71几种常见的讲义几何体

合集下载

常见几何体的表面展开图

常见几何体的表面展开图

常见几何体的外表展开图将一个几何体的外外表展开,就像掀开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不一样.那么咱们熟悉的一些几何体,如圆柱、圆锥、棱柱的外表展开图是什么形状呢?(1)圆柱的外表展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的外表展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的外表展开图是两个完全一样的多边形(作底面)和几个长方形(作侧面)(4)正方体的平面展开图在讲义中、习题中会常常碰到让大伙儿识别正方体外表展开图的题目.下面列出正方体的十一种展开图,供大伙儿参考.例1 以下四张图中,通过折叠能够围成一个棱柱的是( )分析:由平面图围成一个棱柱,咱们能够动手实践操作,也能够展开丰硕的想像,但咱们最关键的是要抓住棱柱的特点,棱柱的平面图是由两个完全一样的多边形(且在平面图的双侧)和几个长方形组成的.解:正确答案选C.点评:专门要注意的是两个完全一样的多边形是棱柱的上下两个底面图形(棱柱展开后,这两个图形是位于展开图的双侧),故不选D,另外定几个长方形,究竟是几个呢,它的个数确实是上下底多边形的边数,应选C.例2如以下图的平面图形是由哪几种几何体的外表展开的?(1) (2) (3)分析:找几何体的外表展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.例3如以下图,在正方体的两个相距最远的极点处停留着一只苍蝇和一只蜘蛛,蜘蛛能够从哪条最短的途径爬到苍蝇处?说明你的理由.分析:在解这道题时,正方体的展开图对解题有专门大的帮忙,由于作展开图有各类不同的方式,因此从蜘蛛到苍蝇能够用6种不同方式选择最短途径,而其中每一条途径都通过连结正方体2个极点的棱的中点.解:由于蜘蛛只能在正方体的外表爬行,因此只需作出那个正方体的展开图并用点标出苍蝇和蜘蛛的位置,依照“两点之间线段最短〞这一常识可知,连结这两个点的线段确实是最短的途径.点评:这种求最短路程是多少及求与棱的夹角是多少等问题,同窗们容易犯的错误是:用棱柱来计算路程,可求出的却不是最短的.通过对该节内容的学习,咱们必然要养成擅长观看,随时寻觅规律的良好适应,只有如此,才能把所学知识融会贯穿.。

第一章:丰富的图形世界

第一章:丰富的图形世界

◆初一(上)数学讲义第一章:丰富的图形世界◆1.1生活中的立体图形1.生活中常见的立体图形(1)常见的立体图形和对应的几何体图(1)是生活中几种常见的实物图形,其对应的几何体如图(2)所示.图(1) 图(2)生活中蕴含着大量的几何图形,这些几何图形可以抽象为几何体。

