分子生物学(英文版)

分子生物学(英文版)
分子生物学(英文版)

Chapter 3 Nucleic Acid

1. Physical and chemical structure of DNA

●Double-stranded helix

● Major groove and minor groove

● Base pairing

● The two strands are antiparallel

● G+C content (percent G+C)

● Satellite DNA

Satellite DNA consists of highly repetitive DNA and is so called because repetitions of a short DNA sequence tend to produce a different frequency of the nucleotides adenine, cytosine, guanine and thymine, and thus have a different density from bulk DNA - such that they form a second or 'satellite' band when genomic DNA is separated on a density gradient.

2. Alternate DNA structure

Two bases have been extruded from base stacking at the junction. The white line goes from phosphate to phosphate along the chain. O is shown red, N blue, P yellow and C grey.

3. Circular and superhelical DNA

DNA can also form a double-stranded, covalently-closed circle. These circular molecules are often coiled into a superhelix, the formation of which is catalyzed by enzymes called topoisomerases.

4. Denaturation of DNA

Denaturation: A transition from the native to the denatured state

DNA denaturation: also called DNA melting, is the process by which double-stranded DNA unwinds and separates into single-stranded strands through the breaking of hydrogen bonding between the bases.

Hyperchromicity/ Hyperchromic effect: the striking increase in absorbance of DNA (A260) caused by the denaturation of the double-stranded DNA molecule

Melting temperature (Tm) : the temperature at which half of the DNA strands are in the double-helical state and half are denatured. The melting temperature depends on both the length of the molecule, and the specific nucleotide sequence composition of that molecule.

Factors Affecting Tm

●G-C content of sample

● reagents that increase the solubility of the bases (anything that disrupts H-bonds or base stacking)

● Salt concentration

● pH

● Length

5. Renaturation

Strands can be induced to renature (anneal) under proper conditions. Factors to consider:

● Temperature

● Salt concentration

● DNA concentration

● Time

Repetitive Sequences

●Unique: Single Copy Genes

● Slightly repetitive (2-10 copies)

● Middle repetitive (10- hundreds)

--Clustered

--Dispersed

● Highly repetitive (hundreds to millions)

--Short sequences in satellite DNA

--Sequences of normal length in certain genes that exist in very large numbers

C-value Paradox

There is apparently a lack of association between C-value (the amount of DNA present in the haploid genome of different organisms )and the degree of organismal complexity of various

multi-cellular organisms. In 1971, Thomas named this phenomenon, “C-value Paradox”.

在每一种生物中其单倍体基因组的DNA总量是特异的,被称为C值 (C Value)。 C值和生物结构或组成的复杂性不一致的现象称为C值悖论(C-value paradox)。

6. Hybridization

Hybridization: the technique wherein renatured DNA is formed from separate single-stranded samples .

Heteroduplexing: renaturation combined with electron microscopy in a procedure allows the localization of common, distinct,and missing sequences in DNA.

DNA-RNA hybridization (Northern hybridization): the use of filter hybridization to detect sequence complementarity between a single strand of DNA and an RNA molecule.

7. The structure of RNA

Types: mRNA, tRNA, rRNA

Distinctions:

- ribose replaces deoxyribose;

- U replaces T;

- Single-stranded

Conformation: stem-loop or hairpin

8. Hydrolysis of nucleic acid

The phosphodiester bonds of both DNA and RNA can be broken by hydrolysis either chemically or enzymatically.

Ribozymes: the RNA enzymes, are able to cleave and form specific phosphodiester bonds in a manner analogous to protein enzymes.

Chapter 6 The genetic material

The Path to the Watson and Crick Model

1928, Griffith, transformation in pneumococci(肺炎球菌)

1944, Avery, Griffith’s transforming principle was DNA

1950, Chargaff, a pattern in the amounts of the four bases

1952, Hershey and Chase, DNA is the genetic material

1953, Franklin, the x-ray picture of DNA

Chargaff’s rule

In the DNA of all species examined, A=T, G=C

The total amount of purines (A+G)=pyrimidines (T+C) in DNA

The ration of (A+T)/(G+C) varies from species to species

DNA properties and functions

1.DNA has the ability to store genetic information, which can be expressed in the cell as need.

2.This information can be transmitted to daughter cells with minimal error. (This process requires complex enzymes and repair mechanisms.)

3.DNA possesses both physical and chemical stability so information is not lost over long periods of time (years).

4.DNA has the potential for heritable change without major loss of parental information. DNA-genetic material: Double-stranded DNA has evolved as the genetic material because it is especially well-suited for replication, repair, occasional change, and long-time stability. Gene: Genes contain all the information for the synthesis and functioning of cellular components. Transcription: the process of synthesizing RNA molecules from a DNA template.

Triplets / codons: the RNA nucleotide sequence is read (on ribosomes) in sequential groups of three bases.

Mutation: the process by which a base-sequence changes.

