分子生物学研究策略-基因表达技术(10月25日)

合集下载

植物分子生物学利用分子生物学技术手段研究植物分子遗传学和基因组学的学科

植物分子生物学利用分子生物学技术手段研究植物分子遗传学和基因组学的学科

植物分子生物学利用分子生物学技术手段研究植物分子遗传学和基因组学的学科植物分子生物学是一门综合多学科的研究领域,通过应用分子生物学技术手段来探索植物的分子遗传学和基因组学。

该学科涉及了许多关键概念和方法,包括DNA克隆、基因表达调控、基因组学、转基因技术以及分子标记等。

通过这些手段的应用,植物分子生物学研究可以进一步深化对植物基因功能、调控网络和进化等方面的理解,推动改良和创新植物育种,以应对全球食品安全和环境挑战。

一、DNA克隆DNA克隆是植物分子生物学研究的核心技术之一。

它是将感兴趣的DNA片段从一个来源复制并插入到宿主植物细胞中的过程。

常用的DNA克隆技术包括限制性内切酶切割、DNA连接、转化和筛选等步骤。

通过DNA克隆,研究人员可以获取大量特定DNA片段以及有关植物基因的信息。

二、基因表达调控基因表达调控是植物分子生物学研究中的另一个重要方面。

植物基因表达调控的过程涉及多种调控因子和信号通路。

植物中的基因表达不仅仅依赖于基因本身的序列,还受到一系列转录因子、启动子和增强子的作用。

通过分析基因在植物不同组织和环境条件下的表达模式,研究人员可以深入了解基因调控网络的运作机制。

三、基因组学基因组学是植物分子生物学研究的重要分支,它研究植物的基因组结构和功能。

随着高通量测序技术的发展,植物基因组的测序速度和精确度大幅提高。

通过对植物基因组的比较和分析,研究人员可以揭示不同物种间的遗传变异,以及基因组在进化过程中的改变。

同时,基因组学也为植物育种和遗传改良提供了重要的理论支持。

四、转基因技术转基因技术是植物分子生物学研究的重要手段之一。

它通过引入外源基因或抑制内源基因的表达,改变植物的遗传特性。

转基因技术在植物育种中起到了重要的作用,例如提高作物的抗虫性、耐逆性和产量等。

然而,转基因技术也面临伦理和环境安全等问题,需要权衡利弊进行应用。

五、分子标记分子标记是植物分子生物学研究中常用的工具。

它是一种与植物基因或DNA序列有关的分子标记,可以用来鉴定特定基因型或进行基因组遗传分析。

分子生物学研究中的新方法和技术

分子生物学研究中的新方法和技术

分子生物学研究中的新方法和技术随着科学技术的不断发展,分子生物学研究也在不断深入。

新方法和技术的出现,既推动了这一领域的进展,也为科学家们提供了更多的研究手段。

针对这一主题,本文将介绍几种应用于分子生物学研究的新方法和技术。

一、CRISPR-Cas9 基因编辑技术CRISPR-Cas9 基因编辑技术是近年来分子生物学领域最为重要的突破之一。

通过该技术,科学家可以精确地定位并编辑DNA序列,从而改变基因的表达。

利用 CRISPR-Cas9 可以将任何外源DNA 片段插入到特定的基因位点上,也可以切除、替换或拷贝存在的 DNA 片段。

这种技术不仅在基础研究中有着广泛的应用,也为治疗基因疾病和癌症提供了一条新途径。

二、单细胞测序技术单细胞测序技术是一项用于对单个细胞进行测序的技术。

与传统的基因组测序技术不同,单细胞测序可以帮助科学家们把一个样本中许多不同类型的细胞分离出来,并分别对它们进行测序。

该技术有助于我们更好地了解在组织和器官中单个细胞类型之间如何相互作用,也有助于发现不同疾病的根本原因。

三、功能研究技术功能研究技术是一种可以用来揭示基因功能的技术。

在分子生物学中,这种技术尤其重要。

其中,目前最为常用的是 RNA 干扰技术和基因表达分析技术。

RNA 干扰利用小的干扰 RNA 来沉默目标基因的表达,从而了解这个基因对生物过程的影响,而基因表达分析技术则可以让我们更深入地了解这个基因在某些特殊条件下的表达模式。

