基因的分子生物学英文版答案molecular chapter6

基因的分子生物学英文版答案molecular  chapter6
基因的分子生物学英文版答案molecular  chapter6

Chapter 6 Answers

1.

a. See Figure 6-6b

b. See Figure 6-6b

c. donors on adenine: exocyclic amino group at C6; N1

acceptors on thymine: carbonyl at C4; N3

2.

a. See Figure 6-6a

b. See Figure 6-6a

c. donors on guanine: exocyclic amino group at C2; N1

acceptors on guanine: carbonyl at C6

donors on cytosine: exocyclic amino group at C4

acceptors on cytosine: carbonyl at C2; N3

3. In addition to the energy contributed directly by the hydrogen bonds, and the decrease in entropy resulting from the displacement of water molecules from the bases in single-stranded DNA, the stacking interactions between the bases also contribute to the stability of the double helix. These involve electron cloud interactions between adjacent bases within the double helix.

4. Because DNA contains thymine, the cell can recognize uracil as a defective base resulting from the deamination of cytosine, and can repair it accordingly. If DNA naturally contained uracil, then it would be impossible to distinguish between the normal uracil bases in the DNA and the products of cytosine deamination, making repair impossible.

5. These relative proportions indicate that the X174 genome is single-stranded. If it were double-stranded, the proportion of A would be equivalent to that of T, and the proportion of C would be equivalent to that of G.

6. Because the major groove is larger than the minor groove, it is more accessible to the amino acid side chains of DNA-binding proteins. In addition, the major groove is richer in chemical information (more hydrogen bond donors, hydrogen bond acceptors,

nonpolar hydrogen atoms and methyl groups), and the information that is present is more useful for distinguishing between base pairs.

(A=hydrogen bond acceptor; D=hydrogen bond donor; H nonpolar hydrogen; M=methyl group)

5’-AATCGG-3’, major groove: ADAM/ADAM/MADA/HDAA/AADH/AADH

5’-AATCGG-3’, minor groove: AHA/AHA/AHA/ADA/ADA/ADA

5’-CCGATT-3’, major groove: HDAA/HDAA/AADH/ADAM/MADA/MADA

5’-CCGATT-3’, minor groove: ADA/ADA/ADA/AHA/AHA/AHA

5’-GGCTAA-3’, major groove: AADH/AADH/HDAA/MADA/ADAM/ADAM

5’-GGCTAA-3’, minor groove: ADA/ADA/ADA/AHA/AHA/AHA

7. DNA in cells deviates from the ideal B form by having increased overall pitch, with an average of approximately 10.5 base pairs per turn instead of 10 in the ideal B form. In addition, DNA in solution is irregular, including deviations at the level of the co-planarity of the base pairs (propeller twist) and in the precise degree of twist at each base pair, locally affecting the width of the major and minor grooves.

The B form of DNA, which is the most common form in cells, exhibits a right-handed helix with a pitch of 10 base pairs per turn. B form DNA has a wide major groove and narrow minor groove. A form DNA, which is also right-handed, is more compact, having 11 bases per turn. The major groove in A form DNA is narrower and deeper, and the minor groove is broader and shallower. The orientation of the base pairs is tilted in A form DNA relative to the orientation of the helix. Z form DNA is left-handed, and the glycosidic bond connecting the bases to the 1’ position of 2’-deoxyribose is either in the anti conformation (for pyrimidines) or in the syn conformation (for purines; this bond is always in the anti conformation in right-handed DNA). The alternation of the syn and anti conformations produces a zigzag effect, hence the designation “Z” DNA.

The degree of propeller twist and other deviations from the ideal B form DNA is largely determined by the identity of a given base pair and that of its neighbors. B form DNA is favored under conditions of high humidity, and A form DNA under conditions of low humidity. Z form DNA can occur within sequences containing alternating purine and pyrimidine residues, in the presence of high concentrations of positively-charged ions.

8. [insert figure #3463506044]

9. You could take advantage of the influence of DNA topology on the electrophoretic mobility of cccDNA, as described in Box 6.3. Any relaxed cccDNA having a length that is a precise multiple of the pitch of the DNA will migrate more slowly in an agarose gel than a relaxed cccDNA having a length that is not a multiple of the pitch. For example, if the pitch is 10.5, then relaxed cccDNAs having lengths of 3990 or 4011 (which, being multiples of 10.5, will have no writhe when fully relaxed) will migrate detectably more slowly than a cccDNA of 3995 (which, not being a multiple of 10.5, will have some writhe even when in its most-relaxed state). Therefore, to test the pitch of DNA in the presence of fictionium, you could make a series of cccDNA molecules of slightly different lengths, incubate them in the presence of topoisomerase I, and separate them in the presence of the novel element. Determination of the sizes of the slowest-running molecules will allow the calculation of the pitch of the DNA.