The central dogma: DNA makes RNA, makes protein.

chapter 7 DNA replication

Semiconservative replication of double-stranded DNA

Untwisting of highly coiled DNA is required for DNA replication

Topoisomerase Type I :

?Work ahead of replicating DNA

?Mechanism

–Makes a cut in one strand, passes other strand through it. Seals gap.

–Result: the DNA is “relaxed” somewhat

Gyrase--A Type II Topoisomerase

–Introduces negative supercoils

–breaks both strands

–Section located away from actual cut is then passed through cut site.

Initiation of DNA replication

?Replicaion initiated at specific sites: Origin of Replication (ori)

?Two Types of initiation:

–De novo –Synthesis initiated with RNA primers. Most common.

–Covalent extension—synthesis of new strand as an extension of an old strand (“Rolling Circle”). Limited to certain viruses.

De novo Initiation

?Binding to Ori C by DnaA protein

?Opens Strands

?Replication proceeds bidirectionally

Covalent extension initiation Rolling Circle

Unwinding of DNA for replication

Helicase:

? Breaks hydrogen bonds and eliminates hydrophobic interactions

? Needs energy supplied by ATP

? Encoded by the DnaB gene in E.coli

Single-strand DNA binding proteins (SSB):

Bind to the exposed strands, coat them and block the re-annealing process.

Elongation of newly synthesized strands

1.The polymerization reaction and the polymerases

Enzyme: polymerase III

Needed: substrates, template, primer

Direction: 5’→3’

2. Correcting mismatched bases

The 5’-3’ exonuclease activity of pol I at a single-strand break (nick) can occur simultaneously

with polymerization----nick translation.

DNA polymerase III consists of multiple subunits

?Pol I and pol III are both involved in E.coli DNA replication. Pol III is the major

polymerase.

? Both poly I and poly III possess a proofreading or editing function (3’-5’ exonuclease

activity ).

? The 5’-3’ exonuclease activity of pol I at a single-strand break (nick) can occur

simultaneously with polymerization----nick translation.

? DNA polymerase III consists of multiple subunits.

? All known polymerases can work only in the 5’-P → 3’-OH direction.

Pol I and pol III have some features in common:

● 5’-3’ polymerization activity

The four deoxynucleoside 5’-triphosphates

A primer with a free 3’-OH

A template

● 3’-5’ exonuclease activity

Antiparallel DNA strands and discontinuous replication

?The two strands of DNA is antiparallel and the replication is discontinuous synthesis.

? A primer is required for chain initiation and two different enzymes (RNA polymerase and

primase) are known to synthesize primer RNA molecules.

? DNA ligase joins precursor fragments and pol I as well as RNase H participates in the

removal of primer.

RNA polymerase: initiation of leading-strand synthesis

Primase: synthesis of primers for lagging-strand

Primosome: helicase/primase complex

Pol I: removal of the primer and replacement of DNA

DNA ligase: joining the fragment (gap sealed)

The complete DNA replication system

Bidirectional replication speeds up DNA synthesis

Replication of eukaryotic chromosomes

1.Eukaryotes have more and large chromosomes.

2.Eukaryotic replication may require as much as 6-8 hours for completion versus the 40

minutes needed by E.coli.

3.There are multiple, rather than a single, replication origins along eukaryotic chromosomes.

They are spaced about 20 kb apart.

4.Eukaryotic DNA replication is at the rate of about 10-100 nucleotides per second as opposed

to the prokaryotic rate of about 1500 nucleotides per second.

5.At least five types of DNA polymerases have been found in eukaryotic cells.

真生物DNA的复制有DNA聚合酶及多种蛋白质因子参与,DNA聚合酶也有多种类型。其中DNA Polα

及DNA Polδ在细胞核内DNA的复制中起主要作用。DNA Polδ催化前导链及滞后链的合成,是主要负责DNA复制的酶。DNA Polα的功能主要是引物合成。DNA Polγ是线粒体中的复制酶。

Chapter 8 Transcription

1. Enzymatic synthesis of RNA

E. Coli RNA polymerase

Holoenzyme:

core enzyme: α2ββ’ω

σfactor

(1)Binding of RNA pol to a template at specific site

(2) Initiation

(3) Chain elongation

(4) Chain termination and release

2. Transcription signals

In prokaryotes, the promoter consists of two short sequences at -10 and -35 positions upstream from the transcription start site.

●the -10 element :Pribnow box, usually consists TATAAT, is absolutely essential to start

transcription in prokaryotes.

●the -35 element:usually consists of TTGACA. Its presence allows a very high transcription

rate.

In prokaryotes:

In eukaryotes:

Termination

Termination of RNA synthesis occurs at specific base-sequences in the DNA molecule, called terminators.

?Intrinsic terminators:rho-independent terminators, the termination sequences allow RNA polymerase to terminate elongation spontaneously.