四、代谢组学技术代谢组学是一种利用高通量技术来研究生物体代谢的技术。

它可以快速地测量生物体内的代谢物质,如葡萄糖、乳酸和氨基酸等,并在这些物质之间建立关联。

代谢组学的发展不仅有助于我们更好地了解人类代谢对健康的影响,也为预防和治疗疾病提供了一条新途径。

综上所述,分子生物学研究中的新方法和技术不断涌现,不仅推动着这一领域的发展,而且为未来的医药科技带来了更多的可能。

通过这些技术的不断创新和发展,我们相信我们将能够更好地了解生命的奥秘,从而为人类的健康和长寿贡献自己的一份力量。

分子生物学研究揭示基因调控网络的构建与运作机制

分子生物学研究揭示基因调控网络的构建与运作机制

分子生物学研究揭示基因调控网络的构建与运作机制基因调控网络是生物体内调控基因表达的关键机制之一,它参与了生命的各种生理过程和发展调控。

近年来,随着分子生物学技术和计算生物学方法的发展,人们对基因调控网络的构建和运作机制有了更深入的认识。

本文将探讨基因调控网络的概念、构建方式以及其在生物体内的运作机制。

一、基因调控网络的概念基因调控网络是由一系列相互作用的基因调控元件和调控蛋白所构成的复杂网络结构。

它通过一系列反应和信号传递机制,调节基因的表达水平和精确的时空表达模式。

基因调控网络具有高度复杂性和灵活性,能够对内外环境的变化做出及时的应答。

二、基因调控网络的构建方式1. 转录因子和调控元件的相互作用基因调控网络的构建离不开转录因子与调控元件之间的相互作用。

转录因子是一类特殊的蛋白质,它能够结合到DNA上的特定序列,从而启动或抑制基因的转录过程。

调控元件是染色体上的一段DNA序列,其中包含了转录因子结合位点。

通过转录因子和调控元件的相互作用,基因调控网络的构建得以实现。

2. 基因调控网络的层次结构基因调控网络具有多层次的结构,包括转录层、转译层和蛋白质互作层。

转录层是通过转录因子的调控实现基因表达的调控层次,转译层是指通过调控转录后的RNA的翻译过程对基因表达进行调控的层次,蛋白质互作层是指基因产物之间相互作用所形成的网络层次。

三、基因调控网络的运作机制1. 正反馈回路正反馈回路是基因调控网络中常见的一种机制。

当转录因子激活其自身的转录过程时,就形成了正反馈回路。

正反馈回路可以放大基因表达的峰值,使得基因表达具有记忆性,有利于稳定基因表达水平。

2. 负反馈回路负反馈回路是一种抑制性的基因调控机制。

当转录因子激活其自身反义基因的转录过程时,就形成了负反馈回路。

负反馈回路可以抑制基因表达的过程,保持基因表达水平的稳定。

3. 多重调控模式基因调控网络往往采用多重调控模式来实现对基因表达的精确调控。

这种调控模式包括串联调控、并联调控和反馈调控等。

分子生物学大实验——目的基因的克隆及表达

分子生物学大实验——目的基因的克隆及表达

分子生物学大实验——目的基因的克隆及表达第一节基因操作概述............................................................................. 错误!未定义书签。

一、聚合酶链式反应(PCR) ............................................................. 错误!未定义书签。

二、质粒概述................................................................................... 错误!未定义书签。

三、凝胶电泳................................................................................... 错误!未定义书签。

四、大肠杆菌感受态细胞的制备和转化....................................... 错误!未定义书签。

五、重组质粒的连接....................................................................... 错误!未定义书签。