常见的几何体有长方体、正方体、圆柱、圆锥、球和棱柱等.注意:棱锥也是一种常见的几何体.如上面的最后一图.(2)几何体的组成几何体是由平面或曲面围成的立体图形.如果围成的面都是平的,叫做多面体.【例1】下列图形中,上面一行是一些具体的实物图形,下面一行是一些几何体,试用线连接几何体和类似的实物图形.2.几何图形的构成(1)几何图形的构成几何图形包括立体图形和平面图形,几何图形是由点、线、面构成的.面有平面和曲面,面不分厚薄;线有直线和曲线,线不分粗细.面与面相交得到线,线与线相交得到点,点不分大小.(2)点、线、面的关系从运动的角度看,点动成线,线动成面,面动成体.例如,把笔尖看做一个点,笔尖在纸上移动就能形成一条线,即点动成线.点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路线等.钟表的分针旋转一周形成一个圆面,即线动成面.线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等.长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体.面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等.【例2】如图所示的立体图形,是由__________个面组成的,其中有__________个平面,有__________个曲面;面与面相交成__________条线,其中曲线有__________条.◆初一(上)数学讲义点技巧线与面的数法对于几何体,面与面相交得到线,线与线相交得到点.在数面时可先数底面,再数侧面;数线时,可先数底面与侧面相交成的线,再数侧面与侧面相交成的线.3.立体图形的识别几何图形的特征:(1)圆柱:两个底面是等圆,侧面是曲面.如八宝粥盒、茶杯等.(2)圆锥:底面是圆,侧面是曲面.像锥子.如烟囱帽、铅锤、漏斗等.(3)长方体:有6个面,底面是长方形,相对的两个面平行且完全相同.如砖、文具盒等.(4)正方体:6个面是大小完全相同的正方形.如魔方等.(5)棱柱:所有侧棱长都相等,底面是多边形,上、下底面的形状相同,侧面的形状都是平行四边形.(6)球:由一个曲面组成,圆圆的.如足球、乒乓球等.(7)棱锥:一个面是多边形,其余各面是一个有公共顶点的三角形.多边形的面称为棱锥的底面,其余各面称为棱锥的侧面.根据底面的边数可将棱锥分为三棱锥、四棱锥……谈重点:从哪几个方面认识几何体的特征?①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等.【例3-1】请在每个几何体下面写出它们的名称.【例3-2】如图,在下面四个物体中,最接近圆柱的是( ).4.几何体的分类(1)几何体按柱、锥、球的特征分为:◆初一(上)数学讲义(2)按围成的面分为:分类是数学中的基本方法,在分类时要统一标准,做到不重不漏.【例4-1】在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状类似于棱柱的有( ).A.1个B.2个C.3个D.4个【例4-2】将下列几何体分类,并说明理由.5.几何体的形成(1)长方形绕其一边所在直线旋转一周得到圆柱;(2)直角三角形绕其一条直角边所在直线旋转一周得到圆锥;(3)半圆绕其直径所在直线旋转一周得到球体.释疑点旋转体的形成①平面图形旋转会形成几何体;②平面图形绕某一直线旋转一周才可以形成几何体;③由平面图形旋转而得到的几何体有:圆柱、圆锥、球以及它们的组合体.【例5】我们曾学过圆柱的体积计算公式:V=Sh=πR2h(R是圆柱底面半径,h为圆柱的高),现有一个长方形,长为2 cm,宽为1 cm,以它的一边所在的直线为轴旋转一周,得到的几何体的体积是多少?◆初一(上)数学讲义6. 简单多面体定义:由若干个平面多边形围成的几何体叫多面体。

(完整版)空间几何体及其计算学生讲义版

(完整版)空间几何体及其计算学生讲义版

第一章 空间几何体(一)柱、锥、台、球的结构特征1、 棱柱的定义:有 个面互相 ,其余各面都是 ,且每相邻两个四边形的公共边都互相 ,由这些面所围成的几何体。

(1)分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

(2)表示:用各顶点字母表示,如五棱柱或用对角线的端点字母,如五棱柱'AD(3)几何特征: ①两底面是对应边平行的全等多边形;②侧面、对角面都是 ;③侧棱 ;平行于底面的截面是与底面全等的 。

2、 棱锥的定义:有 个面是多边形,其余各面都是有一个公共顶点的 ,由这些面所围成的几何体 (1)分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 (2)表示:用各顶点字母,如五棱锥'''''E D C B A P - (3)几何特征: ①侧面、对角面都是 ;②平行于底面的截面与底面 ,其相似比等于顶点到截面距离与高的比的平方。

3、 棱台的定义:用一个平行于 底面的平面去截棱锥,截面和底面之间的部分(1)分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等(2)表示:用各顶点字母,如五棱台'''''E D C B A P -(3)几何特征: ①上下底面是相似的平行多边形②侧面是 ③侧棱交于原棱锥的顶点4、圆柱的定义:以 的一边所在的直线为旋转轴,其余三边旋转所成的面所围成的旋转体 几何特征:①底面是全等的 ;②母线与平行;③轴与底面圆的半径垂直;④侧面展开图是一个。

5、圆锥的定义:以的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个;②母线交于圆锥的;③侧面展开图是一个。

