九年级数学上册《二次根式的加减》同步练习1 人教新课标版
新人教版九年级上册数学书练习册的答案作业本答案课本习题答案

《新课程课堂同步练习册•数学(人教版九年级上册)》 参考答案 第二十一章二次根式 §21.1 二次根式(一) 一、1. C 2. D 3. D 二、1. ,9 2. , 3. 4. 1 三、1.50m 2.(1) (2) >-1 (3) (4) §21.1 二次根式(二) 一、1. C 2.B 3.D 4. D 二、1. , 2.1 3.; 三、1. 或-3 2.(1) ;(2)5;(3) ;(4) ;(5) ;(6) ; 3.原式= §21.2 二次根式的乘除(一) 一、1.C 2. D 3.B 二、1.< 2. ( 为整数)3.12s 4. 三、1.(1)(2)(3)(4)–108 2.10cm23、 cm §21.2 二次根式的乘除(二) 一、1.C ; 4.6
看着他们那幸福的样子,你一定想为锦上添花吧?给与众不同祝~温暖朋友心灵作者举了三个“送”事例:先批古董到巴黎去展览知后如何即有无回这是媚外可耻行径;还几位大师捧张画和新
看着他们那幸福的样子,你一定想为锦上添花吧?给与众不同祝~温暖朋友心灵作者举了三个“送”事例:先批古董到巴黎去展览知后如何即有无回这是媚外可耻行径;还几位大师捧张画和新
三、1.(1) (2) (3)5 2.(1) (2) (3) 3. ,因此是 倍. §21.2 二次根式的乘除(三) 一、1.D 2.A 3.B 二、1. 2. , , 3.1 4. 三、1.(1) (2)10 2. 3.( ,0) (0, ); §21.3 二次根式的加减(一) 一、1.C 2.A 3.C 二、1.(答案不唯一,如: 、 )2. < < 3.1 三、1.(1) (2) (3)2 (4) 2. §21.3 二次根式的加减(二) 一、1.A 2.A 3.B 4.A 二、1.1 2. , 3. 三、1.(1) (2) (3)4 (4)2 2.因为 >45 所以王师傅的钢材不够用.
九年级数学上册 2132 二次根式的加减训练试题2 试题

二次根式的加减训练试题创作人:历恰面日期:2020年1月1日班级姓名指导教师 . 【复习】有理数加减乘除混合运算顺序:。
有理数加减乘除混合运算顺序在实数范围内仍然成立。
【自主完成】例4. 计算:〔1〕〔2〕归纳1:在二次根式的运算中,运算律仍然适用。
练习1. 计算:〔1〕〔2〕〔3〕〔4〕例5. 计算:〔1〕〔2〕归纳2:在二次根式的运算中,多项式乘法法那么和乘法公式仍然适用。
练习2. 计算:〔1〕〔2〕〔3〕〔4〕【当堂稳固】计算:〔1〕〔2〕〔3〕〔4〕〔5〕【课后训练】1.以下计算正确的选项是( ).A.b93 2(B.12)33(2==+)(+babaa-=+2-)C .32)23(6+=+÷D .641426412)232(2-=+-=-2.)32)(23(+-等于( ).A .7B .223366-+-C .1D .22336-+3. 以下计算正确的选项是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1 4. 计算:〔1〕⋅-121).2218( 〔2〕).4818)(122(+-〔3〕+ 〔4〕.)18212(2-【拓展】两个含有二次根式的代数式相乘,假如它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写以下各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______.。
九年级数学上册_21.3二次根式的加减第一课时课件_人教新课标版