10. Because the DNA is not cut, the addition of ethidium will not affect the Lk, and so this will remain as 950. The addition of each molecule of ethidium will decrease the local twist of DNA by 26° (from about 10° to about 36°), resulting in one fewer turn of the DNA for every approximately 14 (360°/26°) bound molecules of ethidium. Therefore, if there are 110 bound molecules of ethidium, there would be a decrease of about 8 turns of the DNA (110/14). Accordingly, the addition of the ethidium will lower the Tw by 8. In the absence of any change of the Lk, this decrease in the Tw necessarily produces an equivalent increase in the Wr.

In this case, we know that the length of the cccDNA is 10,500 bases, and that the Lk is 950. Under physiological conditions, the pitch is about 10.5°, so here a simple assumption is that the Tw is 1000 (10,500/10.5), and the Wr = –50 (i.e., there are 50 negative supercoils). Accordingly, after the addition of the ethidium the Lk will be 950, the Tw will be 992, and the Wr will be –42.

11. a. twist, no writhe

b. twist and writhe

c. neither twist nor writhe

d. twist and writhe

e. twist and writhe

12. Topoisomerase I makes a single-stranded cut in DNA, allowing the uncut strand to pass through the cut strand in order to bring about linking number changes in increments of 1, and does not require energy. Topoisomerase II makes double-stranded breaks in DNA and allows a region of uncut double helix to pass through the cut, changing the linking number in increments of 2. Topoisomerase II requires ATP to function.

To specifically purify topoisomerase II, the simplest approach would be to rely on the requirement of this enzyme for ATP. For example, you could look for protein fractions that contained a cccDNA-relaxing activity only in the presence of ATP, and could specifically exclude fractions that were capable of relaxing cccDNA in the absence of ATP.

13.

a. Double-stranded DNA circles

b. Relaxed or negatively supercoiled DNA (with writhe equal to or greater than—in increments of 2—that of the starting DNA)

c. Relaxed or negatively supercoiled DNA (with writhe equal to or greater than that of the starting DNA)

14.At high pH, the 2’ hydroxyl of a ribose within an RNA chain can become deprotonated and attack the phosphate at the 3’ position of the ribose (similar to the reaction shown in Figure 6-33b, except at high pH the 2’ hydroxyl becomes deprotonated even in the absence of Mg2+), producing a 2’,3’ cyclic phosphate and a free 5’ hydroxyl.

a. At high pH, the 2’ hydroxyl of ribose can become deprotonated, and the resulting negatively-charged oxygen can attack the 3’ phosphate group, as shown in Figure 6-33

b. As DNA does not have a 2’ hydroxyl g roup, it cannot undergo this reaction.

b. At neutral pH, the Mg2+ bound to the hammerhead ribozyme deprotonates the 2’ hydroxyl of the ribose, thereby activating the hydroxyl group and allowing a nucleophilic attack on the scissile phosphate.

15. The protein shields the negative charges of the RNA moiety to allow it to bind effectively to its negatively-charged substrate.

Addition of small, positively-charged counter-ions, such as spermidine, can render the protein unnecessary, permitting enzyme activity even in the absence of the protein.

16. A bound Mg2+facilitates the deprotonation of the 2’ hydroxyl of the ribose within the nucleotide shown as N1, and the resulting negatively-charged oxygen attacks the phosphate group at the 3’ position of the ribo se. As a result, the RNA chain is cleaved at that position, giving rise to a 2’,3’-cyclic phosphate within the ribose of N1, and a 5’ hydroxyl within the ribose of the nucleotide shown as N2.

17.

a. A two-stranded structure converts the ribozyme into a true enzyme, as the cleavage reaction occurs within a separate molecule and thereby allows the ribozyme to act upon multiple substrates.

b. Single-stranded DNA can act as an enzyme in a manner similar to a two-stranded hammerhead ribozyme, that is by acting as a template for an RNA substrate that undergoes self-cleavage. The 2’ hydroxyl is only required in the RNA substrate, not in the DNA enzyme.

18. It is unlikely that proteins recognize RNA through the major groove, as is often the case with DNA, because RNA is often single-stranded or, if double-stranded, in the A form. Because the A form double helix has a narrow, not very easily accessible major groove, it is unsuitable for specific recognition by proteins.

