精品解析:2019年北京市高考数学试卷(文科)(原卷版)

合集下载

2019年北京市高考数学试卷(文科)

2019年北京市高考数学试卷(文科)

2019年北京市高考数学试卷(文科)题号一二三总分得分一、选择题(本大题共8小题,共40.0分)1. 已知集合A={ x|-1<x<2} ,B={ x |x>1} ,则A∪B=()A. B. C. D.2. 已知复数z=2+ i,则z? =()A. B. C. 3 D. 53. 下列函数中,在区间(0,+∞)上单调递增的是()A. B. C. D.4. 执行如图所示的程序框图,输出的s值为()A. 1B. 2C. 3D. 42=1(a>0)的离心率是,则a=()5. 已知双曲线-yA. B. 4 C. 2 D.6. 设函数f(x)=cosx+ b sin x(b 为常数),则“b=0”是“f(x)为偶函数”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1= lg ,其中星等为m k 的星的亮度为E k(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A. B. C. D.8. 如图,A,B 是半径为 2 的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β,图中阴影区域的面积的最大值为()A.B.第1 页,共15 页二、填空题(本大题共6小题,共30.0分)9. 已知向量=(-4,3),=(6,m),且⊥,则m=______.,10. 若x,y 满足则y-x 的最小值为______,最大值为______.,,11. 设抛物线y2=4x的焦点为F,准线为l,则以F 为圆心,且与l 相切的圆的方程为______.12. 某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为______.13. 已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:______.14. 李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80 元/盒、90 元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120 元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10 时,顾客一次购买草莓和西瓜各 1 盒,需要支付______元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为______.三、解答题(本大题共6小题,共80.0分)15. 在△ABC 中,a=3,b-c=2,cosB=- .(Ⅰ)求b,c 的值;(Ⅱ)求sin(B+C)的值.16.设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额不大于2000元大于2000元支付方式仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.19.已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(Ⅰ)求椭圆C的方程;圆C交于两个不同点P、Q,直线(Ⅱ)设O为原点,直线l:y=kx+t(t≠±)1与椭AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|?|ON|=2,求证:直线l经过定点.20.已知函数f(x)=x3-x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)最小时,求a的值.答案和解析21.【答案】C【解析】解:∵A={x|-1 <x<2},B={x|x >1},∴A∪B={x|-1 <x<2} ∪{x|x >1}= (-1,+∞).:C.故选直接由并集运算得答案.算题.考查并集及其运算,是基础的计本题22.【答案】D【解析】解:∵z=2+i,∴z? = .:D.故选直接由求解.算题.的计考查本题复数及其运算性质,是基础23.【答案】A【解析】增,和在(0,+∞)上都是解:在(0,+∞)上单调递减函数.:A.故选判断每个函数在(0,+∞)上的单调性即可.调性.数函数和反比例函数的单幂函数、指数函数、对考查24.【答案】B【解析】解:模拟程序的运行,可得k=1,s=1s=2体,k=2,s=2不满行循环足条件k≥3,执体,k=3,s=2行循环足条件k≥3,执不满出s的值为2.,满此时足条件k≥3,退出循环,输故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量s 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.25.【答案】D【解析】2=1(a>0),得b2=1,解:由双曲线-y又e= ,得,即,解得,a= .故选:D.由双曲线方程求得b2,再由双曲线的离心率及隐含条件a2+b2=c2 联立求得a 值.本题考查双曲线的简单性质,考查计算能力,是基础题.26.【答案】 C【解析】解:设函数f(x)=cosx+bsinx(b 为常数),则“b=0?”“(f x)为偶函数”,“(f x)为偶函数”? “b=0,”∴函数f(x)=cosx+bsinx(b 为常数),则“b=0是”“(f x)为偶函数”的充分必要条件.故选:C.“b=0?”“(f x)为偶函数”,“(f x)为偶函数”? “b=0,”由此能求出结果.