27
4.如果最简二次根式
5
与
mn
是同类二次根式,求m、n 的值.
二次根式的加减法
合并同类二次根式:
6 3 3 3 (6 3) 3 9 3
6 36 2
合并同类项:
6ab+3ab=(6+3)ab=9ab 2+6ab3= 6ab
2 2 2 2
6 3 6 2 5 2 3 3
d
课堂小结
1、判断同类二次根式的关键是什么? (1)化成最简二次根式, (2)被开方数相同,根指数相同(都等于2) 2、二次根式加减运算的步骤: (1)把各个二次根式化成最简二次根式 (2)把各个同类二次根式合并.
(3)不是同类二次根式的不能合并.
(2)被开方数相同,根指数相同(都等于2) 1.下列各式中,哪些是同类二次根式?
1 1 (1) 2 ; (2) 75 ; (3) ; ( 4) ; (5) 3; 50 27 2 a 3 ( 6) 8ab ; (7)6b ; (8) 12 a 12b . 3 2b
1、下面给出4组根式(其中b>0)
(6 3 3 3 ) (6 2 5 2 ) 9 3 11 2
思考:二次根式的加减的一般步骤.
(1)把各个二次根式化成最简二次根式
(2)把各个同类二次根式合并.
下列计算哪些正确,哪些不正确?
⑴
⑵ ⑶ ⑷
3 2 5
(不正确) (不正确) (不正确) (正确) (不正确) a 0
人教新版九年级上
§21.3 二次根式的加减 (1)
一、观察下列单项式有什么共同特征。
-a2b
称为同类项
5a2b
2a2b
21.3二次根式的加减 课件1(人教版九年级上册)

同类二次根式
1.问题的提出:
两地点间的路程由多条线段首尾相接而成, 等于 a a 4 2 b a b , 则路程可简单表示为 ?
若a
8, b 18 , 则 ?
(1)
(1)式的化简过程与整式加减运算中的 合并同类项类似。
同类二次根式
2.问题的延续:
若路程等于 8 18 4 2 , 则如何化简?zxxk
③ 是
2 ④ 3
② 12
2
3
27
是同类二次根式的 (C )
A.①主探究:
2、下列各式,哪些是同类二次根式:
1 1 2 a 3 2, 48, , , 3, , 8ab , 6b 2 27 3 2b
3、说出 20 的三个同类二次根 式;
自主合作:
讨论: (1)要进行二次根式加减运算,它们具备 什么特征才能进行合并?
注意:不是同类二次根式的二 次根式(如 2 与 3 不能合并)
例1:计算
(4)
1 1 (2 3 8 ) ( 12 50 ) (5) 2 5
自主探究:
例2 如图,两个圆的 圆心相同,面积分别 为8cm2,18cm2.求圆 环的宽度(两圆半径 之差).
计算
• 4.
1 1 (1) 75 2 5 3 108 3 3 1 1 5 4 (2)(5 20) ( 45) 5 2 4 5 1 a 2 2 (3) 32a 6a 3a ( a 0) 4 18 a
自主拓展:
请同学们完成: 课本p72 练习1,2,3
自主评价:
1.同类二次根式的定义. 2.如何合并同类二次根式?合并同类 二次根式与合并同类项类似. 3.二次根式加减运算的步骤.
新人教版九年级数学第21章同步练习题及答案全套第二十一章 二次根式(复习课)

第21章 二次根式(复习课)◆随堂检测1、下列各式有意义的范围是x>3的为( ) A.3+x B.3-x C.31+x D.31-x2、计算的值是( )A .1B .2C .3D .43、mm m m m m 15462-+的值( ) A.是正数 B.是负数 C.是非负数 D.可为正也可为负4、已知y<0.5、比较大小: ◆典例分析观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,同理可得从计算结果中找出规律,并利用这一规律计算:+的值. 分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式……×=(2009-1)(2009+1)=2009-1=2008.◆课下作业●拓展提高1、下列二次根式中,最简二次根式是( )2、下列化简中,正确的是( )3、计算:2008200923)(23)⋅=_________.4、化简3232-+点拨:利用(32)(32)1=,可将分母化为有理式.53131+-a ,小数部分为b ,求22a ab b ++的值. 注意:正确求出a 和b 是解好本题的关键.6、已知53,53a b b c -=-=222a b c ab bc ca ++---的值.提示:由已知可先求出a c -(或c a -)的值,再将222a b c ab bc ca ++---转化为2222221()()()2a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦代入即可得解. ●体验中考1、(2021年,荆州)已知a 为实数,2284a a a +--.(提示:首先要依据二次根式有意义的条件判定a 的值,然后再进行二次根式的加减运算.)2、(2021年,烟台)已知2,2a b ==,的值为( )A .3B .4C .5D . 6(点拨:222()2a b a b ab +=+-,而a b +=2)1ab ==,即,a b 的和与积比较简单,容易计算.)参考答案:◆随堂检测1、1、D 综合考虑被开方数是非负数且分母不为零,故选D.2、A 利用平方差公式即可.3、B 由题意得:0m >,∴原式350=+=-<,故选B.4、23x y - ∵y<02323x y x y ===-.5、解:=====∵3314172<<,∴<< ◆课下作业●拓展提高1、B 只有B 符合最简二次根式的要求.2、D 选项A 中0a <时不成立;选项B 和C 中,等号两边的值不相等.只有选项D 正确,故选D.3原式2008⎡⎤=⎣⎦=2008(1)-⋅=4、解:原式=+=5、解:2=又∵324<,∴3,(231a b ==+-=.∴2222()(21)433)10a ab b a b ab ++=+-=+-=+-=6、解:∵a b b c -=-=∴()()a b b c -+-=+=a c -=∴2222221()()()2a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦=22211((53)(53)201822⎡⎤⎡⎤++-=++-+=⎣⎦⎣⎦. ●体验中考1、解:∵20a +≥且840a -≥且20a -≥,∴0a =,∴原式==2、C ∵a b +=2)1ab ==,∴2222()22118a b a b ab +=+-=-⨯=,5==.故选C.。
九年级数学上册二次根式的加减习题库