? rho-dependent terminators: it is dependent on a specific protein called a rho factor. Intrinsic Termination

?RNA pol passes over inverted repeats

?Hairpins begin to form in the transcript

?Poly-U:poly-A stretch melts

? RNA pol and transcript fall off

Rho: Mechanism

?Rho binds to transcript at loading site (up stream of terminator)

?Hairpin forms, pol stalls

?Rho helicase releases transcript and causes termination

3. Classes of RNA molecules

Messenger RNA: short lifetime

Ribosomal RNA

Transfer RNA

cistron: a DNA segment corresponding to one polypeptide chain plus the start and stop signals monocistronic mRNA: an mRNA encoding a single polypeptide

polycistronic mRNA: an mRNA encoding several different polypeptide chains

RNA processing is to generate a mature mRNA (for protein genes) or a functional tRNA or rRNA from the primary transcript.

Processing of pre-mRNA involves the following steps:

Capping: add 7-methylguanylate (m7G) to the 5' end.

Polyadenylation: add a poly-A tail to the 3' end.

Splicing: remove introns and join exons.

In some cases, RNA editing is also involved.

Processing of pre-rRNA and pre-tRNA:

The newly transcribed pre-rRNA is a cluster of three rRNAs: 18S, 5.8S and 28S in mammals. They must be separated to become functional. Pre-rRNA is synthesized in the nucleolus(核仁). The

微生物分子生物学技术

一、质粒DNA提取及琼脂糖凝胶电泳 (一)碱变性法提取质粒DNA 质粒(Plasmid) 是细菌染色体外能自身独立复制的双股环状DNA。带有遗传信息,可赋予细菌某些新的表型。将质粒指纹图谱分析方法、质粒DNA探针技术及检测质粒的PCR技术用于临床感染性疾病的诊断和流行病学调查已成为现实。质粒作为载体在基因工程中起着重要的作用。 分离和纯化质粒DNA的方法很多,但这些方法基本包括三个步骤:即细菌的培养和质粒DNA的扩增,细菌菌体的裂解; 质粒DNA的提取与纯化。 本实验学习用碱变性方法提取质粒DNA。 【原理】 细菌培养物加入SDS和NaOH 碱性溶液处理后,菌体裂解,可使细菌的质粒DNA、染色体DNA和RNA 一起从细胞内释放出来,经琼脂糖凝胶电泳,因各种核酸分子的迁移率不同将上述核酸分成不同的带。用溴化乙锭(EB)染色后,在紫外线灯下可看到各种核酸带发出的荧光。根据荧光的位置,可区分不同的核酸带。 【材料】 1.菌株E.coli JM109(pUC19),E.coli RRI(pBR322) 2.试剂溶液Ⅰ( 50 mM葡萄糖, 25 mM Tris.Hcl PH 8.0, 10 mM EDTA) 溶液II ( 0.2 N NaOH,1%SDS) 用前新配制 溶液III ( 5 mM KAc溶液PH4.8) TE缓冲液(10mMTris.Hcl ,1mMEDTA PH8.0) LB液体培养基( 胰蛋白胨10g,,酵母粉5g, Nacl 10g. 加蒸馏水溶解,用NaOH调PH 至7.5,加水至1000 ml,15磅高压灭菌15分钟)。 【方法】 1.接种细菌于5ml LB液体培养基中,370C培养过夜。 2.3000 rpm/min,离心15min,弃上清。加入100ul 溶液1悬起细菌沉淀。 3.加入200ul前新配制的溶液II ,颠倒EP管5次混合均匀,置冰浴2min。 4.加入150ul溶液III温和地混匀,12000 rpm/min,离心5min。 5.吸取上清清亮裂解液放入另一新EP 管中,加等体积酚-氯仿-异戊醇抽提2次,12000 rpm/min,离心2min。(若不做酶切,此步可省略)吸取上清放入另一新EP 管中,加入二倍体积的冷乙醇,12000 rpm/min,离心10min。 6.弃乙醇,干燥后用30ul TE缓冲液洗下核酸,待电泳检测。 (二)琼脂糖凝胶电泳 琼脂糖凝胶电泳技术(Agarose gel electroghoresis)是分离、鉴定和提纯DNA片断的有效方法。凝胶分辨率决定于使用材料的浓度,并由此决定凝胶的孔径。琼脂糖凝胶可分辩0.1~6.0kb的双链DNA片段。琼脂糖凝胶电泳是一个电场作用。它首先利用琼脂糖的分子筛效应,此外,在弱碱性条件下,DNA分子带负电荷,从负极向正极移动。根据DNA分子大小、结构及所带电荷的不同,它们以不同的速率通过介质运动而相互分离。借助溴化乙锭(EB)能与双链DNA结合的作用,利用EB染色,并通过紫外线激发即可观察被分离DNA片段的位置。 【材料】 1.琼脂糖、10×TAE电泳缓冲液(40m MTris ,20 mM NaAc,1mM EDTA PH8.0) 2.载体缓冲液(0.25%溴酚蓝,30%甘油)、溴化乙锭水溶液(10mg/ml ) 3.凝胶槽、电泳仪 【方法】 1.取琼脂糖0.9g,加入100ml 1x TAE电泳缓冲液于250ml烧瓶中,1000C加热溶解。 2.平衡凝胶槽,放好两侧挡板,调节好梳子与底板的距离(一般高出底板0.5~1mm)。 3.铺板:在溶解好的凝胶中加入终浓度为0.5ug/ml 的溴化乙锭水溶液,轻轻混匀,待冷至500C左右倒入凝胶槽,胶厚一般为5~8mm。 4.待胶彻底凝固后,去掉两侧挡板,将凝胶放入盛有电泳液的槽中(加样孔朝向负极端,DNA由负极向正极移动),使液面高出凝胶2~3mm,小心拔出梳子。 5.DNA 样品与载体缓冲液5:1混合并加入凹孔中(样品不可溢出)。