六、限制性内切酶消化................................................................... 错误!未定义书签。

七、SDS-PAGE蛋白质电泳........................................................... 错误!未定义书签。

第二节材料、设备及试剂..................................................................... 错误!未定义书签。

分子生物学的前沿研究

分子生物学的前沿研究

分子生物学的前沿研究分子生物学作为现代生命科学的一个重要分支,在过去几十年中取得了重大的进展和突破。

随着科技的不断进步和理论的不断深入,分子生物学的前沿研究领域也日益广阔。

本文将介绍分子生物学的几个前沿研究领域,包括基因编辑技术、表观遗传学、转录组学以及蛋白质组学。

一、基因编辑技术基因编辑技术是近年来分子生物学领域的热门研究方向之一。

其中最具代表性的技术是CRISPR-Cas9系统。

CRISPR-Cas9系统可以通过靶向式基因组编辑,实现对特定基因的精确修饰和功能分析。

通过将Cas9核酸酶与特定的RNA序列结合,可以精确定位和切割目标基因,从而改变其序列或功能。

这一技术的出现,极大地提高了基因编辑的效率和准确性,对于研究基因功能、疾病治疗等具有重要的应用前景。

二、表观遗传学表观遗传学指的是通过研究基因组中的化学修饰如DNA甲基化和组蛋白修饰等,来理解基因表达调控的机制。

表观遗传学的研究揭示了基因表达调控的多样性和复杂性,进而为许多疾病的发生机制提供了新的解释。

例如,DNA甲基化在肿瘤的发生中起着重要作用,研究人员可以通过探究甲基化修饰的变化,寻找到肿瘤发生的潜在靶点和治疗策略。

此外,表观遗传学还涉及到干细胞研究、发育生物学以及环境对基因表达的影响等多个领域。

三、转录组学转录组学是对细胞中所有转录本的整体研究。

通过高通量测序技术,研究人员可以迅速、准确地获取细胞内所有基因在特定时间点和条件下的表达信息。

转录组学的发展使得我们可以更全面地了解基因表达调控的机制,探索特定细胞状态下基因网络的重要成员,从而有助于揭示许多重要生物过程的内在规律和潜在功能。

此外,转录组学也为临床诊断提供了新的方法,例如通过对肿瘤转录组的特征进行分析,可以实现肿瘤类型的分类和个体化治疗方案的制定。

四、蛋白质组学蛋白质组学是对细胞或生物体中所有蛋白质的整体研究。

通过质谱等技术手段,可以对蛋白质的组成、结构和功能进行深入研究。

蛋白质组学的研究有助于揭示蛋白质的多样性和复杂性,促进对细胞功能和生物过程的全面理解。

分子生物学研究策略-基因表达技术

分子生物学研究策略-基因表达技术

2)理想乳酸菌表达载体的特征: 1、稳定的遗传、传代能力(复制子) 2、具有显性的转化筛选标记(Emr ) 3、启动子的转录是可以调控 4、具有多克隆酶切位点
3)研究进展 (1)食品发酵方面的应用
(2)乳酸菌菌种鉴定 REA (Restriction Endonuclease Analysis) 16S rRNA (PCR )
真核基因在不同表达系统的表达
表达白细胞介素IL-3(成熟蛋白)
大肠杆菌表达系统
20-30u
地衣芽孢杆菌表达系统 250-300u
酵母菌表达系统
20u
哺如动物细胞
2u
2、芽胞杆菌表达系统(Gene
Expression system in Bacillus)
1)特点
枯草芽孢杆菌是非致病的土壤微生物,严格生 长在有氧条件下。
SDS-PAGE
(3)抗微生物和食品腐败
(4)细胞表面层和外多糖
利用生物异构化方法从亚油酸生产具有生理活性的共轭 亚油酸(CLA)异构体单体。筛选到一株产生9顺,11反 共轭亚油酸的乳杆菌L1,建立了亚油酸制备技术,CLA 小试发酵工艺,共轭亚油酸的HPLC纯化分离和毛细管 电泳鉴定技术。
蛋白的转位和穿膜
链霉菌中蛋白的转位与穿膜机制尚未搞 清,如将IL-2与tendamistat信号肽融合, 在链霉菌中只有1/20翻译产物转位 (translocation)至培养基和积累在胞内。
5)影响链霉菌中基因表达的因素
(1)启动子对外源基因表达的影响 (2)信号肽对外源蛋白分泌的影响 A、信号肽N末端氨基酸序列正电荷数对
3、选择性标记不得选用各种抗生素抗性标记。 应选用食品级的标记基因,如糖类利用标记、 营养缺陷型标记等;

