理)初中的数学《最值问题》典型例题

初中的数学《最值问题》典型例题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中的数学《最值问题》典型例题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中的数学《最值问题》典型例题的全部内容。

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =则△PMN 的周长的最小值为 .【分析】作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.根据对称的性质可以证得:△COD 是等腰直角三角形,据此即可求解.【解答】解:作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.∵PC 关于OA 对称,∴∠COP =2∠AOP ,OC =OP同理,∠DOP =2∠BOP ,OP =OD∴∠COD =∠COP +∠DOP =2(∠AOP +∠BOP )=2∠AOB =90°,OC =OD .∴△COD 是等腰直角三角形.则CD OC =6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN 周长最小的条件是解题的关键.2.如图,当四边形PABN 的周长最小时,a = .【分析】因为AB ,PN 的长度都是固定的,所以求出PA +NB 的长度就行了.问题就是PA +NB 什么时候最短.把B 点向左平移2个单位到B ′点;作B ′关于x 轴的对称点B ″,连接AB ″,交x 轴于P ,从而确定N 点位置,此时PA +NB 最短.设直线AB ″的解析式为y =kx +b ,待定系数法求直线解析式.即可求得a 的值.【解答】解:将N 点向左平移2单位与P 重合,点B 向左平移2单位到B ′(2,﹣1),作B ′关于x 轴的对称点B ″,根据作法知点B ″(2,1),设直线AB ″的解析式为y =kx +b ,则,解得k =4,b =﹣7.123k b k b=+⎧⎨-=+⎩∴y =4x ﹣7.当y =0时,x =,即P (,0),a =.747474故答案填:.74【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P 为直线上的动点,|PA﹣PB|的最大值为 .【分析】作点B于直线l的对称点B′,则PB=PB′因而|PA﹣PB|=|PA﹣PB′|,则当A,B′、P 在一条直线上时,|PA﹣PB|的值最大.根据平行线分线段定理即可求得PN和PM的值然后根据勾股定理求得PA、PB′的值,进而求得|PA﹣PB|的最大值.【解答】解:作点B于直线l的对称点B′,连AB′并延长交直线l于P.∴B′N=BN=1,过D点作B′D⊥AM,利用勾股定理求出AB′=5∴|PA﹣PB|的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF 沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PFAE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=∴PD=.8【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A 随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为 .【分析】取AB 的中点E ,连接OD 、OE 、DE ,根据直角三角形斜边上的中线等于斜边的一半可得OE =AB ,利用勾股定理列式求出DE ,然后根据三角形任意两边之和大于第三边可得OD 过点E 时最大.【解答】解:如图,取AB 的中点E ,连接OD 、OE 、DE ,∵∠MON =90°,AB =2∴OE =AE =AB =1,12∵BC =1,四边形ABCD 是矩形,∴AD =BC =1,∴DE ,根据三角形的三边关系,OD <OE +DE ,∴当OD 过点E +1.+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD 过AB 的中点时值最大是解题的关键.7.如图,线段AB 的长为4,C 为AB 上一动点,分别以AC 、BC 为斜边在AB 的同侧作等腰直角△ACD 和等腰直角△BCE ,那么DE 长的最小值是 .【分析】设AC =x ,BC =4﹣x ,根据等腰直角三角形性质,得出CD x ,CD ′(4﹣x ),根据勾股定理然后用配方法即可求解.【解答】解:设AC =x ,BC =4﹣x ,∵△ABC ,△BCD ′均为等腰直角三角形,∴CD x ,CD ′(4﹣x ),∵∠ACD =45°,∠BCD ′=45°,∴∠DCE =90°,∴DE 2=CD 2+CE 2=x 2+(4﹣x )2=x 2﹣4x +8=(x ﹣2)2+4,1212∵根据二次函数的最值,∴当x 取2时,DE 取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD 中,AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为 .【分析】根据轴对称确定最短路线问题,作点P 关于BD 的对称点P ′,连接P ′Q 与BD 的交点即为所求的点K ,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P ′Q ⊥CD 时PK +QK 的最小值,然后求解即可.【解答】解:如图,∵AB =2,∠A =120°,∴点P ′到CD 的距离为,∴PK +QK.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD 的边长为1,点P 为边BC 上的任意一点(可与B 、C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别为B ′、C ′、D ′,则BB ′+CC ′+DD ′的取值范围是 .【分析】首先连接AC ,DP .由正方形ABCD 的边长为1,即可得:S △ADP =S 正方形ABCD =,S △ABP +S △ACP =S 1212△ABC =S 正方形ABCD =,继而可得AP •(BB ′+CC ′+DD ′)=1,又由1≤AP ,即可求得答案.121212【解答】解:连接AC ,DP .∵四边形ABCD 是正方形,正方形ABCD 的边长为1,∴AB =CD ,S 正方形ABCD =1,∵S △ADP =S 正方形ABCD =,S △ABP +S △ACP =S △ABC =S 正方形ABCD =,12121212∴S △ADP +S △ABP +S △ACP =1,∴AP •BB ′+AP •CC ′+AP •DD ′=AP •(BB ′+CC ′+DD ′)=1,12121212则BB ′+CC ′+DD ′=,2AP∵1≤AP ,∴当P 与B 重合时,有最大值2;当P 与C .≤BB ′+CC ′+DD ′≤2.≤BB ′+CC ′+DD ′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC ,DP ,根据题意得到S △ADP +S △ABP +S △ACP =1,继而得到BB ′+CC ′+DD ′=.2AP10.如图,菱形ABCD 中,∠A =60°,AB =3,⊙A 、⊙B 的半径分别为2和1,P 、E 、F 分别是边CD 、⊙A 和⊙B 上的动点,则PE +PF 的最小值是 .【分析】利用菱形的性质以及相切两圆的性质得出P 与D 重合时PE +PF 的最小值,进而求出即可.【解答】解:由题意可得出:当P 与D 重合时,E 点在AD 上,F 在BD 上,此时PE +PF 最小,连接BD ,∵菱形ABCD 中,∠A =60°,∴AB =AD ,则△ABD 是等边三角形,∴BD =AB =AD =3,∵⊙A 、⊙B 的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键. 。