综述:进化论与进化生物学的发展

综述:进化论与进化生物学的发展自达尔文1859年发表《物种起源》(The Origin of Species)一书以来,“进化”(evolution)已逐渐成为生物学文献中出现频率最高的词汇之一,进化生物学(evolutionary biology)则成为当今生命科学中一个重要的前沿领域。 纵观150年来,随着科学界对生物进化现象的认识不断深化,人们对达尔文进化论的理解也随之不断深入,进化论自身也走过了曲折的发展之路。除了像其他任何一种科学理论一样需要补充和修正外,进化论还经受了来自科学领域之外的一次又一次挑战。今天,分子水平的生物进化研究正在蓬勃兴起,人们对进化论的兴趣有增无减,同时也提出了更高的要求,即以进化论为核心的进化生物学研究不仅应能够解释各种复杂生命现象,重建生物的自然历史,而且还应具有一定的预测性和应用潜力。因而,藉纪念达尔文(C. Darwin)诞辰200周年和《物种起源》出版150周年之际,回顾进化论与进化生物学的发展历程,将有助于我们全面了解该领域的科学理论与知识,并用于指导21世纪生命科学的研究。 进化论的科学本质 进化论从本质上改变了人们对地球生命现象的理解。进化论围绕生物多样性的起源与发展,引导人们探索各种生物之间的亲缘关系(或称进化谱系)。例如,作为地球生物的一员,人类究竟何时又是如何在地球上出现的?不同人种或不同人群之间关系如何?人类与其他生物(如细菌)有何种进化上的关联?如此等等,进化论为我们提供了科学的解释。 在进化论中,具有有益性状的生物存在差异的繁殖优势被称为自然选择(natural selection),因为是自然来“选择”提高生物生存与繁殖能力的性状。如果生物的突变性状降低其生存与繁殖能力的话,自然选择就会减少这些性状在生物群体中的扩散。人工选择也是一个类似的过程,但在这种情况下是人而不是自然环境使生物交配以选择理想的性状。最常见的莫过于通过人工选择来获得人们所需的家畜品系和园艺植物品种等。 迄今为止,支持进化论的证据层出不穷,从中华龙鸟化石的发现到酵母实验进化的分析,不胜枚举[1]。近年来比较突出的例子有加拿大北部“大淡水鱼”化石的发现。科学家们根据进化理论和化石分析预测出浅水鱼类向陆地过渡阶段的大致时间,随后他们将目光投向加拿大北部努维特地区的埃尔斯米尔岛,那里有大约37 500万年前的沉积岩。通过四年的努力,科学家们终于从岩层中发掘出命名为“Tiktaalik”(因纽特人的语言中意为“大淡水鱼”)的生物化石,它既具有许多鱼类特征,又具有早期四足动物的典型特征,而它的鳍包含骨骼,可形成类似于有肢动物的肢体,用来移动和支撑躯体[2]。“大淡水鱼”的发现证实了科学家们基于进化论的预测。反过来,对于进化论预测的证实也提高了达尔文理论的可信度。的确,每一种科学理论本质上都要具备对尚未观察到的自然事件或现象作出预测的能力。 另一个经典的例子是科学家们对特立尼达岛阿立波河中的虹鳉鱼进行的观察与实验。按照进化理论,不同时间尺度上的自然选择可能产生全然不同的进化效应。在仅仅几个时代的周期内,生物个体就有可能产生小规模的变异,可称之为微进化(microevolution)。科学家们发现,生活在阿立波河中的虹鳉鱼无论是其幼体还是成体均遭受较大鱼类的捕食,生活在河流上游小溪中的虹鳉鱼只有其幼体会被较小鱼类捕食,因而长期的进化过程导致该河流中的虹鳉鱼个体较小(更易于躲避捕食者),而溪流中的虹鳉鱼则个体较大(不易被较小的鱼类捕食)。科学家们将河流中的虹鳉鱼置于原来没有虹鳉鱼种群的溪流中,发现它们仅仅在20代后就进化出了溪流中虹鳉鱼的特性[3]。 毋庸讳言,在科学上,我们不可能绝对肯定地证明某种解释是完美无缺的,或者是终结性的。然而,迄今为止,许多科学解释已经被人们反复检验,不断增添的新观察结果或新的实验分析很难对其作出重大改变。换言之,科学界已广泛接受这些解释,它们是以观察自然世界获得的证据为基础的。进化理论就是其中一个代表。从这一点出发,我们可以明确地将