Proteins may recognize specific RNA species by the overall structure of the folded RNA molecule, including specific structural features such as stems, loops, bulges, hairpins, and other distinct forms.

19. Relaxing a cccDNA (for example by incubating in the presence of topoisomerase I) can only remove all of the writhe in the DNA if the length of the DNA is an exact multiple of the pitch of the DNA. For example, for DNA having a pitch of 10, it is possible to eliminate all of the writhe in cccDNA of 1000, 1010, or 1020, base pairs, but not in cccDNAs of 1005, 1015, or 1025 base pairs (the writhe will always be at least 0.5). Because writhe affects the speed with which DNA moves through an agarose gel, these two types of cccDNAs can thus be distinguished using electrophoresis. Therefore, to determine the helical periodicity of the DNA, make a series of cccDNAs of slightly increasing length, and determine whether the

slowest migrating molecules are those having a length that is a multiple of 10, 11, or another value.

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

(完整版)分子生物学复习题及其答案

一、名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA 所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子链)的过程。或生物体以DNA/RNA

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

基因与分子生物学第二章复习题

《基因与分子生物学》第二章复习题 一、名词解释 1. 核小体:指由DNA链缠绕一个组蛋白核构成的念珠状结构,是用于包装染色体的结构单位。 2. DNA的高级机构:DNA双螺旋结构进一步扭曲盘绕形成的超螺旋结构。 3. DNA拓扑异构酶:通过改变DNA互绕值引起拓扑异构反应的酶。 4. 启动子:能被RNA聚合酶识别,结合并启动基因转录的一段DNA序列。 5. 复制叉:双链DNA在复制起点解开成两股链,分别进行复制。这时在复制起点呈现叉子 的形式,被称为复制叉。 6. 半不连续复制:前导链的连续复制和后随链不连续复制的DNA复制现象。 7. C值:一种生物单倍体基因组DNA的总量值称为C值。 8. 冈崎片段:DNA合成过程中,后随链的合成是不连续进行的,先合成许多片段,最后各 段再连接成为一条长链。这些小的片段叫做冈崎片段。 9. DNA二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构。 10. 半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。 11 C值矛盾:C值指一种生物单倍体基因组DNA的总量。一种生物单倍体的基因组DNA 的总量与其种族进化的复杂程度不一致的现象称为C值矛盾。 12 复制子:DNA复制从起点开始双向进行直到终点为止,每一个这样的DNA单位称为复制子或复制单元。 13 重叠基因:指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列为两个 或两个以上基因的组成部分。 14. 染色体: 由核蛋白组成、能用碱性染料染色、有结构的线状体,是DNA的主要载体 15. DNA的修复: 是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样, 重新能执行它原来的功能"或"使细胞能够耐受DNA的损伤而能继续生存 16. DNA的一级结构:就是指4种核苷酸的连接及排列顺序,表示了该DNA分子的化学结 构。 17. 基因:一段有功能的DNA序列。 18. 基因组:特定生物体的整套(单倍体)遗传物质的总和