本题考查命题真假的判断,考查函数的奇偶性等基础知识,考查推理能力与第6 页,共15 页解:设太阳的星等是m1=-26.7,天狼星的星等是m2=-1.45,由题意可得:,∴,则.故选:A.把已知熟记代入m2-m1= lg ,化简后利用对数的运算性质求解.本题考查对数的运算性质,是基础的计算题.28.【答案】 B【解析】解:由题意可得∠AOB=2∠APB=2β,要求阴影区域的面积的最大值,即为直线QO⊥AB,即有QO=2,Q 到线段AB 的距离为2+2cosβ,AB=2?2sin β=4sin,β扇形AOB 的面积为?2β?4=4,β△ABQ 的面积为(2+2cos )β?4sin β=4sin β+4sin βcos β=4,sin β+2sin2 βS△AOQ+S△BOQ=4sin β+2sin2- β?2?2sin2 β=4s,in β即有阴影区域的面积的最大值为4β+4sin.β故选:B.由题意可得∠AOB=2∠APB=2β,要求阴影区域的面积的最大值,即为直线QO⊥AB,运用扇形面积公式和三角形的面积公式,计算可得所求最大值.本题考查圆的扇形面积公式和三角函数的恒等变换,考查化简运算能力,属于中档题.29.【答案】8【解析】解:由向量=(-4,3),=(6,m),且⊥,得,∴m=8.故答案为:8.⊥则,代入,,解方程即可.本题考查了平面向量的数量积与垂直的关系,属基础题.30.【答案】-3 1【解析】解:由约束条件作出可行域如图,A(2,-1),B(2,3),令z=y-x,作出直线y=x,由图可知,平移直线y=x,当直线z=y-x 过A 时,z有最小值为-3,过B 时,z有最大值1.故答案为:-3,1.由约束条件作出可行域,令z=y-x,作出直线y=x,平移直线得答案.本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.2+y2=4 11.【答案】(x-1)【解析】解:如图,抛物线y2=4x 的焦点为F(1,0),∵所求圆的圆心F,且与准线x=-1 相切,∴圆的半径为2.则所求圆的方程为(x-1)2+y2=4.故答案为:(x-1)2+y2=4.由题意画出图形,求得圆的半径,则圆的方程可求.本题考查抛物线的简单性质,考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是基础题.31.【答案】40【解析】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V= .故答案为:40.由三视图还原原几何体,然后利用一个长方体与一个棱柱的体积作和求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.32.【答案】若l⊥α,l⊥m,则m∥α【解析】解:由l,m 是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.由l,m 是平面α外的两条不同直线,利用线面平行的判定定理得若l⊥α,l⊥m,第9 页,共15 页则m∥α.中线、面、面面间的位置空间本题的判断,考查考查满足条件的真命题推理能力与计算能力,属于中档题.,考查关系等基础知识33.【答案】130 15【解析】客一次购买草莓和西瓜各1盒,可得60+80=140(元),,顾解:①当x=10时客需要支付140-10=130(元);即有顾②在促销活动中,设订单总金额为m元,可得(m-x)×80%≥m×70%,即有x≤,意可得m≥120,由题可得x≤=15,则x的最大值为15元.:130,15故答案为①由题意可得顾客一次购买的总金额,减去x,可得所求值;②在促销活动中,设订单总金额为m元,可得(m-x)×80%≥m×7,0%解不等式,结合恒成立思想,可得x 的最大值.应用,考查运算能力,属于中档题.化简的本题题考查不等式在实际问34.【答案】解:(1)∵a=3,b-c=2,cosB=- .2=a2+c2-2accosB ∴由余弦定理,得 b= ,∴b=7,∴c= b-2=5;(2)在△ABC 中,∵cosB =- ,∴sinB= ,由正弦定理有:,∴sinA= = ,∴sin(B+C)=sin(-A)=sin A=.【解析】第10 页,共15 页(1)利用余弦定理可得b2=a2+c2-2accosB,代入已知条件即可得到关于b的方程,解方程即可;(2)sin(B+C)=sin(-A)=sinA,根据正弦定理可求出sinA.本题考查了正弦定理余弦定理,属基础题.35.【答案】解:(Ⅰ)∵{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.∴(a3+8)2=(a2+10)(a4+6),∴(-2+2d)2=d(-4+3d),解得d=2,∴a n=a1+(n-1)d=-10+2n-2=2n-12.(Ⅱ)由a1=-10,d=2,得:22S n=-10n+=n-11n=(n-)-,∴n=5或n=6时,S n取最小值-30.【解析】(Ⅰ)利用等差数列通项公式和等比数列的性质,列出方程求出d=2,由此能求出{a n}的通项公式.2-11n=(n-)2-,由此能(Ⅱ)由a1=-10,d=2,得S n=-10n+=n求出S n的最小值.本题考查数列的通项公式、前n项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.36.【答案】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100-5-30-25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000×=400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p==.