简述分子生物学的主要研究内容(一)

简述分子生物学的主要研究内容(一)

简述分子生物学的主要研究内容(一)分子生物学的主要研究内容引言在生物学的广阔领域中,分子生物学作为其中的重要分支,致力于研究生物体内分子的结构、功能和相互作用。

通过对生物体内分子的研究,分子生物学揭示了生命的本质和生物体的运行方式。

本文将简要介绍分子生物学的主要研究内容。

分子生物学的主要研究内容分子生物学研究的内容广泛,包括以下几个方面:1.DNA与基因–DNA结构与功能:研究DNA的双螺旋结构、碱基配对、序列特征以及转录和复制过程中的功能;–基因表达调控:探究基因转录、后转录修饰以及DNA甲基化等调控机制,揭示基因表达的调控网络;–基因突变与遗传疾病:研究DNA突变的原因与机制,解析遗传疾病的发生与发展。

2.RNA与蛋白质–RNA结构与功能:研究RNA的二级、三级结构及其在转录后调节、翻译等方面的功能;–蛋白质合成与调控:揭示蛋白质的合成、折叠过程以及翻译后修饰、定位等方面的调控机制;–蛋白质间相互作用:研究蛋白质与蛋白质、蛋白质与核酸等之间的相互作用,解析细胞内信号传导和调控网络。

3.遗传工程与基因编辑–基因工程技术:利用DNA重组技术进行基因组改造、外源基因的表达等;–基因编辑技术:应用CRISPR-Cas9等工具对生物体进行精确基因组编辑,研究基因功能与表达调控的关系。

4.细胞信号传导–细胞信号通路:研究生物体内细胞外信号的传导机制和细胞内响应过程,揭示生命活动的调控网络;–信号分子与受体:研究激素、细胞因子、细胞外基质等信号分子与受体之间的相互作用,理解信号转导的病理机制。

5.分子进化与生物多样性–分子系统学:通过分析生物体内分子间的差异与相似性,探究不同物种之间的亲缘关系与演化历史;–病原体与宿主:研究病原体与宿主之间的相互作用,阐明感染、免疫等生物学过程。