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

分子生物学检验完整版

1病原生物基因组在医学上有何应用?详见书P3 a菌种鉴定b确定病毒感染和病毒载量c病毒分析d细菌耐药监测和分子流行病学调查 2什么是原癌基因,原癌基因有什么特性,原癌基因可以分为哪些种类以及原癌基因常见的激活机制有哪些? 原癌基因是指人类或其他动物细胞(以及致癌病毒)固有的一类基因,能诱导细胞正常转化并使之获得新生物特征的 基因总称。 特性:进化上高度保守,负责调控正常细胞生命活动,可以转化为癌基因。 功能分类:生长因子,生长因子受体,信号转导蛋白,核调节蛋白,细胞周期调节蛋白,抑制凋亡蛋白 激活机制:插入激活,基因重排,基因点突变,基因扩增,基因转录改变 3试述Down综合征(21三体综合征)的主要临床特征及核型。 临床特征:生长发育障碍,智力低。呆滞面容,又称伸舌样痴呆。40%患者有先天性心脏畸形。肌张力低,50%患者有贯通手,男患者无生育能力,女患者少数有生育能力,遗传风险高。 核型:92.5%患者游离型:核型为47,XX(XY),+21 2.5%患者为嵌合型:46, XX(XY)/47 ,XX(XY),+21 5%患者为易位型:46,XX(XY),-14 ,+t(14q21q) 4简述淋球菌感染的主要传统实验室诊断方法及其主要特点,对比分析分子生物学方法的优势1直接涂片染镜检:敏感度和特异性差,不能用于确诊。 2分离培养法:诊断NG感染的金标准,但是其对标本和培养及营养要求高,培养周期长,出报告慢,难以满足临床要求。 3免疫学法:分泌物标本中的非特异性反应严重以及抗体法间的稳定性和条件限制,推广受限。 分子生物学的优点:敏感,特异,可直接从了临床标本中检出含量很低的病原菌,适应于快速检测 5、在单基因遗传病的分子生物学检验中,点突变检测常用方法有哪些? 1异源双链分析法(HA)2突变体富集PCR法3变性梯度凝胶电泳法4化学切割错配法5等位基因特异性寡核苷酸分析法 6DNA芯片技术7连接酶链反应8等位基因特异性扩增法9RNA酶A切割法10染色体原位杂交11荧光原位杂交技术 6、简述白假丝酵母菌的分子生物学检验方法 白假丝酵母菌分子生物学检验主要包括白假丝酵母菌特异性核酸(DNA RNA)的检测、基因分型和耐药基因分析 等。 1PCR技术:选择高度特异性的天冬氨酸蛋白酶基因设计引物 PCR—斑点杂交技术:正向杂交和反向杂交,后者可一次检测多种真菌 DNA指纹技术:RFLPRAPD电泳核型分析 AP —PCR技术:定义方法简便,快速,特别适合临床应用 DNA序列分析:可测定rDNA序列也适用于基因突变引起的耐药 基因芯片技术:适用于病原体的耐药研究 7、 F VIII基因倒位导致血友病A,DMD基因外显子缺失导致与杜氏肌营养不良,珠蛋白基因突变导致与珠蛋白合成障碍性贫血。 (第11章,P197,P203,P207。窝觉得大家把题目读三遍就可以了) 答:F VIII基因倒位是导致的血友病A的主要原因(占50%)其它基因突变,如点突变,缺失,插入也会导致血友病A。 同理DMD基因外显子缺失是迪谢内肌营养不良(杜氏肌营养不良)发生的主要原因(60%-70%)。 珠蛋白合成障碍性贫血有六种,主要的两种是a珠蛋白生成障碍性贫血和B珠蛋白生成障碍性贫血,基因突变是主要发病原因。&基因多态性有哪些的临床应用?(P4)

基因工程、分子生物学和分子遗传学重要名词解释

基因工程、分子生物学和分子遗传学重要名词解释 5’Cap 5’-末端帽:有时简称帽,是在许多真核生物mRNA5`-末端发现的一种由7-甲基-鸟嘌呤核苷-5`-ppp –末端核苷构成的特殊构成的特殊结构。它是在转录后不久经酶催反应加入到TATA (Hogness)序列的附近,具有保护mRNA稳定性的功能。在原核生物的mRNA分子中不存在 5`-末端帽结构。 A protein A蛋白:他参与λDNA插入噬菌体头部和在粘性末端(cos)位点上裂解多联体DNA 的过程。 abortive lysgeny 流产溶原性:温和噬菌体感染敏感的宿主菌后,既不整合进宿主染色体中,也不进行复制,从而使每一个带有噬菌体的宿主菌分裂产生的两个细胞中,只有一个是溶原性的。abortive transduction 流产转导:这是得到不稳定转导子的一类转导,区别于得到稳定转导子的完全转导。在流产转导中,转导子分裂产生两个细胞时,只有其中的一个获得供体基因,另一 个细胞则仍属受体基因型。 Abundance of an mRNA mRNA丰度:是指每个细胞平均拥有的某一种特定mRNA的分子数,跟据丰度的差异可将分为两种不同的等级:其一是富裕型的,每个细胞拥有的平均考贝数为1000——10000,属于此型的mRNA约有100种;其二是稀少型的,每个细胞拥有平均考贝数仅有1——10个上下,属于这一类行的mRNA达10000多种。 Abzymes 抗体酶: 应用单克隆抗体技术生产的兼具抗体及酶催活性的工程蛋白质。也就是说,其行为如同蛋白酶一样,能够催化化学反应的一类新型的抗体。 Acceptor splicing site 受体拼接位点: 间隔子的右端和与其相连的表达子的左端之间的接合点。Acquired immunodeficiency syndrome, AIDS 获得性免疫缺损综合征: 由人类免疫缺损病毒(HIV)引起的一种疾病,他最早于1980年在美国洛杉叽发现。HIV病毒通过血液和精液在人群中传播,感染了这种病毒之后,会使人体出现严重的免疫抑制和淋巴结病(lymphadenopathy),并增加对机会病原体(opportunistic pathogen)的敏感性。这种综合征是由于HIV病毒的感染以及cd4类T细胞功能破坏所致。T细胞表面CD抗原CDS4是HIV病毒的受体。HIV病毒的感染使T细胞发生融合形成大的合胞体(syncytia)并最终裂解。AIDS是致命的,目前尚无法有效治 疗也无有效疫苗可用。 activator 活化物:1,在分子生物学中,活化物是一种蛋质,结合在某个基因上游DNA的一个位置上,激活从该基因开始的转录。2,在酶学中,活化物是一种小分子,与酶相结合从 而提高酶的催化活性。 Activator 激活物: 能够通过与结合在启动子上的RNA聚合酶发生相互作用,从而促使RNA聚合酶起动操纵子进行转录反应的一种正调节蛋白质。 Adaptor 接头:即DNA接头,是一类人工合成的非自我互补单链寡核苷酸短片段,当其同街接物(linker)自行退火时,就会形成具有一个平末端和一个粘性末端的双链的接头/衔接物结构。因此,同平端DNA分子连接之后,无需用核酸内切限制酶切割,就会提供符合预先设计要求的 粘性末端。 Adenovirus 腺病毒:一种具双链DNA的动物病毒,大小约为36kb。次种病毒在分子生物学研究中占有突出的位置,许多重要的分子生物学事件,诸如RNA剪辑,DNA复制及转录等,,都是腺病毒研究中发现的。现在腺病毒以被改造用作分离哺乳动物基因的克隆载体。Affinity chromatography 亲和层析:一种根据配体与特异蛋白质结合作用原理建立的层析技 术,该法主要应用于分离与纯化特异的蛋白质。 Agarose 琼脂糖:是从红色海藻的琼脂中提取的一种线性多糖聚合物,可用于配置核酸电泳凝胶。当琼脂糖溶液加热至沸点后冷确凝固,便会形成一种基质,其密度石油琼脂糖浓度决定的。可以被琼脂糖凝胶电泳分离的DNA片段的大小范围为0.2——50kb。经过化学上修饰的低熔点