初中数学最值问题专题

初中数学最值问题专题

初中数学最值问题专题中考数学最值问题【例题1】(经典题)⼆次函数y=2(x ﹣3)2﹣4的最⼩值为.【例题2】(2018)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的⼀个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最⼤值是.【例题3】(2019)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂⾜为M ,求证:四边形ADBM 为正⽅形;(3)点P 为抛物线在直线BC 下⽅图形上的⼀动点,当△PBC ⾯积最⼤时,求P 点坐标及最⼤⾯积的值;(4)若点Q 为线段OC 上的⼀动点,问AQ +21QC 是否存在最⼩值?若存在,求岀这个最⼩值;若不存在,请说明理由.练习1.(2018)要使代数式x 32-有意义,则x 的() A.最⼤值为32 B.最⼩值为32C.最⼤值为23D.最⼤值为23 2.(2018)不等边三⾓形?ABC 的两边上的⾼分别为4和12且第三边上的⾼为整数,那么此⾼的最⼤值可能为________。

3.(2018)设a 、b 为实数,那么a ab b a b 222++--的最⼩值为_______。

4.(2018)如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的⼀个动点,则PA+PB 的最⼩值为.5.(2018)某⽔果店在两周,将标价为10元/⽄的某种⽔果,经过两次降价后的价格为8.1元/⽄,并且两次降价的百分率相同.(1)求该种⽔果每次降价的百分率;(2)从第⼀次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费⽤的相关信息如表所⽰.已知该种⽔果的进价为4.1元/⽄,设销售该⽔果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第⼏天时销售利润最⼤?(3)在(2)的条件下,若要使第15天的利润⽐(2)中最⼤利润最多少127.5元,则第 15天在第14天的价格基础上最多可降多少元?6.(2018荆州)某玩具⼚计划⽣产⼀种玩具熊猫,每⽇最⾼产量为40只,且每⽇产出的产品全部售出,已知⽣产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为R x =+50030,P x =-1702。

初中含参二次函数的最值问题

初中含参二次函数的最值问题

初中含参二次函数的最值问题二次函数在数学中是一种比较常见的函数形式,也是我们初中阶段需要掌握的重要知识点之一。

其中,最值问题是二次函数题目中比较典型和常见的一类问题。

在这篇文章中,我将通过一些例题和解题思路的介绍,来帮助大家更好地理解含参二次函数的最值问题。

1. 带参数二次函数的最值问题下面是一个含参数的二次函数的例子:$y=ax^2+bx+c(a>0)$ 。

我们来考虑这个函数的最值问题。

(1)当$a>0$时,这个二次函数的值域为$[q,\infty)$。

其中$q$为$a,b,c$的函数,满足$a>0$时,有如下的公式:$$q=f(\frac{-b}{2a})=\frac{4ac-b^2}{4a}$$那么,这个二次函数的最小值就是$q$,也就是当$x=\frac{-b}{2a}$时,函数取得最小值。