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,第11页,共15页发现他本月的支付金额大于2000 元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用 B 的学生中本月支付金额大于2000 元的人数有变化.【解析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B 两种支付方式都不使用的有5人,仅使用A 的有30人,仅使用B 的有25人,求出A,B 两种支付方式都使用的人数有40人,由此能估计该校学生中上个月A,B 两种支付方式都使用的人数.(Ⅱ)从样本仅使用B 的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,由此能求出该学生上个月支付金额大于2000元的概率.(Ⅲ)从样本仅使用B 的学生中随机抽查 1 人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.不能认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化.本题考查频数、概率的求法,考查频数分布表、概率等基础知识,考查推理能力与计算能力,属于基础题.37.【答案】证明:(Ⅰ)∵四棱锥P-ABCD 中,PA⊥平面ABCD ,底面ABCD 为菱形,∴BD ⊥PA,BD⊥AC,∵PA∩AC=A,PA、AC 平面PAC,∴BD ⊥平面PAC.(Ⅱ)∵在四棱锥P-ABCD 中,底面ABCD 为菱形,∠ABC =60°,∴△是等边三角形,∵E 为CD 的中点,∴⊥,∵∥,∴AB⊥AE,∵PA⊥平面ABCD ,∴PA⊥AE,∵PA∩AB=A,PA、AB 平面PAB,∴AE⊥平面PAB,∵AE 平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB 上存在中点F,使得CF∥平面PAE.理由如下:分别取PB、PA 的中点F、G,连接CF、FG、EG,第12 页,共15 页在三角形PAB 中,∥且,在菱形ABCD 中,E 为CD 的中点,所以CE∥AB,且,所以CE∥FG,且,即四边形CEGF 为平行四边形,所以∥,又,,∴.【解析】(Ⅰ)推导出BD⊥PA,BD⊥AC,由此能证明BD⊥平面PAC.(Ⅱ)推导出AB⊥AE,PA⊥AE,从而AE⊥平面PAB,由此能证明平面PAB⊥平面PAE.(Ⅲ)棱PB上存在中点F,分别取PB、PA 的中点F、G,连接CF、FG、EG,推导出四边形CEGF 为平行四边形,所以,进而CF∥平面PAE.本题考查线面垂直、面面垂直的证明,考查满足线面平行的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.38.【答案】解:(Ⅰ)椭圆C:+ =1 的右焦点为(1,0),且经过点A(0,1).可得b=c=1,a= = ,2则椭圆方程为+y =1;2+2 y2=2 联立,可得(1+2k2)x2+4ktx+2t2-2=0,(Ⅱ)证明:y=kx+t 与椭圆方程x设P(x1,y1),Q(x2,y2),△=16k2t2-4(1+2 k2)(2t2-2)>0,x1+x2=- ,x1x2= ,第13 页,共15 页(1-y1)(1-y2)=1+y1y2-(y1+y2)=1+(kx1+t)(kx2+t)-(kx1+kx2+2t)22=(1+t-2t)+k?+(kt-k)?(-)=,|OM|?|ON|=2,即为|?|=2,2即有|t-1|=(t-1)2,由t≠±,1解得t=0,满足△>0,即有直线l方程为y=k x,恒过原点(0,0).【解析】(Ⅰ)由题意可得b=c=1,由a,b,c的关系,可得a,进而得到所求椭圆方程;2+2y2=2联立,运用韦达定理,化简整理,结合直线(Ⅱ)y=kx+t与椭圆方程x恒过定点的求法,计算可得结论.本题考查椭圆的方程和运用,考查联立直线方程和椭圆方程,运用韦达定理,考查直线恒过定点的求法,考查化简整理的运算能力,属于中档题.39.【答案】解:(Ⅰ)f′(x)=,由f′(x)=1得x(x-)=0,得,.又f(0)=0,f()=,∴y=x和,即y=x和y=x-;(Ⅱ)证明:欲证x-6≤f(x)≤x,只需证-6≤f(x)-x≤0,令g(x)=f(x)-x=,x∈[-2,4],则g′(x)==,可知g′(x)在[-2,0]为正,在(0,)为负,在[,]为正,∴g(x)在[-2,0]递增,在[0,]递减,在[,]递增,又g(-2)=-6,g(0)=0,g()=->-6,g(4)=0,∴-6≤g(x)≤0,∴x-6≤f(x)≤x;(Ⅲ)由(Ⅱ)可得,第14页,共15页F(x)=|f(x)-(x+ a)|=|f(x)-x-a|=|g(x)-a|∵在[-2,4]上,-6≤g(x)≤0,令t= g(x),h(t)=|t -a|,当t∈[-6,0]时,h(t)的最大值M(a)的问题了,化为则问题转①当a≤-3 时,M(a)=h(0)=|a|=-a,3;此时-a≥3,当a=-3 时,M(a)取得最小值②当a≥-3 时,M(a)=h(-6)=|-6-a|=|6+a|,∵6+a≥3,∴M(a)=6+ a,也是a=-3 时,M (a)最小为3.为-3.时 a 的值综上,当M(a)取最小值【解析】数f ′(x),由f ′(x)=1 求得切点,即可得点斜式方程;(Ⅰ)求导数研究g(x)-6≤(f x)-x≤0,再令g(x)=f(x)-x,利用导不等式转化为(Ⅱ)把所证;点即可得证调性和极值在[-2,4]的单合绝函数h(t)=|t-a|,结(Ⅲ)先把F(x)化为|g(x)-a|,再利用(Ⅱ)的结论,引进称轴对t=a与-3 的关系分析即可.函数的对调性,通过对值称性,单大.度较数的综合应用,构造法,转化法,数形结合法等,难此题考查了导第15 页,共15 页。

