有限元基础理论复习资料

有限元基础理论复习资料
有限元基础理论复习资料

有限元基础理论复习

第一章:有限元法及ANSYS概述

1.CAE的概念是什么?(P1)

CAE即计算机辅助工程,指工程设计中的分析计算与仿真。

2.有限单元法的基本思想是什么?(P2)

有限单元法的基本思想是将物体(即连续的求解域)离散成有限个且按一定方式相互联结在一起的单元的组合,来模拟或逼近原来的物体,从而将一个连续的无限自由度问题简化为离散的有限自由度问题求解的一种数值分析法。

3.单元、节点概念的定义是什么?(P2)

网格划分中每一个小的块体称为单元。

确定单元形状、单元之间相互联结的点称为节点。

4.节点力与节点载荷的区别是什么?(P2)

单元上节点处的结构内力为节点力,外力(有集中力、分析力等)为节点载荷。故一个是内力,一个是外力。

第二章:有限元法基础理论

1.平面应力问题与平面应变问题的区别是什么?(P25)

恒有δz=0,τzx =τxz=0, τzy=τyz=0,不为0的应力分量为δx,δy,τxy,这种问题称为平面应力问题。

恒有w=0,εz=γyz=γzx=0,不为0的应力分量为εx,εy,γxy,这种问题就称为平面应变问题。

2.轴对称问题有什么特征?它和平面应力问题的主要区别是什么?(P34)

轴对称应力问题的特征是如果弹性体的几何形状、约束条件及载荷都对称于某一轴,则所有的位移、应变及应力也对称于此轴。

与平面应力问题不同的是:单元体为圆环体,单元之间由结圆铰接,节点力为结圆上的均布力,单元边界为回转面。

3.什么是等参数单元?(P40)

等参数变换即坐标变换和单元内德场函数采用相同数目的节点参数及相同的插值函数,等参数变换的单元称之为等参数单元。

4.介绍虚位移原理和最小势能原理?(P44)

虚位移原理:如果在虚位移发生之前,物体处于平衡状态,那么在虚位移发生时,外力所做的虚功等于物体的虚应变能。

最小势能原理:在所有满足边界条件的协调(连续)位移中,那些满足平衡条件的位移使物体势能取驻值,即δПp=δU-δV=0,对于线性弹性体,势能取最小值。

5.计算题

第三章:ANSYS建模

1.什么是工作平面?(P97)

光标在屏幕上是一个点,在空间实际上代表一条直线。为了用光标拾取一个点,必须要有一个假想的平面与该直线相交,这样才能唯一地确定空间中的一个点,该平面即工作平面。

2.ANSYS内有哪几种坐标系,适用哪些场合?(P 95)

1.全局和局部坐标系统:在空间坐标定位几何项(如节点和关键点)

2.显示坐标系统:决定列出和显示几何项的坐标系。

3.节点坐标系统:定义每个节点自由度的方向及节点计算结果的定位。

4.单元坐标系统:定位材料特性及单元计算结果数据。

5.结果坐标系统:转换节点或单元的计算结果数据到一个特殊的坐标系统中,以进行显示或进行一般的后处理操作。

3.ANSYS建模的基本过程是什么?(P94)

1.确定分析目标及模型的基本形式,选择合适的单元类型并考虑如何建立适当的网格密度。

2.进入前处理。

3.建立工作平面。

4.激活适当的坐标系。

5.用自底向上或自顶向下方法生产实体。

6.用布尔运算或编号控制适当地连接各个独立的实体模型。

7.生产单元属性表(单元类型、实常数、材料属性和单元坐标系),设置单元属性指针。

8.设置网格划分控制以建立需要的网格密度。若需用自动网格划分功能,应在退出前处理后激活自适应网格划分。

9.通过划分实体模型的网格生产节点和单元。

10.在生产节点和单元后定义面与面的接触单元、自由度耦合及约束方程等。

11.保存模型数据为Jobname.DB

12.退出前处理。

4.如何在ANSYS内构建复杂实体模型?(P102)

ANSYS设置了与多种CAD软件如Pro/ENGINEER(Pro/E)、UG、AutoCAD等地数据交换接口。通过这些接口,可以把模型直接传入ANSYS中,然后进行网格划分、加载求解过程。

第四章:结构线性静力分析

1.在前处理器(\PREP7)内主要完成哪些操作?(P129)

进入\PREP7处理器,即进入main menu>preprocessor 菜单建立有限元模型,主要包括定义单元类型、单元实常数、材料属性和几何模型等。

2.结构静力分析的载荷类型这要包括哪几种?(P130)