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

《分子生物学大(综合)实验》课程介绍(精)

《分子生物学大(综合)实验》课程介绍 课程代码(学校统一编制) 课程名称分子生物学大(综合)实验 英文名称MolecularBiologyBigExperiment 学分:3修读期:第七学期 授课对象:生物科学、生物技术 课程主任:姓名、职称、学位 关洪斌,副教授,博士 课程简介 21世记是生命科学的世记,而分子生物学是带动生命科学的前沿科学。分子生物学是在生物大分子水平上研究细胞的结构、功能及调控的学科,在现代生物学学科发展中的重要性与不容置疑的带头作用是众所周知的。许多重大的理论和技术问题都将依赖于分子生物学的突破。随着分子生物学研究工作的不断深入,相关实验技术方法和技术日新月异的发展。为了适应分子生物学研究工作日益发展的需要,满足培养从事现代生物学研究,尤其是进行分子生物学研究的人才的需要,特设置分子生物学大(综合)实验课程。本课程的教学目标和基本要求是使学习者基本掌握分子生物学实验技术的基本原理和方法,教学内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。通过本实验可提高学生的动手能力和创造性思维能力,较好地掌握分子生物学实验操作和技能,为今后独立进行科研工作打下坚实基础。 实践教学环节(如果有) 实验内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。 课程考核 实验报告 指定教材 自编 参考书目 1.分子生物学实验指导高等教育出版社施普林格出版社,1999 2.彭秀玲,袁汉英等.基因工程实验技术.湖南科学技术出版社,1997 3.吴乃虎.基因工程原理(上下册).科学出版社,1998 4.F.奥斯伯等著:颜子颖,王海林译.分子克隆实验指南(第二版).科学出版社,1998 5.J.萨姆布鲁克等著:金冬雁,黎孟枫等译.精编分子生物学实验指南.科学出版社,1993

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

【生物科技公司】分子生物学中英文对照

(生物科技行业)分子生物学中英文对照

acetylCoA/乙酰辅酶A一种小分子的水溶性代谢产物,由与辅酶A相连的乙酰基组成,产生于丙酮酸、脂肪酸及氨基酸的氧化过程;其乙酰基在柠檬酸循环中被转移到柠檬酸。 actin/肌动蛋白,肌纤蛋白富含于真核细胞中的结构蛋白,与许多其他蛋白相互作用。其球形单体(G2肌动蛋白)聚合形成肌动蛋白纤丝(F2肌动蛋白)。在肌肉细胞收缩时F2肌动蛋白与肌球蛋白相互作用。activationenergy/活化能(克服障碍以)启动化学反应所需的能量投入。降低活化能,可增加酶的反应速率。activesite/活性中心,活性部位酶分子上与底物结合及进行催化反应的区域。 activetransport/主动转运离子或小分子逆浓度梯度或电化学梯度的耗能跨膜运动。由ATP耦联水解或另一分子顺其电化学梯度的转运提供能量。 adenylylcyclase/酰苷酸环化酶催化由ATP生成环化腺苷酸(cAMP)的膜附着酶。特定配体与细胞表面的相应受体结合引发该酶的激活并使胞内的cAMP升高。 allele/等位基因位于同源染色体上对应部位的基因的两种或多种可能形式之一。allosterictransition/变构转换小分子与蛋白质上特定调节部位相结合所引起的蛋白质之三级及(或)四级结构的改变,其活性随之发生变化。多亚单位酶的变构调节很普遍。 alpha(α)helix/α螺旋常见的蛋白质二级结构,其氨基酸线性序列叠为右旋螺旋,借助主链上的羧基与酰胺基间的氢键维持稳定。 aminoacyl2tRNA/氨酰转移核糖核酸用于蛋白合成的氨基酸的激活形式,含有借高能酯键与tRNA分子上3’2羟基相结合的氨基酸。 amphipathic/两亲的,兼性的指既有亲水性部分又有疏水性部分的分子或结构。 anaphase/(细胞分裂)后期姐妹染色体(或有丝分裂期的成对同源物)裂开并分别(分离)朝纺锤体两极移动的有丝分裂期。 anticodon/反密码子与mRNA的密码子互补的tRNA中三个核苷酸的序列,蛋白合成过程中,密码子与反密码子之间的碱基配对使携带增长肽链的新增对等氨基酸的tRNA排齐。 antiport/反向转运协同转运的一种形式,膜蛋白(反向转运子)向相反的方向转运两种不同的分子或离子跨越细胞膜。 antisenseRNA/反义核糖核酸具有与某种特异性RNA转录物或mRNA互补序列的核糖核酸,其结合可阻止mRNA转录或翻译过程。 apoptosis/编程性细胞死亡,细胞程序死亡通过一系列很鲜明的形态学改变而导致细胞死亡的受调节过程。aster/星体由微管组成的星形结构(称星状纤维),它在有丝分裂期自中心体呈放射状向外延伸。ATPsynthase/ATP合酶附着在线粒体内膜、叶绿体的类囊体膜及细菌浆膜的多聚体蛋白复合物,它在氧化磷酸化及光合作用过程中催化ATP的合成。也叫F0F1复合体。 ATPase/ATP酶催化ATP水解成ADP与无机磷酸并释放自由能的一大族酶中的一种。autonomouslyreplicatingsequence(ARS)/自主复制序列可使酵母菌DNA分子复制的序列;酵母菌DNA 复制的一个起源。 autoradiography/放射自显影术让照相底片或胶片暴露于样本,使样本(如组织切片或电泳凝胶)中的放射活性分子显影的技术。片子叫作放射自显影图或放射自显影片。 auxotroph/营养缺陷体只有培养基内含有不为野生型所需的某种特定养分或代谢物时才能够生长的一种突变细胞或微生物。 axoneme/轴丝存在于纤毛及鞭毛、由微管及相连蛋白构成的束,它负责其运动功能。 basalbody/基体纤毛及鞭毛基底部的结构,微管自该处形成轴丝放射,构造上与中心粒相似。basallamina(pl.basallaminae)/基底层细胞外基质成分组成的薄片网状物,位于大多数动物上皮层及其他形成组织的细胞(如肌肉)的结构之下,使其与结缔组织分隔开来。 base/碱基通常含有氮,可以接受一个质子(H+)的化合物。一般在DNA和RNA中表示嘌呤与嘧啶。basepair/碱基对DNA或RNA分子上两个互补核苷酸的结合,靠彼此碱基成分间的氢键来固定。