2019年北京卷文科数学高考真题(1)

2019年北京卷文科数学高考真题(1)

数学(文)(北京卷)本试卷共 5页, 150 分。

考试时长 120 分钟。

考生务势必答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分 (选择题共40分)一、选择题共 8 小题,每题 5分 ,共 40分。

在每题列出的四个选项中,选出切合题目要求的一项。

(1)已知会合 A={x|-1<x<2},B={x|x>1},则AUB=(A)(-1 , 1)(B)(1,2)(C)(-1, +∞ )(D)(1, +∞ )(2)已知复数 z=2+i ,则=(A)3(B)5(C)3(D)5(3)以下函数中,在区间(0,+∞ )上单一递加的是1(A)y = x 2(B)y = 2- x(C)y log 1 x21(D)y =x(4)履行以下图的程序框图,输出的s值为(A) 1(B) 2(C) 3(D) 4(5)已知双曲线x2 - y2 = 1(a >) 的离心率是 5 ,则a=a2(A) 6(B) 4(C) 21(D)2(6)设函数 f ( x ) = cos x + b sin x (b为常数),则“b= 0”是“f(x)为偶函数”的(A)充足而不用要条件(B)必需而不充足条件(C)充足必需条件(D)即不充足也不用要条件(7)在天文学中,天体的明暗程度能够用星等或亮度来描绘,两颗星的星等与亮度知足5 lg E1,此中星等为 m k的星的亮度为E k (k 1,2) 。

已知太阳的星等是,m2- m1=E22天狼星的星等是,则太阳与天狼星的亮度的比值为( A)10(B)( C)( D)1010.1(8) 如图, A, B 是半径为 2 的圆周上的定点, P 为圆周上的动点,∠ APB 是锐角,大小为β,图中暗影地区的面积的最大值为(A) 4β +4cos βA ( B) 4β +4sin β( C) 2β +2cos βP(D) 2β +2sin β第二部分 (非选择题共 110 分)B二、填空题共 6 小题 ,每题 5 分,共 30 分。

精品解析:2019年全国统一高考数学试卷(文科)(新课标Ⅰ)(原卷版)

精品解析:2019年全国统一高考数学试卷(文科)(新课标Ⅰ)(原卷版)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z =A. 2B.C.D. 12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A I A. {}1,6B. {}1,7C. {}6,7D. {}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<4.≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.tan255°=A. -23B. -3C. 23D. 38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6B.π3C.2π3D.5π69.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D. A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为A. 2sin40°B. 2cos40°C.1sin50︒D.1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A. 6B. 5C. 4D. 312.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年全国普通高等学校招生统一考试文科数学(北京卷正式版)【含答案及解析】