6、圆台的定义:用一个平行于底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个;②侧面母线交于原圆锥的顶点;③侧面展开图是一个。

7、球体的定义:以的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是;②球面上任意一点到球心的距离等于。

初一上册第一章生活中的立体图形 展开与折叠讲义

初一上册第一章生活中的立体图形  展开与折叠讲义

生活中的立体图形展开与折叠教学内容一、重点知识归纳及讲解1、常见几何体的特征及分类几何体是从实物中抽象出来的数学模型,常见的几何体有圆柱、圆锥、正方体、长方体、棱柱、球体等,它们各有自身的特征,既有共同点,又有不同点,可以根据其共同点进行分类,可以根据其不同点进行区分.2、点、线、面、体之间的关系点动成线、线动成面、面动成体.几何图形是由点、线、面构成的;组成体的面可以是平的,也可以是曲的;面与面相交得到线、线可以是直的,也可以是曲的;线与线相交得到点.3、棱柱的特性在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等,棱柱的上、下底面是相同的多边形,侧面都是长方形.根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱等,它们的底面图形的形状分别为三边形、四边形、五边形、六边形,长方体和正方体都是四棱柱.底面多边形的边数为n的棱柱有2n个顶点、3n条棱、n条侧棱、(n+2)个面、2个底面、n个侧面.4、棱柱、圆柱、圆锥的表面展开图棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,沿棱柱表面不同的棱剪开,可以得到不同组合方式的平面展开图.圆柱的表面展开图是由两个相同的圆形和一个长方形连成的.圆锥的表面展开图是由一个圆形和一个扇形连成的.二、难点知识剖析1、棱柱与圆柱的异同点相同点:圆柱和棱柱都有两个底面.不同点:圆柱的底面是圆形,而棱柱的底面是多边形;圆柱的侧面是一个曲面,而棱柱的侧面是四边形.2、圆柱、圆锥的侧面展开图圆柱的侧面展开图是一个长方形,一边长是底面的圆周长,相邻一边的长是圆柱的高.圆锥的侧面展开图是扇形,其半径为圆锥母线长,弧长是圆锥的底面周长.三、典型例题解析例1、将如图所示的几何体进行分类,并说明理由.例2、将图1所示的三角形绕直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形?例3、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?它们的长度分别是多少?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?例4、如图所示是一多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)如果从右面看是面C,面D在后面,那么哪一面会在上面?例5、如图所示,哪些图形可以折成一个棱柱?例6、把半径为10cm的半圆折成一个圆锥,则这个圆锥的底面积是多少平方厘米?四、随堂练习1、下列图形中属于棱柱的有()A.2个B.3个C.4个D.5个2、有一个正方形木块,它的六个面分别标上数字1~6,下面三个图是从不同方向看到的数字情况,则数字5对面的数字是()A.3 B.4C.6 D.不能确定3、如图所示,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A.B.C.D.4、在下列结论中:(1)一条直线和一个曲面相交,可能得到两个点;(2)一个平面和一条曲线相交,可能得到两个点;(3)两个平面相交,可能得到一条曲线;(4)一个平面与一个曲面相交,可能得到一条直线.