结构静力分析的载荷类型主要包括位移(UX、UY、UZ、ROTX、ROTY和ROTZ)、力或力矩(FX、FY、FZ、MX、MY和MZ)、压力(PRES)、温度(TEMP)、流通量(FLUE)、重力(Gravity)和旋转角速度(spinning angular Velocity)等。

3.如何从用户菜单和主菜单查看分析结果?(自己看下,不是很清楚)

主菜单:Main Menu>General Posproc>Plot Results

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

有限元理论基础

有限元理论基础

有限元理论基础 2.1 数值模拟技术 2.1.1数值模拟技术简介 在工程技术领域中许多力学问题和场问题,实质上就是在一定的边界条件下求解一些微分方程。对于少数简单问题,人们可以通过建立它们的微分方程与边界约束求出该问题的解析解。但是对于比较复杂的数学方程问题以及不规则的边界条件通过激吻戏法往往难以求解,而需要借助各种数值模拟方法活的相应的工程数值解,这就是所谓的数值模拟技术。 在实际工程领域中,用数值模拟技术可以对复杂的工程结构进行受力和响应分析,这样可以在设计或者加工前预知实体结构工作状态下的大概情况。 目前在工程实际应用中,常用的数值求解方法有:有限单元法、有限差分法、边界元等但从实用性和使用范围来说,有限单元法则是随着计算机技术的发展而被广泛应用的一种行之有效的数值计算方法。 2.2.2 有限元法 有限元法是一种基于能量原理的数值计算

方法,是解决工程实际问题的一种有效的数值计 算工具。它是里茨法的另一种表示形式,它可应用里茨法分析的所有弹性理论。 限元法是处理连续的结构体离散或有限个单元集合,也就是将连续的求解域离散为一定数量的单元集合体。且每个单元都具有一定的节点,相邻单元通过节点相互连续,同时使用等效节点力代替作用于单元上的力和选定场函数的节点值作为基本未知量。并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律:进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元法方程,从而将一个连续域中的无限自由度问题化为离散域中的有限自由度问题。求解后,可利用解出的节点值和设定的插值函数确定整个单元集体上的场函数。有限元求解问题中的单元分析:t t t a k F= 式中::t F单元节点作用力。 t K:单元刚度矩阵。 t a:单元节点位移。 通过单元分析确定单元刚度矩阵,建立单元节点作用力和单元为伊关系。有限元求解问题时建立 的结构整体平衡方程:P KU=

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

Matlab有限元分析操作基础

Matlab 有限元分析20140226 为了用Matlab 进行有限元分析,首先要学会Matlab 基本操作,还要学会使用Matlab 进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵 11221 21200k k k k k k k k -????-????--+??

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

步骤二:构造单元刚度矩阵 >>k1=SpringElementStiffness(100) >>…?

步骤三:构造系统刚度矩阵 a) 分析SpringAssemble库函数function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ?? ?? -- ?? ?

有限元法的理论基础

有限元法的理论基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元

有限元分析的概念和理论

第五章有限元素方法

§5.1有限元素方法的基本思想 有限元素法是一套求解微分方程的系统化数值计算方法。它比传统解法具有理论完整可靠,物理意义直观明确,适应性强,形式单纯、规范,解题效能强等优点。 从数学上来说, 有限元素方法是基于变分原理。它不象差分法那样直接去解偏微分方程, 而是求解一个泛函取极小值的变分问题。有限元素法是在变分原理的基础上吸收差分格式的思想发展起来的。 采用有限元素法还能使物理特性基本上被保持, 计算精度和收敛性进一步得到保证。 有限元素法优点: - 降低实验所需成本 - 減少試验对象的变异困难 - 方便参数控制 - 可获得实验无法获得的信息

有限元素法基本概念: 元素(element),节点(node),连結元素 有限元素法的基本思想: ?实际的物理問題很难利用单一的微分方程式描述,更无法順利求其解析解. ?有限元素法是将复杂的几何外型結构的物体切割成许多简单的几何形状称之为元素. ?元素与与元素间以“节点”相连. ?由于元素是简单的几何形状,故可以順利地写出元素的物理方程式,並求得节点上的物理量. ?采用內插法求得元素內任意点的物理量.