2019年全国普通高等学校招生统一考试文科数学(北京卷正式版)【含答案及解析】

2019年全国普通高等学校招生统一考试文科数学(北京卷正式版)【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知,集合,则( A )( B )( C )( D )2. 若复数在复平面内对应的点在第二象限,则实数的取值范围是( A )( B )( C )( D )3. 执行如图所示的程序框图,输出的值为( A ) 2 ( B )( C )( D )4. 若满足则的最大值为( A ) 1 ( B ) 3( C ) 5 ( D ) 95. 已知函数,则( A )是偶函数,且在 R 上是增函数( B )是奇函数,且在 R 上是增函数( C )是偶函数,且在 R 上是减函数( D )是奇函数,且在 R 上是增函数6. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A ) 60 ( B ) 30( C ) 20 ( D ) 107. 设 m , n 为非零向量,则“ 存在负数,使得 m = λn ” 是“ m · n <0” 的( A )充分而不必要条件( B )必要而不充分条件( C )充分必要条件( D )既不充分也不必要条件8. 根据有关资料,围棋状态空间复杂度的上限 M 约为 3 361 ,而可观测宇宙中普通物质的原子总数 N 约为 10 80 .则下列各数中与最接近的是(参考数据:lg3≈0.48 )( A ) 10 33 ( B ) 10 53( C ) 10 73 ( D ) 10 93二、填空题9. 在平面直角坐标系 xOy 中,角与角均以 Ox 为始边,它们的终边关于 y 轴对称 . 若 sin = ,则 sin =_________ .10. 若双曲线的离心率为,则实数 m =__________ .11. 已知,,且 x + y =1 ,则的取值范围是 __________ .12. 已知点 P 在圆上,点 A 的坐标为 (-2,0) , O 为原点,则的最大值为 _________ .13. 能够说明“ 设 a , b , c 是任意实数.若 a > b > c ,则a + b > c ” 是假命题的一组整数 a , b , c 的值依次为 ______________________________ .14. 某学习小组由学生和学科网 &amp; 教师组成,人员构成同时满足以下三个条件:(ⅰ )男学生人数多于女学生人数;(ⅱ )女学生人数多于教师人数;(ⅲ )教师人数的两倍多于男学生人数.① 若教师人数为 4 ,则女学生人数的最大值为 __________ .② 该小组人数的最小值为 __________ .三、解答题15. 已知等差数列和等比数列满足 a 1 = b 1 =1, a 2 + a 4 =10, b 2b 4 = a 5 .(Ⅰ )求的通项公式;(Ⅱ )求和:.16. (本小题 13 分)已知函数 .( I ) f ( x ) 的最小正周期;( II )求证:当时,.17. (本小题 13 分)某大学艺术专业 400 名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了 100 名学生,记录他们的分数,将数据分成 7 组: [20,30 ),[30,40 ),┄ , [80,90] ,并整理得到如下频率分布直方图:(Ⅰ )从总体的 400 名学生中随机抽取一人,估计其分数小于 70 的概率;(Ⅱ )已知样本中分数小于 40 的学生有 5 人,试估计总体中分数在区间 [40,50 )内的人数;(Ⅲ )已知样本中有一半男生的分数学 . 科网不小于 70 ,且样本中分数不小于 70 的男女生人数相等.试估计总体中男生和女生人数的比例.18. (本小题 14 分)如图,在三棱锥 P – ABC 中,PA ⊥ AB ,PA ⊥ BC ,AB ⊥ BC , PA = AB = BC =2 , D 为线段 AC 的中点, E 为线段 PC 上一点.(Ⅰ )求证:PA ⊥ BD ;(Ⅱ )求证:平面BDE ⊥ 平面 PAC ;(Ⅲ )当PA ∥ 平面 BD E 时,求三棱锥 E – BCD 的体积.19. (本小题 14 分)已知椭圆 C 的两个顶点分别为 A (−2,0) , B(2,0) ,焦点在 x 轴上,离心率为.(Ⅰ )求椭圆 C 的方程;(Ⅱ )点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M , N ,过 D 作 AM 的垂线交 BN 于点 E . 求证:△ BDE 与△ BDN 的面积之比为 4:5 .20. (本小题 13 分)已知函数.(Ⅰ )求曲线在点处的切线方程;(Ⅱ )求函数在区间上的最大值和最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】。

2019年全国高考北京市数学(文)试卷及答案【精校版】

2019年全国高考北京市数学(文)试卷及答案【精校版】

2019年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。

考试时长120分钟,。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的4个选项中,选出符合题目要求的一项。

1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x = 3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间t (单位:分钟)2p at bt c =++(a 、b 、c 是常数),下图 记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

精品解析:2019年全国统一高考数学试卷(文科)(新课标Ⅰ)(原卷版)