(2)当$a<0$时,这个二次函数的值域为$(-\infty,q]$。

其最大值也是$q$,即当$x=\frac{-b}{2a}$时,函数取得最大值。

可以通过公式来求解含参二次函数的最值问题。

具体来说,找到函数的最小值或最大值所在的$x$坐标,然后代入函数中求出对应的函数值即可。

下面让我们通过一个例题来进一步了解含参二次函数的最值问题。

2. 例题分析【例题】已知函数$y=ax^2+bx+c(a>0)$,并满足:$|x-2|+|x-4|+|x-6|=k(k>0)$求函数$y$的最小值和最大值并确定此时$x$的值。

【解题思路】该题要求我们求解带有约束条件的含参二次函数的最值问题。

实际上,约束条件中的绝对值形式会让我们比较难受,不过我们可以将其转化为分段描述,从而更好地理解这个问题。

具体来说,考虑以下的情况:(1)当$x\leq 2$时,有$|x-2|=2-x$。

(2)当$2<x\leq4$时,有$|x-2|=x-2$、$|x-4|=4-x$。

(3)当$4<x\leq 6$时,有$|x-4|=x-4$、$|x-6|=6-x$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用标准文案 精彩文档 初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

轴对称最值

图形 lP

BA

NMl

B

A A

P

Bl

原理 两点之间线段最短 两点之间线段最短 三角形三边关系 特征 A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值 A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值 A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值

转化 作其中一个定点关于定直线l的对称点 先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点

作其中一个定点关于定

直线l的对称点

折叠最值

图形 B'NM

CAB 原理 两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值. 转化 转化成求AB'+B'N+NC的最小值 二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN的周长的最小值为 .

【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. 实用标准文案 精彩文档 ∴△COD是等腰直角三角形. 则CD=2OC=2×32=6.

【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

【分析】因为AB,PN的长度都是固定的,所以求出PA+NB的长度就行了.问题就是PA+NB什么时候最短. 把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时PA+NB最短. 设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值. 【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1), 作B′关于x轴的对称点B″,根据作法知点B″(2,1), 设直线AB″的解析式为y=kx+b,

则123kbkb,解得k=4,b=﹣7.

∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74. 故答案填:74.

【题后思考】考查关于X轴的对称点,两点之间线段最短等知识. 3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为 . 实用标准文案 精彩文档 DP

B′

NBM

A

【分析】作点B于直线l的对称点B′,则PB=PB′因而|PA﹣PB|=|PA﹣PB′|,则当A,B′、P在一条直线上时,|PA﹣PB|的值最大.根据平行线分线段定理即可求得PN和PM的值然后根据勾股定理求得PA、PB′的值,进而求得|PA﹣PB|的最大值. 【解答】解:作点B于直线l的对称点B′,连AB′并延长交直线l于P. ∴B′N=BN=1, 过D点作B′D⊥AM, 利用勾股定理求出AB′=5 ∴|PA﹣PB|的最大值=5. 【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.

4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为 .

【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2. 【解答】解:当点P与B重合时,BA′取最大值是3, 当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1. 则点A′在BC边上移动的最大距离为3﹣1=2. 故答案为:2

【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.

5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD的最小值等于 . 实用标准文案 精彩文档 【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.

【解答】解:如图, ∵当点P落在梯形的内部时,∠P=∠A=90°, ∴四边形PFAE是以EF为直径的圆内接四边形, ∴只有当直径EF最大,且点A落在BD上时,PD最小, 此时E与点B重合; 由题意得:PE=AB=8, 由勾股定理得: BD2=82+62=80,

∴BD=45, ∴PD=458.

【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.

6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为 .

【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大. 【解答】解:如图,取AB的中点E,连接OD、OE、DE, ∵∠MON=90°,AB=2

∴OE=AE=12AB=1, ∵BC=1,四边形ABCD是矩形, ∴AD=BC=1,

∴DE=2, 根据三角形的三边关系,OD<OE+DE,

∴当OD过点E是最大,最大值为2+1. 故答案为:2+1. 实用标准文案 精彩文档 【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.

7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是 .

【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解. 【解答】解:设AC=x,BC=4﹣x, ∵△ABC,△BCD′均为等腰直角三角形,

∴CD=22x,CD′=22(4﹣x), ∵∠ACD=45°,∠BCD′=45°, ∴∠DCE=90°,

∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4, ∵根据二次函数的最值, ∴当x取2时,DE取最小值,最小值为:4. 故答案为:2. 【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.

8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为 .

【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可. 【解答】解:如图,∵AB=2,∠A=120°,

∴点P′到CD的距离为2×32=3, ∴PK+QK的最小值为3. 故答案为:3.

相关文档
最新文档