§5.2二维场的有限元素方法 1. 场域划分的约定 三角形元素。三角形元素越小,场域的分割就越细,计算的精度就会越高。因而在实际应用中是按精度的要求来决定场域内各处三角形元素的大小。 一般规定每个三角形元素的三个边的边长尽量地接近,尽量避免三角形元素具有大的钝角,一般最长的一条边不得大于最短边的三倍。 在分割场域时要求各三角形元素之间只能以顶点相交,即两相邻的三角形元素有两个公共的顶点及一条等长的公共边。不能把一个三角形的顶点取在另一个三角形的边上。 划分时还应当注意要尽量地使由相邻边界节点之间的线段所近似构成的曲线足够光滑。 如果在场域D内有不同的介质,则需要将介质的交面线选为分割线。

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

有限元分析基础

有限元分析基础 第一章有限元法概述 在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。 近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。 §1.1 有限元方法的发展历史、现状和将来 一,历史 有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。 60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在: 1)由弹性力学的平面问题扩展到空间、板壳问题。 2)由静力平衡问题——稳定性和动力学分析问题。 3)由弹性问题——弹塑性、粘弹性等问题。 二,现状 现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如: SAP系列的代表SAP2000(Structure Analysis Program) 美国安世软件公司的ANSYS大型综合有限元分析软件 美国航天航空局的NASTRAN系列软件 除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。 三,将来 有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。 §1.2 有限元法的特点 机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。 其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。 数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。 “有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

有限元法的理论基础

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 2.2有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元可以是四面体、长方体和六面体等。为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。 离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。因此这种连接要满足变形协调条件。离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。主要有两类:建模误差和离散化误差。

平面问题的有限元法-Read

3 弹性力学平面问题的有限元法 本章包括以下的内容: 3.1弹性力学平面问题的基本方程 3.2单元位移函数 3.3单元载荷移置 3.4单元刚度矩阵 3.5单元刚度矩阵的性质与物理意义 3.6整体分析 3.7约束条件的处理 3.8整体刚度矩阵的特点与存储方法 3.9方程组解法 3.1弹性力学平面问题的基本方程 弹性力学是研究弹性体在约束和外载荷作用下应力和变形分布规律的一门学科。在弹性力学中针对微小的单元体建立基本方程,把复杂形状弹性体的受力和变形分析问题归结为偏微分方程组的边值问题。弹性力学的基本方程包括平衡方程、几何方程、物理方程。 弹性力学的基本假定如下: 1)完全弹性,2)连续,3)均匀,4)各向同性,5)小变形。 3.1.1基本变量 弹性力学中的基本变量为体力、面力、应力、位移、应变,各自的定义如下。 体力 体力是分布在物体体积内的力,例如重力和惯性力。 面力 面力是分布在物体表面上的力,例如接触压力、流体压力。 应力 物体受到约束和外力作用,其内部将产生内力。物体内某一点的内力就是应力。 图3.1

如图3.1假想用通过物体内任意一点p 的一个截面mn 将物理分为Ⅰ、Ⅱ两部分。将部分Ⅱ撇开,根据力的平衡原则,部分Ⅱ将在截面mn 上作用一定的内力。在mn 截面上取包含p 点的微小面积A ?,作用于A ?面积上的内力为Q ?。 令A ?无限减小而趋于p 点时,Q ?的极限S 就是物体在p 点的应力。 S A Q A =??→?0lim 应力S 在其作用截面上的法向分量称为正应力,用σ表示;在作用截面上的切向分量称为剪应力,用τ表示。 显然,点p 在不同截面上的应力是不同的。为分析点p 的应力状态,即通过p 点的各个截面上的应力的大小和方向,在p 点取出的一个平行六面体,六面体的各楞边平行于坐标轴。 图3.2 将每个上的应力分解为一个正应力和两个剪应力,分别与三个坐标轴平行。用六面体表面的应力分量来表示p 点的应力状态。应力分量的下标约定如下: 第一个下标表示应力的作用面,第二个下标表示应力的作用方向。 xy τ,第一个下标x 表示剪应力作用在垂直于X 轴的面上,第二个下标y 表示剪应力指 向Y 轴方向。 正应力由于作用表面与作用方向垂直,用一个下标。x σ表示正应力作用于垂直于X 轴的面上,指向X 轴方向。 应力分量的方向定义如下: 如果某截面上的外法线是沿坐标轴的正方向,这个截面上的应力分量以沿坐标轴正方向为正; 如果某截面上的外法线是沿坐标轴的负方向,这个截面上的应力分量以沿坐标轴负方向为正。 剪应力互等:xz zx zy yz yx xy ττττττ===,, 物体内任意一点的应力状态可以用六个独立的应力分量x σ、y σ、z σ、xy τ、yz τ、zx τ

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

有限元分析基础教程

有限元分析基础教程

前言 有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。 一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。 本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。 本教程力求体现以下特点。 (1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。 (2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。 (3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。 (4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。 (5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