分子生物学历年大题

2012年1月分子生物学自考试卷大题 26.半不连续复制 27.上游启动子元件 28.遗传密码 29.报告基因 30.锌指结构 31.简述DNA双螺旋结构模型 32.简述启动子的作用特点 33.简述原核生物蛋白质生物合成的起始过程 34.简述半乳糖操纵子的结构特点 35.简述在原核生物翻译水平上影响基因表达调控的因素 36.试述利用λ噬菌体构建基因组DNA文库的方法 37.试述真核生物基因表达调控的主要特点 2011年7月分子生物学自考试卷大题 26.SOS反应 27.RNA再编码 28.cDNA文库 29.RNA干扰 30.物理图谱 31.比较原核生物与真核生物在复制过程中的差异。 32.简述增强子的作用特点。

33.简述CAP对gal操纵子的作用。 34.真核生物在转录前对基因表达调控的方式有哪些? 35.反式作用因子有哪些结构特征。 https://www.360docs.net/doc/af5338548.html,c操纵子的调控机理。 37.试述蛋白质合成的基本过程,并比较原核与真核生物在蛋白质合成过程中的差异。 2010年10月: 26.C值反常 27.同工Trna 28.释放因子 29.细菌转化 30.选择性剪接 31.简述DNA复制的特点 32.核糖体上与翻译有关的位点有哪些? 33.简述操纵子的一般结构 34.简述真核生物DNA甲基化抑制基因表达的原因 35.简述细胞内癌基因的激活方式。 36.色氨酸操纵子在高色氨酸浓度和低色氨酸浓度时表达水平相差约600倍,但阻遏作用仅只能使转录水平降低70倍,请利用色氨酸操纵子的调控机制解释上述现象。 37.试比较原核生物与真核生物转录产物mRNA的异同。

2010年7月: 名词解释:同源域基因、基因定点突变、基因、遗传密码、冈崎片段简答:1.简述细胞中原癌基因转变为癌基因的主要途径。 2.简述sanger双脱氧链终止法测序基本原理。 3.简述原核生物蛋白质合成具体步骤。 4.简述大肠杆菌RNA聚合酶中a因子生物学功能。 简单应用:色氨酸操纵子调节作用。 论述:真核生物与原核生物在基因结构、转录和翻译主要差异。 2010年1月部分大题: 名词解释:中心法则、转座子、基因敲除、增强子、基因治疗 简单:1.简述原核生物RNA转录终止信号分类、结构特点。 2.简述tRNA mRNA tRNA各自生物学功能。 3.简述聚合酶链式反应(PCR)基本原理。 简单应用:乳糖操纵子的调节功能。 论述:真核生物基因表达可在多个层次上进行调控,根据发生先后顺序,叙述真核生物基因表达调控过程。 09年10月部分大题: 名词解释:半不连续复制、基因家族、基因扩增 简答:1.RNA编辑生物学意义。 2.转录与翻译不同点