分子生物学综述

基于特定引物PCR的DNA分子标记技术研究进展 摘要: PCR是一种选择性体外扩增DNA的方法,分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种比较理想的遗传标记技术。SSR、SCAR、SRAP 和TRAP是四种最新发展的基于特定引物PCR的新型DNA分子标记技术,具有简便、高效、重复性好等优点,已在遗传育种的种质资源等各个方面得到广泛应用。介绍了这四种分子标记的基本原理和特点,综述了它们在分子生物学研究中的应用。 关键词:分子标记SSR SCAR SRAP TRAP DNA分子标记技术的研究始于1980年,本质上是指能反映生物个体或种群间基因组某种差异的特异性DNA片段,DNA分子标记大多以电泳谱带的形式表现生物个体之间DNA差异,通常也称DNA的指纹图谱。与其他几种遗传标记相比具有的优越性有:大多数分子标记为显性,对隐性的农艺形状的选择十分便利;基因组变异及其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标形状的表达,与不良性状无连锁;检测手段简单、迅速。目前DNA分子标记技术已有数十种,主要可分为4大类:基于分子杂交的DNA 分子标记技术;基于随机/特定引物PG R的DNA分子标记技术;基子限制性酶切与PCR技术的分子标记技术;基于芯片技术的DNA分子标记技术。概述新型的基于特定引物PCR的DNA分子标记技术,包括SSR,SCAR,SRAP和TRAP。目前这些I3;VA分子标记技术的应用仍具有相当的局限性,如何将它们有效地利用于分子生物学研究是函待解决的问。 1序列特异扩增区域SCAR 1. 1 SCAR标记的原理 序列特异扩增区域(sequence characterised am-plifiedreginn)简称SCAR标记,是1993年Paran和Michelma记[1]]建立的一种可靠、稳定、可长期利用的RAPD 标记技术。SCAR标记的基本流程:先用随机引物进行RAPD筛选,获取特异的RAPD标记,然后对标记进行克隆和测序,根据测定RADII标记两末端的序列设计一对引物,此引物通常包含有原来的RAPD引物序列,多为20-24,再用该引物对所研究的基因组DNA进行PCR扩增,这样就可以把与原来的RAPI3片段相对应的单一位点鉴定出来。 1. 2 SCAR标记的特点 SCAR标记方便、快捷、可靠,适合于大量个体的快速检测,结果稳定性好,重复性高。由干SCAR标记使用的引物长,因而试验的可重复性高,它克服了RAPD重复性欠佳的弱点,同时具有STS标记的优点,因此比RAPn及其他利用随机引物的方法在基因定位和作图中的应用要好,在分子标记辅助育种、种质资源鉴别等方面有着潜在的应用前景,SCAR标记是共显性遗传的。待检DNA间的差异可直接通过有无扩增产物来显示,这甚至可省却电泳的步骤。由于RAPD 扩增过程中错配几率较高,RAPD标记片段同源性高导致SCAR标记的转化成功