精品解析:2019年全国统一高考数学试卷(文科)(新课标Ⅰ)(原卷版)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z =A. 2B.C.D. 12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B AA. {}1,6B. {}1,7C. {}6,7D. {}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<4.≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.tan255°=A. -2B. -C. 2D.8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6B.π3C.2π3D.5π69.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D. A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为A. 2sin40°B. 2cos40°C.1sin50︒D.1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A. 6B. 5C. 4D. 312.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年全国高考数学(文)试题及答案-北京卷

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x|–1<x<2},B={x|x>1},则A∪B=(A)(–1,1)(B)(1,2)(C)(–1,+∞)(D)(1,+∞)(2)已知复数z=2+i,则z z⋅=(A)3(B)5(C)3 (D)5(3)下列函数中,在区间(0,+∞)上单调递增的是(A)12y x=(B)y=2x-(C)12logy x=(D)1yx=(4)执行如图所示的程序框图,输出的s值为(A)1(B)2(C)3(D)4(5)已知双曲线2221xya-=(a>0)的离心率是5,则a=(A)6(B)4 (C)2 (D)1 2(6)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的(A)充分而不必要条件(B)必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(7)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 (A )1010.1(B )10.1(C )lg10.1(D )10.110-(8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019年北京市高考数学试卷(文科)

2019年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(5分)(2019•北京)已知集合A ={x |﹣1<x <2},B ={x |x >1},则A ∪B =( )A .(﹣1,1)B .(1,2)C .(﹣1,+∞)D .(1,+∞)2.(5分)(2019•北京)已知复数z =2+i ,则z •( ) z =A . B . C .3 D .5353.(5分)(2019•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A .y =xB .y =2﹣xC .y =log xD .y 1212=1x4.(5分)(2019•北京)执行如图所示的程序框图,输出的s 值为( )A .1B .2C .3D .45.(5分)(2019•北京)已知双曲线y 2=1(a >0)的离心率是,则a =( )x 2a 2‒5A . B .4 C .2 D . 6126.(5分)(2019•北京)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(5分)(2019•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2﹣m 1lg ,其中星等为m k 的星的亮度为E k (k =1,2).已知=52E 1E 2太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10﹣10.18.(5分)(2019•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β,图中阴影区域的面积的最大值为( )A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β二、填空题共6小题,每小题5分,共30分。