其中正确的个数为()A.4 B.3C.2 D.15、在下列说法中:(1)平面上的线都是直线;(2)曲面上的线都是曲线;(3)两条线相交只能得到一个交点;(4)两个面相交只能得到一条交线.其中不正确的个数为()A.1 B.2C.3 D.46、如图所示,一个三棱柱按粗黑线的棱剪开后的展开图是()A.B.C.D.7、如图所示是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数分别是()A.1,-2,0 B.0,-2,1C.-2,0,1 D.-2,1,08、下列图形中,是正方体的展开图的是()A.B.C. D.五、知识点小结1、常见几何体的特征及分类几何体是从实物中抽象出来的数学模型,常见的几何体有_______、_________、______、_______、_____、_____等,它们各有自身的特征,既有共同点,又有不同点,可以根据其共同点进行分类,可以根据其不同点进行区分.2、点、线、面、体之间的关系点动成线、线动成面、面动成体.几何图形是由点、线、面构成的;组成体的面可以是____的,也可以是_____的;面与面相交得到_____、______可以是直的,也可以是曲的;线与线相交得到_______.3、棱柱的特性在棱柱中,任何相邻两个面的交线都叫做_____,相邻两个侧面的交线叫做_______,棱柱的所有侧棱长都_______,棱柱的上、下底面是_______的多边形,侧面都是_______形.根据底面图形的______将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱等,它们的底面图形的形状分别为____边形、_____边形、_____边形、______边形,长方体和正方体都是______棱柱.底面多边形的边数为n的棱柱有_____个顶点、______条棱、_____条侧棱、______个面、____个底面、___个侧面.4、棱柱、圆柱、圆锥的表面展开图棱柱的表面展开图是由两个相同的____形和一些______形连成的,沿棱柱表面不同的棱剪开,可以得到不同组合方式的平面展开图.圆柱的表面展开图是由两个相同的_____形和一个_____形连成的.圆锥的表面展开图是由一个_____形和一个___________形连成的.5、棱柱与圆柱的异同点相同点:圆柱和棱柱都有______个底面.不同点:圆柱的底面是_____,而棱柱的底面是______形;圆柱的侧面是一个_____面,而棱柱的侧面是_____形.6、圆柱、圆锥的侧面展开图圆柱的侧面展开图是一个_____形,一边长是底面的______长,相邻一边的长是圆柱的______.圆锥的侧面展开图是_____形,其半径为圆锥_______长,弧长是圆锥的底面______长.六、巩固练习1、将两个完全相同的长方体拼在一起,如果能组成一个正方体,请求出表面积减少的百分比?2、把一块表面涂着红漆的正方体大积木锯成27块大小一样的小积木,求这些小积木中一面涂漆的块数.3、一个小圆和半个大圆恰好能围成一个几何体的表面(接缝不计),那么这个小圆的半径与大圆的半径有什么关系?4、如图所示的一个长31.4cm,宽5cm的长方形,围成一个圆柱体,则要给它加上两个底面圆的面积是多少?七、课后作业1、如图所示有12个小正方体,每个小正方体内有6个面上分别写着数字1,9,9,8,4,5,用这12个小正方体拼成一个长方体,那么图中看不见的那些小正方体的面有几个?把这些面上的数相加得多少?2、3、。