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学常见名词解释完全版

分子生物学常见名词解释完全版(中英文对照) A Abundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。 Abundant mRNA(高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中出现大量 拷贝。 Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。Acentric fragment(无着丝粒片段):(由打断产生的)染色体无着丝粒片段缺少中心粒,从而 在细胞分化中被丢失。 Active site(活性位点):蛋白质上一个底物结合的有限区域。 Allele(等位基因):在染色体上占据给定位点基因的不同形式。 Allelic exclusion(等位基因排斥):形容在特殊淋巴细胞中只有一个等位基因来表达编码的 免疫球蛋白质。 Allosteric control(别构调控):指蛋白质一个位点上的反应能够影响另一个位点活性的能力。Alu-equivalent family(Alu 相当序列基因):哺乳动物基因组上一组序列,它们与人类Alu 家族相关。 Alu family (Alu家族):人类基因组中一系列分散的相关序列,每个约300bp长。每个成员 其两端有Alu 切割位点(名字的由来)。 α-Amanitin(鹅膏覃碱):是来自毒蘑菇Amanita phalloides 二环八肽,能抑制真核RNA聚 合酶,特别是聚合酶II 转录。 Amber codon (琥珀密码子):核苷酸三联体UAG,引起蛋白质合成终止的三个密码子之一。Amber mutation (琥珀突变):指代表蛋白质中氨基酸密码子占据的位点上突变成琥珀密码 子的任何DNA 改变。 Amber suppressors (琥珀抑制子):编码tRNA的基因突变使其反密码子被改变,从而能识 别UAG 密码子和之前的密码子。 Aminoacyl-tRNA (氨酰-tRNA):是携带氨基酸的转运RNA,共价连接位在氨基酸的NH2 基团和tRNA 终止碱基的3¢或者2¢-OH 基团上。 Aminoacyl-tRNA synthetases (氨酰-tRNA 合成酶):催化氨基酸与tRNA 3¢或者2¢-OH基团共价连接的酶。 Amphipathic structure(两亲结构):具有两个表面,一个亲水,一个疏水。脂类是两亲结构,一个蛋白质结构域能够形成两亲螺旋,拥有一个带电的表面和中性表面。 Amplification (扩增):指产生一个染色体序列额外拷贝,以染色体内或者染色体外DNA形 式簇存在。 Anchorage dependence (贴壁依赖):指正常的真核细胞需要吸附表面才能在培养基上生长。Aneuploid (非整倍体):组成与通常的多倍体结构不同,染色体或者染色体片段或成倍丢失。Annealing (退火):两条互补单链配对形成双螺旋结构。 Anterograde (顺式转运):蛋白质质从内质网沿着高尔基体向质膜转运。 Antibody (抗体):由B 淋巴细胞产生的蛋白质(免疫球蛋白质),它能识别特殊的外源“抗 2 原”,从而引起免疫应答。 Anticoding strand (反编码链):DNA 双链中作为膜板指导与之互补的RNA 合成的链。Antigen (抗原):进入基体后能引起抗体(免疫球蛋白质)合成的分子。 Antiparallel (反式平行):DNA双螺旋以相反的方向组织,因此一条链的5¢端与另一条链的3¢端相连。

中外微生物学史上著名的十大人物

中外微生物学史上着名的十大人物 XX (生物制药二班生命科学学院黑龙江大学哈尔滨 150080) 摘要:在浩瀚的历史长河中,有这么一群人,不断地探索着这个神奇的世界,让我们知道这个世界上还有我们肉眼看不到的生物,我们永远不会忘记他们所作的贡献。 关键词:微生物学发展史;十大人物;生平事迹; Ten Public Figures in History of Microbiology at Home and Abroad XX (The 2th class of Biological Pharmaceutics,College of Life, Science,Heilongjiang University, Harbin, 150080) Abstract: In the vast history, so a group of people, constantly exploring the magical world, let us know in this world and our invisible creatures, we will never forget their contributions. Key words: the history of microbiology; ten public figures; life story and contributions; 自古以来,人类在日常生活和生产实践中,已经觉察到微生物的生命活动及其所发生的作用。在留下来的石刻上,记有酿酒的操作过程。中国在时期,就已经利用微生物分解有机物质的作用,进行沤粪积肥。但到17世纪中叶,微生物学的研究才取得重大进展。此后,欧洲涌现出一批又一批伟大的微生物学家。19世纪末,随着欧洲建立的一些细菌培养技术被教会医院的引入应用,中国人开始逐步了解微生物学,一大批学者投入微生物学的研究并取得了显着成就。 1673年,有个名叫列文虎克(Antoni van Leeuwenhoek,1632-1723)的荷兰人用自己制造的显微镜观察到了被他称为“小动物”的微生物世界。他给英国皇家学会写了许多信,介绍他的观察结果,他发现了杆菌、球菌和原生动物,表明他实实在在看到并记录了一类从前没有人看到过的微小生命。因为这个伟大的发现,他当上了英国皇家学会的会员。所以今天我们把列文虎克看成是微生物学的开山祖。不过,在列文虎克发现微生物后差不多过了200年,人们对微生物的认识还仅仅停留在对它们的形态进行描述上,并不知道原来是这些微小生命的生理活动对人类健康和生产实践有那样的重要关系。虽然他活着的时候就看到人们承认了他的发现,但等到100多年以后,当人们在用效率更高的显微镜重新观察列文虎克描述的形形色色的“小动物”,并知道他们会引起人类严重疾病和产生许多有用物质时,才真正认识到列文虎克对人类认识世界所作出的伟大贡献。 路易斯-巴斯德(Louis Pas-teur,1822—1895)是法国微生物学家、化学家,近代微生物学的奠基人。像牛顿开辟出经典力学一样,巴斯德开辟了微生物领域,他也是一位科学巨人。巴斯德一生进行了多项探索性的研究,取得了重大成果,是19世纪最有成就的科学家之一。他用一生的精力证明了三个科学