2019年全国普通高等学校招生统一考试数学(文)(北京卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(文)(北京卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单选题1.已知集合A={(|||<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:故选A.点睛:此题考查集合的运算,属于送分题.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3.执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4.设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件; 当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件故选B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A.B.C.D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以()12,n n a n n N -+=≥∈, 又1a f =,则7781a a q f===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种: (1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1n n aq a -=(*0,2,q n n N ≠≥∈), 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中, 0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数. 详解:由三视图可得四棱锥,在四棱锥中,, 由勾股定理可知:, 则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.7.在平面直角坐标系中, ,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A. ABB. CDC. EFD. GH【答案】C【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时, cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时, cos ,sin x y αα==, tan y x α=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时, cos ,sin x y αα==, tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限, tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较. 8.设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.二、填空题9.设向量a=(1,0),b=(−1,m),若,则m=_________.【答案】【解析】分析:根据坐标表示出,再根据,得坐标关系,解方程即可.详解:,,由得:,,即.点睛:此题考查向量的运算,在解决向量基础题时,常常用到以下:设,则①;②.10.已知直线l过点(1,0)且垂直于轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.【答案】【解析】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.详细:由题意可得,点在抛物线上,将代入中,解得:,,由抛物线方程可得:,焦点坐标为.点睛:此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.11.能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.【答案】(答案不唯一)【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若,则”成立的,根据不等式的性质,去特值即可.详解:使“若,则”为假命题则使“若,则”为真命题即可,只需取即可满足所以满足条件的一组的值为(答案不唯一)点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.12.若双曲线的离心率为,则a=_________.【答案】4【解析】分析:根据离心率公式,及双曲线中的关系可联立方程组,进而求解参数的值.详解:在双曲线中,,且点睛:此题考查双曲线的基本知识,离心率是高考对于双曲线考查的一个重要考点,根据双曲线的离心率求双曲线的标准方程及双曲线的渐近线都是常见的出题形式,解题的关键在于利用公式,找到之间的关系.13.若,y满足,则2y−的最小值是_________.【答案】3【解析】分析:将原不等式转化为不等式组,画出可行域,分析目标函数的几何意义,可知当时取得最小值.详解:不等式可转化为,即满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.点睛:此题考查线性规划,求线性目标函数的最值,当时,直线过可行域在轴上截距最大时,值最大,在轴上截距最小时,值最小;当时,直线过可行域在轴上截距最大时,值最小,在轴上截距最小时,值最大.14.若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则为钝角,,故.点睛:此题考查解三角形的综合应用,余弦定理的公式有三个,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含的表达式的最值问题是解题的第二个关键.三、解答题15.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.【答案】(I)(II)【解析】分析:(1)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(2)由(1)可得,进而可利用等比数列求和公式进行求解.详解:(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.16.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)将化简整理成的形式,利用公式可求最小正周期;(2)根据,可求的范围,结合函数图像的性质,可得参数的取值范围.详解:(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负.好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(Ⅰ)(Ⅱ)(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.【解析】分析:(1)分别计算样本中电影总部数及第四类电影中获得好评的电影部数,代入公式可得概率;(2)利用古典概型公式,计算没有获得好评的电影部数,代入公式可得概率;(3)根据每部电影获得好评的部数做出合理建议..详解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为.(Ⅱ)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得.(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.点睛:本题主要考查概率与统计知识,属于易得分题,应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.18.(本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】分析:(1)欲证,只需证明即可;(2)先证平面,再证平面P AB⊥平面PCD;(3)取中点,连接,证明,则平面.详解:(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴.(Ⅱ)∵底面为矩形,∴.∵平面平面,∴平面.∴.又,∵平面,∴平面平面.(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.点睛:证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.19.设函数.(Ⅰ)若曲线在点处的切线斜率为0,求a;(Ⅱ)若在处取得极小值,求a的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)求导,构建等量关系,解方程可得参数的值;(2)对分及两种情况进行分类讨论,通过研究的变化情况可得取得极值的可能,进而可求参数的取值范围.详解:解:(Ⅰ)因为,所以.,由题设知,即,解得.(Ⅱ)方法一:由(Ⅰ)得.若a>1,则当时,;当时,.所以在x=1处取得极小值.若,则当时,,所以.所以1不是的极小值点.综上可知,a的取值范围是.方法二:.(1)当a=0时,令得x=1.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.(2)当a>0时,令得.①当,即a=1时,,∴在上单调递增,∴无极值,不合题意.②当,即0<a<1时,随x的变化情况如下表:∴在x=1处取得极大值,不合题意.③当,即a>1时,随x的变化情况如下表:∴在x=1处取得极小值,即a>1满足题意.(3)当a<0时,令得.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.综上所述,a的取值范围为.点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数单调性或求单调区间问题;③利用导数求函数的极值最值问题;④关于不等式的恒成立问题.解题时需要注意的有以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值最值问题时常常会涉及到分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.20.已知椭圆2222:1(0)x y M a b a b +=>>斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .【答案】(Ⅰ)2213x y +=(Ⅲ)1【解析】分析:(1)根据题干可得,,a b c 的方程组,求解22,a b 的值,代入可得椭圆方程;(2)设直线方程为y x m =+,联立,消y 整理得2246330x mx m ++-=,利用根与系数关系及弦长公式表示出AB ,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合C D Q 、、三点共线,利用共线向量基本定理得出等量关系,可求斜率k . 详解:(Ⅰ)由题意得2c =,所以c =又c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=. (Ⅱ)设直线AB 的方程为y x m =+,由22{ 13y x mx y =++=消去y 可得2246330x mx m ++-=,则()22236443348120m m m ∆=-⨯-=->,即24m <,设()11,A x y , ()22,B x y ,则1232mx x +=-, 212334m x x -=,则12AB x =-=, 易得当20m =时, max ||AB =AB (Ⅲ)设()11,A x y , ()22,B x y , ()33,C x y , ()44,D x y ,则221133x y += ①, 222233x y += ②,又()2,0P -,所以可设1112PA y k k x ==+,直线PA 的方程为()12y k x =+, 由()1222{ 13y k x x y =++=消去y 可得()222211113121230k x k x k +++-=,则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712,4747x y C x x ⎛⎫-- ⎪++⎝⎭,同理可得2222712,4747x y D x x ⎛⎫-- ⎪++⎝⎭.故3371,44QC x y ⎛⎫=+- ⎪⎝⎭, 4471,44QD x y ⎛⎫=+- ⎪⎝⎭, 因为,,Q C D 三点共线,所以3443717104444x y x y ⎛⎫⎛⎫⎛⎫⎛⎫+--+-= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到,,a b c 三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式21AB x =-变形为AB =再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.。