结论分子生物学作为生物学的重要分支,通过对生物体内分子的研究,深入揭示了生命的奥秘。

从DNA与基因、RNA与蛋白质、细胞信号传导、遗传工程到分子系统学与生物多样性,分子生物学提供了丰富的理论和技术支持,推动了生命科学的发展。

6分子生物学研究法(下)——基因功能研究技术

6分子生物学研究法(下)——基因功能研究技术

目前,主要采用两种PCR方法,重叠延伸技术(左图)和 大引物诱变法(右图),在基因序列中进行定点突变。
6.2 基因敲除技术
1、基本原理
经典遗传学(Forward genetics)是从一个突变体的表型出 发,研究其基因型,进而找出该基因的编码序列。 现代遗传学(Reverse genetics,反向遗传学)首先从基因 序列出发,推测其表现型,进而推导出该基因的功能。 基因敲除(gene knock-out)又称基因打靶,通过外源DNA 与染色体DNA之间的同源重组,进行精确的定点修饰和基因 改造,具有专一性强、染色体DNA可与目的片段共同稳定遗 传等特点。 基因敲除分为完全基因敲除和条件型基因敲除(又称不完全 基因敲除)两种。 完全基因敲除是指通过同源重组法完全消除细胞或者动植物 个体中的靶基因活性,条件型基因敲除是指通过定位重组系 统实现特定时间和空间的基因敲除。 噬菌体的Cre/Loxp系统、Gin/Gix系统、酵母细胞的 FLP/FRT系统和R/RS系统是现阶段常用的四种定位重组系 统,尤以Cre/Loxp系统应用最为广泛。
ChIP不仅可以检测体内转录因子与 DNA的动态作用,还可以用来研究 组蛋白的各种共价修饰与基因表达 的关系。 定性或定量检测体内转录因子与 DNA的动态作用。 ChIP-chip and ChIP-seq:在基因 组水平研究DNA结合蛋白、组蛋白 修饰以及核小体分布。 ChIP-seq相对于ChIP-chip来说,具 有更高的分辨率、更小的噪音以及 更广的基因组覆盖范围。 Nucleosome Occupancy study: 一 些转录因子本身并不含有DNA结合 结构域,它是通过参与形成蛋白复 合物从而改变染色质结构来发挥作 用的;因此我们可以通过研究基因 组上核小体的分布变化来揭示转录 因子作用的过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子生物学研究策略 Research Strategy on Molecular Biology 3、基因分子生物学的基本技术 3.1 基因的分子杂交技术 3.2 基因的扩增技术(PCR) 3.3 基因的突变技术(转座技术) 3.4 基因的表达技术 (表达系统) 3.5 转基因技术 (转基因动物、 转基因植物) 3.6 微阵列分析
Genera: – Streptococcus – Leuconostoc – Pediococcus – Lactobacillus – Enterococcus – Lactococcus
All the above genera grow in chains. Many are used for the food industry.
(7)益生菌(PROBIOTICS)
Lactobacillus and Bifidobacterium
食品级基因修饰菌是指被导入源于同种或公
认的安全的食品级微生物的基因,因此具有 某种优良性状的用于发酵食品生产的微生物。 1、功能性基因必须源于同种菌或公认的安全 的食品级微生物; 2、载体必须是食品级的,不得含有非食品级 的功能性DNA 片段; 3、选择性标记不得选用各种抗生素抗性标记。 应选用食品级的标记基因,如糖类利用标记、 营养缺陷型标记等; 4、宿主菌的遗传特性清楚且稳定,具有足够 的安全性,应选用适当的分子生物学方法如 DNA序列分析、杂交等确定宿主菌的遗传组 成。
16S rRNA (PCR )
SDS-PAGE
(3)抗微生物和食品腐败
(4)细胞表面层和外多糖