河南工业大学 基因分子与生物学 基因与分子生物学第三章复习题

一、名词解释: 1. 转录单元:是指一段从启动子开始至终止子结束的DNA序列,RNA聚合酶 从转录起始位点开始沿着模板前进,直到终止子为止,转录出一条RNA链。 2. 单顺反子:只编码一个蛋白质的mRNA分子称为单顺反子。 3. 多顺反子:编码多个蛋白质的mRNA分子。 4. 基因:一段有功能的DNA序列。 5. 编码链:与mRNA序列相同的那条DNA链称为编码链。 6. 内含子的变位剪接:在高等真核生物中,内含子通常是有序或组成性地从 mRNA前体中被剪接,然而,在个体发育或细胞分化时可以有选择性地越过某些外显子或某个剪接点进行变位剪接,产生出组织或发育阶段特异性mRNA,称为内含子的变位剪接。 7. 转录的不对称性:在RNA的合成中,DNA的二条链中仅有一条链可作为转 录的模板。 8. 启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。 9. 核心启动子:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序 列,包括转录起始位点及转录起始位点上游TATA区 10. 因子:六聚体蛋白,通过水解核苷三磷酸、DNA\RNA解链,促使新生RNA 链从三元转录复合物中解离出来,从而终止转录 11. RNA的编辑:是指转录后的RNA在编码区发生碱基的突变、加入或丢失等 现象 12. SD序列:mRNA中用于结合原核生物核糖体的序列。 13. 转录:转录是以DNA中的一条单链为模板,游离碱基为原料,在DNA 依赖的RNA聚合酶催化下合成RNA链的过程。 14. 终止子:在一个基因的末端往往有一段特定顺序,它具有转录终止的功能, 这段DNA序列称为终止子。 15. mRNA帽子:真核细胞中mRNA 5' 端的一个特殊结构。它是由甲基化鸟苷 酸经焦磷酸与mRNA的5' 端核苷酸相连,形成5',5'—三磷酸连接的结构。 16. 模板链:双链DNA分子中,可作为模板转录为RNA的DNA链,该链与转 录的RNA链的碱基互补。 17. 基因表达:遗传信息从DNA到RNA再到蛋白质的过程。

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学名词解释

名词解释 1. 基因(gene): 2. 结构基因(structural gene): 3. 断裂基因(split gene): 4. 外显子(exon): 5. 内含子(intron): 6. 多顺反子RNA(polycistronic/multicistronic RNA): 7. 单顺反子RNA(monocistronic RNA): 8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA): 9. 开放阅读框(open reading frame, ORF): 10. 密码子(codon): 11. 反密码子(anticodon): 12. 顺式作用元件(cis-acting element): 13. 启动子(promoter): 14. 增强子(enhancer): 15. 核酶(ribozyme) 16. 核内小分子RNA(small nuclear RNA, snRNA) 17. 信号识别颗粒(signal recognition particle, SRP) 18. 上游启动子元件(upstream promoter element) 19. 同义突变(same sense mutation) 20. 错义突变(missense mutation) 21. 无义突变(nonsense mutation) 22. 移码突变(frame-shifting mutation) 23. 转换(transition) 24. 颠换(transversion) (三)简答题 1. 顺式作用元件如何发挥转录调控作用? 2. 比较原核细胞和真核细胞mRNA的异同。 3. 说明tRNA分子的结构特点及其与功能的关系。 4. 如何认识和利用核酶? 5. 若某一基因的外显子发生一处颠换,对该基因表达产物的结构和功能有什么影响? 6. 举例说明基因突变如何导致疾病。 (四)论述题 1. 真核生物基因中的非编码序列有何意义? 2. 比较一般的真核生物基因与其转录初级产物、转录成熟产物的异同之处。 3. 真核生物的基因发生突变可能产生哪些效应? (二)名词解释 1.基因组(genome) 2. 质粒(plasmid) 3.内含子(intron) 4.外显子(exon) 5.断裂基因(split gene) 6.假基因(pseudogene) 7.单顺反子RNA(monocistronic RNA)