精品解析:2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版)

2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则AB =( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,22.若(1i)2i z +=,则z =( ) A. 1i --B. 1+i -C. 1i -D. 1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A. 0.5B. 0.6C. 0.7D. 0.85.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A. 2B. 3C. 4D. 56.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A. 16B. 8C. 4D. 27.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A. ,1a e b ==-B. ,1a e b ==C. 1,1a e b -==D. 1,1a e b -==-8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A. BM EN =,且直线,BM EN 是相交直线B. BM EN ≠,且直线,BM EN是相交直线 C. BM EN =,且直线,BM EN异面直线D. BM EN ≠,且直线,BM EN 是异面直线9.执行如图所示的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A. 4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线22:145x y C 的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为( ) A.32B.52C.72D.9211.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( )A. ①③B. ①②C. ②③D. ③④ 12.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A. 233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B. 233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(2,2),(8,6)a b ==-,则cos ,a b <>=___________.14.记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.15.设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M的坐标为___________.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70. (1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.19.图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===,60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.20.已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.21.已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B . (1)证明:直线AB 过定点:(2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分 选修4-4:坐标系与参数方程22.如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =,求P 的极坐标.选修4-5:不等式选讲23.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值; (2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试
数学(文)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作
答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要
求的一项。
1.已知集合A={x|–11},则A∪B=
A.(–1,1)B.(1,2)C.(–1,+∞)D.(1,+∞)
2.已知复数z=2+i,则
zz

A.3B.5C.3D.5
3.下列函数中,在区间(0,+

)上单调递增的是

A.12yxB.y=2xC.12logyxD.
1
y

x

4.执行如图所示的程序框图,输出的s
值为

A.1B.2C.3D.4
5.
已知双曲线
2
2

2
1

x
y

a

(a>0)的离心率是5则
a=

A.6B.4C.2D.
1
2
6.设函数f(x)=cosx+bsinx(b为常数),则“b=0”是“f(x
)为偶函数”的
A.充分而不必要条件B.
必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

7.在天文学中,天体的明暗程度可以用星等或亮度来描述.
两颗星的星等与亮度满足
21

2

1
5
2
–lg
E

mm

E

,其

中星等为
m

1的星的亮度为E2

(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星

的亮度的比值为
A.1010.1B.10.1C.lg10.1D.10–
10.1
8.如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,APB是锐角,大小为β.
图中阴影区域的
面积的最大值为

A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ
第二部分(非选择题共110分)
二、填空题共6小题,每小题5分,共30分。
9.已知向量a=(-4,3),b=(6,m),且
ab

rr
,则m=__________.

10.若x,y
满足
2,
1,
4310,

x
y
xy








则yx的最小值为__________,最大值为
__________.

11.设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.
12.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1

那么该几何体的体积为__________.
3

13.已知l,m是平面

外的两条不同直线.给出下列三个论断:

①l⊥m;②m∥;③l⊥.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/
盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120
元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。
15.在△ABC中,a=3,–2bc,cosB=
1
2

(Ⅰ)求b,c的值;
(Ⅱ)求sin(B+C)的值.
16.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6
成等比数列.
(Ⅰ)求{a
n

}的通项公式;

(Ⅱ)记{a
n}的前n项和为Sn,求Sn

的最小值.

17.
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解
某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发
现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况
如下:
4

支付
金额
支付方式

不大于2000元
大于2000元

仅使用A27人3人
仅使用B24人1人

(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现
他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于
2000

元的人数有变化?说明理由.
18.如图,在四棱锥PABCD中,PA平面ABCD,底部ABCD为菱形,E为CD的中点.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

19.
已知椭圆
22
22
:1
xy

C

ab

的右焦点为(1,0),且经过点

(0,1)A

.

(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,直线:(1)lykxtt与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,
直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
20.已知函数
32
1
()

4
fxxxx

.

(Ⅰ)求曲线()yfx的斜率为1的切线方程;
(Ⅱ)当[2,4]x时,求证:6()xfxx;
(Ⅲ)设()|()()|()FxfxxaaR,记()Fx在区间[2,4]上的最大值为M(a),当M(a)最小时,
求a的值.

相关文档
最新文档