利用生物异构化方法从亚油酸生产具有生理活性的共轭
亚油酸(CLA)异构体单体。筛选到一株产生9顺,11反 共轭亚油酸的乳杆菌L1,建立了亚油酸制备技术,CLA 小试发酵工艺,共轭亚油酸的HPLC纯化分离和毛细管 电泳鉴定技术。
3)、可作为宿主的其它菌种:
嗜碱芽孢杆菌Bacillus abcalophilus
蛋白酶 淀粉芽孢杆菌Bacillus amyloliquefacilus -淀粉酶 短芽孢杆菌Bacillus brevis 地衣芽孢杆菌Bacillus licheniformis 淀粉酶,抗真菌肽 巨大芽孢杆菌Bacillus megaterium 淀粉酶 短小芽孢杆菌Bacillus pumilus 蛋白酶
6)链霉菌表达系统优缺点及研究发展趋势
(1)优点:
链霉菌工业化培养条件成熟,适合于大规模
产业化 链霉菌基本为非致病菌,不产生内毒素 可以进行高密度培养,在稳定期仍能维持异 源蛋白的产生 链霉菌可分泌胞外酶,利用信号肽可分泌外 源蛋白 链霉菌中有许多可利用的转录起始信号,利 用它可以高表达外源基因
蛋白的转位和穿膜
链霉菌中蛋白的转位与穿膜机制尚未搞
清,如将IL-2与tendamistat信号肽融合, 在链霉菌中只有1/20翻译产物转位 (translocation)至培养基和积累在胞内。
5)影响链霉菌中基因表达的因素
(1)启动子对外源基因表达的影响 (2)信号肽对外源蛋白分泌的影响 A、信号肽N末端氨基酸序列正电荷数对
食品级载体不但是GRAS微生物,而且不
依靠抗生素抗性作为选择标记,因而更 为安全,在食品、医药方面具有广泛的 应用潜力。 乳酸菌的食品级 高效诱导分泌表 达NICE系统是可 控制的蛋白质生 产的最理想的系 统。
4、链霉菌基因表达系统
(Gene Expression system in Streptomyces )
基因表达的影响 B、信号肽切割位点后的氨基酸数对基因 表达的影响 C、信号肽和目的蛋白之间的距离对基因 表达的影响
(3)密码子、SD序列和终止子等对基
因表达的影响 链霉菌中翻译起始密码子为ATG或GTG, 终止密码子为TAA或TAG (4)DNA扩增序列对基因表达的影响 (5)发酵条件对外源基因表达的影响
1)特点 大多数来自于土壤 能形成孢子的革兰氏阳性菌 有复杂的形态(以无中隔分
枝菌丝方式生长)和生理生 命周期 产生多种次级代谢产物 基因组是大肠杆菌的两倍, GC含量高,平均为74%
2)链霉菌的载体
(1)高拷贝载体 pIJ101 40-800 拷贝 硫链丝菌素(tsr), 新霉素(neo),酪氨酸酶(mel) (2)低拷贝载体 pIJ920 1-2拷贝 广泛宿主 能插入大于 30kb的片段 (3)穿梭载体 pHJL210(SCP2*/pBR322) 菌调节蛋白新家族(SARP)正调控因 子 B、全局调节基因(global regulator) 调控所有抗生素生物合成的调节基因 absA 编码双组分信号转导系统 (3)调节因子 小分子脂溶兼水溶的γ丁酰内酯作为激素样物 质激发次级代谢和/或气生菌丝的形成
(4)链霉菌中的蛋白外泌系统 蛋白分泌机制
大多数链霉菌的外泌蛋白前蛋白中有N
端信号序列,它们的外泌依靠Sec-介导 的分泌系统。现已从链霉菌中已克隆了 SecA,SecY,SecD,SecE和SecF类似 物。SecA(Blanco etal.1998)属于膜相关 的转位ATPase,它阻止分泌前蛋白形成 三级结构前体,促进前蛋白定位于分泌 的转位酶上。
1)大肠杆菌表达系统 的特点:
(1)遗传背景清楚 (2)目的基因表达水
平高 (3)培养周期短 (4)抗感染能力强
2)大肠杆菌表达系统研究的发展趋势
完善现有的表达系统;
重组蛋白质的正确折叠; 构象形成;
蛋白质的分泌;
菌体表面表达技术及其应用;
重组蛋白质修饰加工。
长在有氧条件下。 枯草芽孢杆菌遗传学相当先进,很多噬菌体和 质粒适合用作克隆载体。 芽孢杆菌可大量产生几种商品酶,如-淀粉酶, 蛋白酶及苏云金杆菌的杀虫晶体蛋白等,发酵 技术发达。 具有单层细胞膜组成较简单的细胞外壳。 易于分离纯化分泌蛋白