七年级上册数学几何体的展开与折叠(讲义).

七年级上册数学几何体的展开与折叠(讲义).

几何体的展开与折叠(讲义)➢课前预习1.正方体的11 种展开图:①(1,4,1)型共种;②(2,3,1)型共种;③(3,3)型共种;④(2,2,2)型共种.从上述的四种类型中各选一种,画出展开图,并用相同的符号标注相对面.2.一个正方体盒子的表面展开图如图所示,动手操作把它折叠成一个正方体,那么与点A 重合的点是,与点B 重合的点是.➢知识点睛1.研究几何体特征的思考顺序:先研究,再研究和.2.正方体展开与折叠:①一个面与个面相邻,与个面相对;②一条棱与个面相连,一条棱被剪开成为条边;③一个顶点连着条棱,一个点属于个面.3.利用三视图求几何体的表面积:①;②.➢精讲精练1.下图是某些几何体的表面展开图,请说出这些几何体的名称:①;②;③;④;⑤;⑥.2.如图是一个三棱柱,下列图形中,能通过折叠围成这个三棱柱的是()A.B.C.D.3.下列四个图中,是三棱锥的表面展开图的是()A.B.C.D.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.5.如图,有一个无盖的正方体纸盒,下底面标有图形“○”,沿图中粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.6.下面各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样,它们是()①②③④A.①与③B.②与③C.①与④D.③与④7.如图是一个正方体纸盒的表面展开图,下图能由它折叠而成的是()A.B.C.D.8.如图是正方体的一个表面展开图,若将它折叠成原来的正方体,则与边b 重合的是边,与边a 重合的是边,与边e 重合的是边.第8 题图第9 题图9.一个正方体盒子的表面展开图如图所示,如果把它折叠成一个正方体,那么与点A 重合的点是.10.图1 是一个正方体,四边形APQC 表示用平面截正方体的截面.请在图2 中的表面展开图中画出四边形APQC 的四条边.11.如图是一个截去了一个角的正方体纸盒,截面与棱的交点A,B,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B.C.D.12.如图是一个正方体的表面展开图,这个正方体是()A.B.C.D.13.如图是一个正方体的表面展开图,这个正方体是()A.B.C.D.14.如图是一个正方体的表面展开图,这个正方体是()A.B.C.D.15.将棱长为a 的10 个正方体摆放成如图所示的几何体,则该几何体的表面积是平方单位.16. 5 个棱长为2 的正方体组成如图所示的几何体.(1)画出该几何体的三视图;(2)该几何体的体积是立方单位,表面积是平方单位.17.如图是一个由棱长为1 的正方体组成的几何体的俯视图,小正方形中的数字表示在该位置的正方体的个数.(1)请画出这个几何体的主视图和左视图;(2)这个几何体的表面积是平方单位.【参考答案】➢课前预习1.①6;②3;③1;④1.画图略2.点E,点D➢知识点睛1.面(底面、侧面),棱(线),顶点.2.①4,1;②2,2;③3,3.3.①作三视图;②注意凹陷部分.➢精讲精练1.①圆柱;②圆锥;③四棱柱;④三棱柱;⑤四棱锥;⑥三棱锥.2.B3.B4.A5.B6.D7.B 8.c,d,l9.点C 和点E10.略11.B12.B13.D14.D15.36a216.(1)略;(2)40,8817.(1)略;(2)427。

2012高三数学精品导学复习讲义7.1空间几何体

2012高三数学精品导学复习讲义7.1空间几何体

【精品导学2012高三数学讲义】第七章立体几何初步第1课空间几何体【知识图解】【方法点拨】立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。

空间的元素是点、线、面、体,对于线线、线面、面面的位置关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。

在复习时我们要以下几点:1.注意提高空间想象能力。

在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。

2.归纳总结,分门别类。

从知识上可以分为:平面的基本性质、线线、线面、面面的平行与垂直、空间中角与距离的计算。

3.抓主线,攻重点。

针对一些重点内容加以训练,平行和垂直是位置关系的核心,而线面垂直又是核心的核心,角与距离的计算已经降低要求。

4.复习中要加强数学思想方法的总结与提炼。

立体几何中蕴含着丰富的思想方法,如:将空间问题转化成平面图形来解决、线线、线面与面面关系的相互转化、空间位置关系的判断及角与距离的求解转化成空间向量的运算。

第1课 空间几何体【考点导读】1.观察认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图;3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;4.了解球、棱柱、棱锥、台的表面积和体积的计算公式。

【基础练习】1.一个凸多面体有8个顶点,①如果它是棱锥,那么它有 14 条棱, 8 个面;②如果它是棱柱,那么它有 12 条棱 6 个面。

2.(1)如图,在正四面体A -BCD 中,E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心,则△EFG 在该正四面体各个面上的射影所有可能的序号是 ③④ 。

七年级数学第一章讲义

七年级上册第一章:立体图形知识点1:几何图形1、几何图形长方体、圆锥、球、圆、线段、直线、点、三角形、四边形等都是几何图形。

几何图形分为立体图形和平面图形。

2、常见的几何体:圆柱、圆锥、正方体、长方体、棱柱、球;3、常见的平面图形:图形各个部分在同一平面内,他们是平面图形。

例:如图所示是一个正方体.(1)写出三对互相垂直的棱,并用符号表示.(2)写出三对互相平行的棱,用符号表示并指出它们之间的距离.(3)观察棱AB 和B 1C 1,它们所在的直线相交吗?它们所在的直线平行吗?请你说明理由.知识点2:从不同的方向观察立体图形观察一个物体,从不同的方向和角度看,可能看到不同的图形,因此,从正面、左面、和上面3个不同方向看一个物体,然后描绘出3次观察后看到的图,这样就可以把一个立体图形转化为平面图形。