COSMOS有限元分析理论基础

华睿在线技术专刊
COSMOS 有限元分析理论基础
Comos 系列软件是由 SRAC 公司推出的业界著名有限元分析系列软件,它以简单易用, 功能强大并且分析快速而准确而著称.利用 Comos 的软件功能,使工程师能在产品开发过 程中达到设计分析的能力.正是由于以上的原因,该软件也越来越被广大用户所欢迎,在整 个业界受到了越来越多的应用. 要掌握 Comos 系列软件相对于其他分析软件要简单的多,但是毕竟它也是属于有限元 的范畴, 这里我就一些有限元的基本理论作一个简单的概述, 以使大家对这块儿基本理论有 一个大概的了解,为有限元的分析打下良好的基础.
一,什麽是 FEA?
先来看看什么是 FEA/M.我们先看看他们的全称: FEA 是 Finite Element Analysis 英文的缩写,意思是有限单元分析; FEM 是 Finite Element Method 英文的缩写,意思是有限单元分方法; 所以,我们可以这样认为,FEA 是一种 将复杂的几何模型离散分解成许多简单的小块 的 分析方法或手段 学过理论力学的人都知道, 我们在现实世界中传统的方法就是利用解析方法来处理相关 问题,比如对于一个梁的受力情况分析.这种分析的方法在处理这些问题的特点显而易见, 首先要求该分析的人员要具备一定的理论知识, 对于这类哪怕是最简单的对象的分析处理也 比较复杂,复杂的分析量就会大幅度上升.看看下面的例子,对于这种钢结构的分析使用这 种方法也能找到解决的方法,但是我想大部分的人都会对它的大量计算感到为难.
类似的问题在现实的例子中会有更加多的例子, 可见这样的问题我们使用传统的方法无疑 遇到了瓶颈,理论上方法可解,但是事实上无解.但是我们如果采用有限元的分析方法,他 们都是可以解决的.这也是之所以现今我们在讨论有限元方法的原因.
二,FEA 在工业中的作用
那 FEA 到底能给我们带来什么呢?…… 我们来看看它的一些作用: 1. CAD 和 FEA 的结合使得在实际工作中使用 FEA 方便简单 2. 在设计中使用 FEA 可以大大减少 (但不是替代) 建物理样机和试验 3. 通过使用 FEA, 设计可以更优,减少重量体积 并且提高可靠性 要认清 FEA 在工业中的作用,要注意 FEA 并不只强调自己 ,FEA 要在设计中发挥作用不 开物理样机的实验. 我们来看看下面的例子:
--------------------------------------------------------------------------------------------------------------------1 ------wqh469 Wqh469@https://www.360docs.net/doc/d9610754.html,

有限元理论基础

有限元理论基础 2.1 数值模拟技术 2.1.1数值模拟技术简介 在工程技术领域中许多力学问题和场问题,实质上就是在一定的边界条件下求解一些微分方程。对于少数简单问题,人们可以通过建立它们的微分方程与边界约束求出该问题的解析解。但是对于比较复杂的数学方程问题以及不规则的边界条件通过激吻戏法往往难以求解,而需要借助各种数值模拟方法活的相应的工程数值解,这就是所谓的数值模拟技术。 在实际工程领域中,用数值模拟技术可以对复杂的工程结构进行受力和响应分析,这样可以在设计或者加工前预知实体结构工作状态下的大概情况。 目前在工程实际应用中,常用的数值求解方法有:有限单元法、有限差分法、边界元等但从实用性和使用范围来说,有限单元法则是随着计算机技术的发展而被广泛应用的一种行之有效的数值计算方法。 2.2.2 有限元法 有限元法是一种基于能量原理的数值计算方法,是解决工程实际问题的一种有效的数值计算工具。它是里茨法的另一种表示形式,它可应用里茨法分析的所有弹性理论。 限元法是处理连续的结构体离散或有限个单元集合,也就是将连续的求解域离散为一定数量的单元集合体。且每个单元都具有一定的节点,相邻单元通过节点相互连续,同时使用等效节点力代替作用于单元上的力和选定场函数的节点值作为基本未知量。并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律:进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元法方程,从而将一个连续域中的无限自由度问题化为离散域中的有限自由度问题。求解后,可利用解出的节点值和设定的插值函数确定整个单元集体上的场函数。 有限元求解问题中的单元分析:t t t a k F = 式中::t F 单元节点作用力。 t K :单元刚度矩阵。 t a :单元节点位移。 通过单元分析确定单元刚度矩阵,建立单元节点作用力和单元为伊关系。有限元求解问题时建立的结构整体平衡方程:P KU = 式中:P —结构整体等效点力载荷 K —结构总体刚度矩阵 U —结构节点位移阵列 单元内力的计算:t DBa =σ 式中:D —弹性矩阵 P —应变矩阵 整个结构的有限元分析就是一句上述方程而进行的具体的有限元求解过程如图

相关文档
最新文档