分子生物学技术在土壤生物修复中的应用研究和展望剖析

分子生物学手段 在土壤污染生物修复中的应用 摘要: 污染土壤的修复技术主要有物理修复、化学修复和生物修复,文章 综述了分子生物学技术包括环境微生物群落降解基因分析、16S rRNA序列 分析技术以及荧光原位杂交技术在生物修复技术中跟踪污染土壤中降解微 生物行为、监测降解基因和微生物群落变化,揭示了其中的分子机制的应 用现状,对各项技术应用中需要注意的问题进行了讨论并对其发展前景进 行了展望。 关键词: 分子生物学;降解基因;16S rRNA;FISH Molecular biology techniques in bioremediation of soil: Current status and future Abstract:This review starts with a brief overview of the molecular biology techniques applied to the bioremediation of soil. The principles of the catabolic gene probe analysis of microbial community, 16S rRNA sequence analysis and fluorescent in situ hybridization (FISH) and their applications to monitoring the fate of contaminant-degrading microorganisms, detecting catabolic gene and analyzing the changes of microbial community in contaminated soil are highlighted. The problems and prospects of these techniques are discussed. Key words: molecular biology; catabolic gene; 16S rRNA; FISH

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

分子生物学课程论文

分子生物学课程论文

PCR技术发展与应用的研究进展 王亚纯 09120103 摘要:聚合酶链式反应(polymerase chain reaction,PCR)是最常用的分子生物学技术之一,通过变性、退火和延伸的循环来完成核酸分子的大量扩增.定量PCR技术是克服了原有的PCR技术存在的不足,能准确敏感地测定模板浓度及检测基因变异等,快速PCR技术快速PCR在保证PCR反应特异性、灵敏性和保真度的前提下,在更短时间内完成对核酸分子的扩增.mRNA 差异显示PCR技术是在基因转录水平上研究差异表达和性状差异的有效方法之一.近年来已经开展了许多这三方面的研究工作,本文就定量PCR技术、快速PCR技术、mRNA差异显示PCR技术作一综述,以便更好地理解及应用这项技术。 关键字:定量PCR;荧光PCR;快速PCR;DNA聚合酶;mRNA差异显示PCR 0 前言 聚合酶链反应(polymerase chain reaction,PCR)技术由于PCR简便易行、灵敏度

高等优点,该技术被广泛应用于基础研究。但是,由于传统的PCR技术不能准确定量,且操作过程中易污染而使得假阳性率高等缺点,使其在临床上的应用受到限制[1]。鉴于此,对PCR产物进行准确定量便成为迫切的需要。几经探索,先后出现了多种定量PCR (quantitative PCR,Q-PCR)方法,其中结果较为可靠的是竞争性PCR和荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)。 随着生命科学和医学检测的不断发展,人们越来越希望在保证PCR反应特异性、灵敏性、保真度的同时,能够尽量缩短反应的时间,即实现快速PCR(Rapid PCR or Fast PCR)。快速PCR 技术不仅可使样品在有限的时间内可以尽快得到扩增,而且可以显著增加可检测的样品数量,显然,在大批量样本检测和传染病快速诊断等方面将会有重要的应用前景。例如,快速PCR在临床检测中可大大加快疾病的诊断效率;在生物恐怖袭击时能有效帮助快速鉴定可疑物中有害生物的存在与否;同时,由于PCR已经渗入到现代生物学研究的各个方面,快速PCR的实现必然可以使许多科学研究工作的进展显著加快,最终影

现代分子生物学总结

第一章、基因的结构与功能实体及基因组 1、基因定义 基因(遗传因子)就是遗传的物质基础,就是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,就是具有遗传效应的DNA分子片段,就是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)就是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只就是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA 损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。 3、DNA损伤 DNA损伤就是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不就是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition) 指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。e、双链断裂:对单倍体细胞一个双链断裂就就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)就是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday结构(Holiday Juncture Structure) 的形成与拆分分为三个阶段,即前联会体阶段、联会体形成与Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),就是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以就是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)就是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组就是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)与位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性与高度保守性。 5、碱基错配对修复

相关文档
最新文档