2)枯草杆菌宿主菌株
由于大肠杆菌的CaCl2转化法对枯草芽孢杆 菌无效 (1)选择可转化的菌株 *168菌株及突变体: 营养要求、芽孢形成和萌发、蛋白酶缺失、 重组缺陷、限制/修饰系统缺陷、转座子插 入 (2)选择转化的方法 感受态转化: 原生质体转化: 电转化:甘氨酸添加培养感受态 其它方法,如转导、结合转移
(9)其他载体
(A)大容量载体 细菌人工染色体BAC 利用F因子复制起始点/par元件,1-2拷贝, 克隆100-300kb的片段 (B)整合型载体 利用pSAM2整合元件构建的pPM927 (C)高表达载体 整合高表达载体pCJR24,是利用天蓝色链 霉菌A3中的激活调节基因actII-ORF4与actI 基因启动子构建的
2)理想乳酸菌表达载体的特征:
1、稳定的遗传、传代能力(复制子)
2、具有显性的转化筛选标记(Emr ) 3、启动子的转录是可以调控 4、具有多克隆酶切位点
3)研究进展
(1)食品发酵方面的应用
(2)乳酸菌菌种鉴定 REA (Restriction Endonuclease Analysis)
3)链霉菌基因转移的方法 (1)原生质体转化 转化率不高 ,制备过程中影响因素多, 系统对外源DNA的限制修饰作用 (2)接合转移 DNA以单链形式进入宿主菌 大肠杆菌S17-1菌株, 质粒RSF1010 (3)电脉冲穿孔 转化率比原生质体高10-100倍 (4)噬菌体转导
4)链霉菌基因的调控和蛋白质的分泌表达
球形芽孢杆菌Bacillus sphaericus
灭蚊毒素蛋白 嗜热芽孢杆菌Bacillus stearothermophilus 高温-淀粉酶 苏云金芽孢杆菌Bacillus thuringiensis 杀虫晶体蛋白 耐碱的芽孢杆菌Bacillus alcalophilic 碱性蛋白酶 炭疽芽孢杆菌 Bacillus anthracis
*1996年,完成了酵母基因组DNA (1.25x107bp)全序列测定工作。
Division: budding Do not form filaments Some form filaments Some can mate.
4)枯草芽胞杆菌表达系统研究的发展趋势
1、表达真核基因 蛋白酶水解——缺陷型、抑制剂 2、表达商业用酶 克隆基因的整合 3、表达杀虫晶体蛋白 提高杀虫毒力,减少杀虫时间,增加广谱 4、利用芽孢杆菌基因工程技术扩大和加 强在医药领域多个方面的应用
3、乳酸菌基因表达系统(Gene
Expression system in Lactic Acid Bacteria)
真核基因在不同表达系统的表达
表达白细胞介素IL-3(成熟蛋白)
大肠杆菌表达系统 地衣芽孢杆菌表达系统 酵母菌表达系统 哺如动物细胞
20-30u 250-300u 20u 2u
2、芽胞杆菌表达系统(Gene
Expression system in Bacillus)
1)特点
枯草芽孢杆菌是非致病的土壤微生物,严格生
系统 优化组合强启动子,信号和先导肽, 从分 子水平研究其结构元件与功能的关系 在蛋白水平研究蛋白的分泌机理,特别是 蛋白的转位和转膜机制 研究次级代统 (Gene Expression system in Yeast )
1)特点:
乳酸菌指发酵糖类主要产物为乳酸的一类无芽
孢、革兰氏染色阳性细菌的总称。 大多数不运动,少数以周毛运动。 菌体常排列成链。 在其发酵产物中只有乳酸的称为同型乳酸发酵, 而产物中除乳酸外还有较多乙酸、乙醇、CO 2等物质的称为异型乳酸发酵。 有微好氧菌和专性eria
(1)RNA聚合酶基因多样性 天蓝色链霉菌有两种不同形式的RNA聚 合酶全酶 32 (与大肠杆菌有保守性) 和49 (发育阶段) 多 因子,双启动子 研究表明天蓝色链霉菌至少有7个不同的 因子,参与营养期,孢子形成,次级代谢等
相关文档
最新文档