平面图形与原图分别相等长和宽上面看到与原图分别相等高和宽左面看到与原图分别相等长和高正面看到立体图形⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧------------------------------例:如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.知识点3:立体图形的展开图1、定义:有些立体图形是由平面图形围成的,将他们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

2、正方体的展开图正方体的表面展开图有11种不同的形式,可以概括为4种基本类型:(1)一四一型(2)二三一型(3)三三型(4)二二二型例1如图是一个正方体展开图,把展开图折叠成正方体后,“最”字一面的相对面上的字是()A.能B.我C.行D.棒例2.下列平面图形不能够围成正方体的是()A.B.C.D.知识点4:点、线、面、体1、从运动的观点看,点动成线,线动成面,面动成体(1)点动成线:线是由无数个点组成的(2)线动成面:一条线段平移,扫过形成一个平面(3)面动成体:直角三角形绕着直角边旋转,形成一个圆锥体2、旋转成的立体图形一般地,某些含有曲面的几何体可以由某一个平面旋转得到例:如图:CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是()A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)

空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。

将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。

题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。

鲁教版(五四学制)六年级数学上册知识讲义-1.常见的几何体

初中数学 常见的几何体课标定位 一、考点突破认识生活中常见的几何体,能够对常见几何体进行分类,会计算柱体的面的个数、顶点的个数、棱的条数,了解柱体的底面和侧面,能从生活中的实物里找出几何体。

二、重难点提示重点:柱体以及柱体的分类。

难点:柱体的面的个数、顶点的个数、棱的条数之间的关系。

考点精讲1. 常见几何体的分类2. 认识棱柱侧面顶点侧棱【随堂练习】如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接)。

典例精析例题1 下列关于长方体面的四个结论错误的是( ) A. 长方体的每个面都是长方形 B. 长方体中每两个面都互相垂直 C. 长方体中相对的两个面的面积相等 D. 长方体中与一个面垂直的面有四个思路分析:根据长方体的性质对各选项分析判断后利用排除法求解。

答案:A. 长方体的每个面都是长方形,故本选项正确;B. 长方体中相对的两个面互相平行,相邻的两个面互相垂直,故本选项错误;C. 长方体中相对的两个面长与宽都相对,所以面积相等,故本选项正确;D. 长方体中与一个面相邻的面有四个,所以与一个面垂直的面有四个,故本选项正确。

故选B 。

点评:本题考查了立体图形的认识,熟悉长方体并掌握长方体的性质是解题的关键。

例题2 推理猜测题:(1)三棱锥有__________条棱,四棱锥有__________条棱,十棱锥有__________条棱; (2)__________棱锥有30条棱,该棱锥有__________个面,有__________个顶点。

思路分析:(1)三棱锥侧面有3条棱,底面有3条棱,共有6条棱;四棱锥侧面有4条棱,底面有4条棱,共有8条棱;十棱锥侧面有10条棱,底面有10条棱,共有20条棱;(2)若共有30条棱,那么底面有15条棱,是十五棱锥;十五棱锥侧面有15个面,只有1个底面,所以该棱锥有16个面;十五棱锥底面有15个顶点,上面只有1个顶点,共16个顶点。

图形的认识

乐杰数理化乐中学,学中杰乐杰数理化教师辅导讲义课题图形的认识基础讲解认识常见的几何图形,角的概念,线的定义教学目标难点:角平分线重点、难点教学内容基础知识回顾:1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。

几何图形分为平面图形和立体图形。

(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。

(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。

2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。

B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。

(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。

(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。

(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。

3、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。

多边形中三角形是最基本的图形。

(2)圆:一条线段绕它的端点旋转一周而形成的图形。

(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。

4、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。

5、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。

(1)圆柱和圆锥的侧面展开图(2)棱柱和棱锥的展开图(3)根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三乐杰数理化乐中学,学中杰角形(4个)-----三棱锥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档