(整理)分子生物学与基因工程复习题

一、名词解释 1、分子生物学 2、基因工程 3、DNA的变性与复性 4、细胞学说 5、遗传密码的简并性 6、DNA半保留复制、半不连续复制 7、SD序列 8、开放阅读框(ORF) 9、多顺反子 10、蓝白斑筛选 11、中心法则 12、限制修饰系统 13、断裂基因 14、单链结合蛋白 15、核酶 16、密码子家族 17、TA克隆 18、PCR 19、SNP 20、操纵子学说 21、DNA重组技术 22、减色效应-增色效应 23、可变剪接 24、反转录 25、同尾酶 26、加帽反应 27、蓝白斑筛选 28、表观基因组学 29、DNA的溶解温度 30、DNA的大C值 31、重叠基因 32、引物酶 33、逆转录 34、限制性内切酶 35、载体的选择标记 36、DNA甲基化

37、端粒 38、端粒酶 39、前导链 40、启动子 41、反式作用因子 42、同义密码子 43、多克隆位点(MCS) 44、基因组计划 45、C值悖论 46、顺式作用元件 47、胸腺嘧啶二聚体 48、寄主的限制修饰现象 49、拓扑异构酶 50、DNA的溶解 51、拓扑异构体 52、间隔基因 53、假基因 54、同源异型蛋白 55、翻译 56、多重PCR 57、抗终止作用 58、SD序列 59、空载tRNA 60、cDNA RACE 61、分子杂交 62、cDNA文库 63、载体 64、RT-PCR 65、反义RNA 66、延伸tRNA 67、起始tRNA 68、探针 69、反式剪接 70、增强子 71、动物基因工程 72、基因组 73、限制性内切酶 74、单顺反子

75、密码子 76、转录 77、RNA干扰 78、中心法则 79、回环模型 80、TATA box 81、前导链 82、目的基因 83、RFLP 84、RACE 二、判断 1、大肠杆菌DNA生物合成中,DNA聚合酶I主要起聚合作用。( ) 2、DNA半保留复制时,后随链的总体延伸方向与先导链的延伸方向相反。( ) 3、原核生物DNA的合成是单点起始,真核生物为多点起始。() 4、以一条亲代DNA(3’→ 5’)为模板时,子代链合成方向5’→ 3’,以另一条亲代DNA链 5’→ 3’为模板时,子代链合成方向3’→ 5’。() 5、RNA的生物合成不需要引物。() 6、大肠杆菌RNA聚合酶全酶由4个亚基(α2ββ’)组成。( ) 7、大肠杆菌在多种碳源同时存在的条件下,优先利用乳糖。 ( ) 8、在DNA生物合成中,半保留复制与半不连续复制指相同概念。() 9、逆转录同转录类似,二者均不需要引物。() 10、真核生物染色体核心组蛋白的乙酰化、组蛋白H1的磷酸化,都会使基因得以失活。() 11、在原核细胞中,起始密码子AUG可以在mRNA上的任何位置,但一个mRNA上只有一个起 始位点。( ) 12、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别mRNA上的密码子。( ) 13、表观遗传效应是不可遗传的。( ) 14、cAMP与CAP结合、CAP介导正性调节发生在有葡萄糖及cAMP较高时。( ) 15、DNA甲基化永久关闭了某些基因的活性,这些基因在去甲基化后,仍不能表达。 () 16、RNA聚合酶催化的反应无需引物,也无校对功能。( ) 17、基因是存在于所有生命体中的最小遗传单位 18、人类基因组中大部分DNA不编码蛋白质 19、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别 mRNA上的密码子。 ( )

河南工业大学 基因分子与生物学 第四章基因与分子生物学习题(全)

一、名词解释 1. 翻译:将mRNA链上的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表一个氨基酸的原则,依次合成一条多肽链的过程。 2. 三联子密码:mRNA链上每三个核苷酸翻译成蛋白质多肽链上的一个氨基酸, 这三个核苷酸就称为密码子或三联子密码。 3. SD序列:原核生物mRNA上起始密码子上游7-12个核苷酸处一个富含嘌呤 的区域,这个区域在翻译过程中能与16S rRNA3’端富含嘧啶的区域相互补。 这个序列称为SD序列,也叫核糖体结合位点(RBS)。 4. 简并性:由一种以上密码子编码同一个氨基酸的现象,称为密码子的简并性。 5. 同工tRNA:由于一种氨基酸可能有多个密码子,因此有多个tRNA来识别这 些密码子,即多个tRNA代表一种氨基酸。这种代表相同氨基酸的tRNA称为同工tRNA。 6. 信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移的N-末端氨基酸序列(有时不一定在N端),至少含有一个带正电荷的氨基酸,中部有一高度疏水区以通过细胞膜。 7. 摆动假说:tRNA上反密码子的第一个碱基与密码子的第三位碱基由于非Waston-Crick配对,使tRNA上反密码子识别不止一个密码子。这就是密码子摆动假说的主要内容。 8. 编码链与反义链:在转录过程中,把与mRNA序列相同的那条称为编码链或有意链,另一条根据碱基互补配对原则指导mRNA合成的DNA链称为模板链或称反义链。 9. 错意突变:是指翻译过程中,由于一个碱基的改变而引起了氨基酸的改变,即一个正常意义的密码子变成错意密码子,从而使多肽链上相应位置上的氨基酸发生了改变。 10. 单顺反子:只编码一条多肽链的mRNA被称为单顺反子。 11. 同工tRNA:代表同一种氨基酸的tRNA称为同工tRNA。 12. 无义突变:在蛋白质的结构基因中,一个核苷酸的改变可能使代表某个氨基 酸的密码子变成终止密码子(UAG、UGA、UAA),使蛋白质合成提前终止,

分子生物学与基因工程复习资料

分子生物学与基因工程 绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA 的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由上个世纪50 年 代,Watson 和Crick 提出了的DNA 双螺旋模型; 60 年代,法国科学家Jacob 和Monod 提出了的乳糖操纵子模型; 70 年代,Berg 首先发现了DNA 连接酶,并构建了世界上第一个重组DNA 分子; 80 年代,Mullis 发明了聚合酶链式反应( Polymerase Chain Reaction , PCR)技术; 90 年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代” 3、分子生物学与基因工程的专业地位与作用。 核酸概述 1、核酸的化学组成 2、核酸的种类与特点:DNA 和RNA 的区别 1) DNA 含的糖分子是脱氧核糖,RNA 含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T), RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代

替; (3)DNA 通常是双链,而RNA 主要为单链; (4)DNA 的分子链一般较长,而RNA 分子链较短。 3、DNA 作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA 含量是恒定的,而生殖细胞精子的DNA 含量则刚好是体细胞的一半。多倍体生物细胞的DNA 含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA 在代谢上较稳定。 (3)DNA 是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。 (4)DNA 通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA 。 (5)在各类生物中能引起DNA 结构改变的化学物质都可引起基因突变。直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA 的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100OC)时,它就失去生理活性。这时DNA 双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。 简而言之,就是DNA 从双链变成单链的过程。增色效应:它是指在DNA 的变性过程中,它在260 nm 的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA 如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复

分子生物学与基因工程原理

分子生物学与基因工程原理复习资料 一、名词解释 1. 分子生物学:是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学;是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 2. 染色体:是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。 3. DNA 多态性:是指DNA 序列中发生变异而导致的个体间核苷酸序列的差异,主要包 括单核苷酸多态性(single nucleotide polymorphism , SNP)和串联重复序列多态性 ( tandem repeats polymorphism )两类。 4. DNA 的半保留复制:DNA 复制过程中,由亲代DNA 生成子代DNA 时,每个新形成的子代DNA 中,一条链来自亲代DNA ,另一条链则是新合成的,这种复制方式称半保留复制。 5. 冈崎片段:在DNA 复制过程中,前导链能连续合成,而滞后链只能是断续的合成5 3 的多个短片段,这些不连续的小片段称为冈崎片段。 6.SNP:single nucleotide polymorphism ,单核苷酸多样性,是基因组DNA 序列中单个核苷酸的突变引起的多态性。 7. “基因”的分子生物学定义:产生一条多肽链或功能RNA 所必需的全部核甘酸序列。 8. 获得性遗传:是有机体在生长发育过程中由于环境的影响而不是基因突变所形成的新的遗传性状。 9. DNA 甲基化:是基因的表观修饰方式之一,指生物体在(DNA methyltransferase ,DNMT)的催化下,以S-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移到特定的碱基上的过程。 10. CDNA文库:以mRNA为模板,经反转录酶催化,体外合成cDNA,与适当的载体 (常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖 扩增。这样包含着细胞全部mRNA 信息的cDNA 克隆集合称为该组织细胞cDNA 文库。11. 基因组:是指一个细胞或者生物体所携带的全部遗传信息。生物个体的所有细胞的基因组是固定的。 12. 蛋白质组学:指在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。 13. 转录组:广义上指某一生理条件或环境下,一个细胞、组织或生物体内所有转录产 物的总和,包括信使RNA、核糖体RNA、转运RNA及非编码RNA ;狭义上指细胞中转录出来的所有mRNA 的总和。 14. 基因定点突变技术:通过改变基因特定位点核苷酸序列来改变所编码的氨基酸序列的一

相关文档
最新文档