九年级数学上册习题库(四)杨成超二次根式的加减1. 计算:50511221832++-, 12+18-8-3240-5110 +10 , x 1x +4y -x 2+y 1y , 27–45–20+752a 2a -238a 3+5a 262a , 712-348, 218–50+1345,2a -3a 2b +54a -2ba 2b ,2127–2318–(43–412),)27131(12--)512()2048(-++, y y x y x x 1241+-+, )461(9322x x x x x x --2.比较大小,并说明理由5264⨯+与 ()6410642++与 ()10522与• 3.下列根式中,与18是同类二次根式的是( ).A.48B.18C.32D.24 4.若最简二次根式1+a 与4–2a 是同类二次根式,则a 的取值范围是________.5.已知a =2,b =2a b b a-的值.6.下列根式中,能够与18合并的是( ) A. 27 B.81 C.491 D.5017.=; ②2+= =; ④= )A .1B .2C .3D .48.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x9.下列各式:①;②17( ).A .3个B .2个C .1个D .0个10. 2.236)-)的值.(结果精确到0.01)11.先化简,再求值.(-(,其中x=32,y=27.12.n 是同类二次根式,求m 、n 的值.13.在_________._________.15.下列根式中与其他三个不同类的是( )A B C D 16.下列各组二次根式中,可以进行加减合并的一组是( )A B C D .1817.一个等腰三角形的两边分别为 )A .B .C .D .18. 1.414≈1.7320.01).19.已知,,求2(a 2+b 2+c 2-ab-bc-ac )的值.20.(-122的计算结果是________.(用最简根式表示)21.((-(-1)2的计算结果是______.(用最简二次根式表示)22.已知a 2b-ab 2=_______.23.,则化简等于( )A .2 B ..1 24.计算:(1) 9654+ (2) (3)54540290+-(4)、1212434827-+ (5)、23 9x +6 x 4 -2x 1x25.计算:(1).52x x + (2)1275+ .(3)、1128183224+-(4)、751120.5383⎛⎫⎛⎫--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(5)、8a 2 - 27b 3 -a a 2 +b 213b26.一个三角形的三边长分别为8,50,18cm cm cm ,则它的周长是 cm .27.计算:.(3). (4)28.下列说法正确的是: (A)最简根式一定是同类根式 (B)不是同类二次根式与31a a(C)任何两个根式都可以化成同类二次根式 (D)任何两个根式都可以化为最简根式。
新课程课堂同步练习册(九年级数学上册人教版)答案-12页精选文档
《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案 第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤4. 1 三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >3 2. 3.(1; 4. 6三、1.(1) (2) 2.(1)87(2)5(3)213.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, , 73.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 6+, 3. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+= §22.1一元二次方程(二)一、1.C 2.D 3.C 二、1. 1(答案不唯一) 2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==- (4)1222x x ==- 2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)x =(3)1x =-± (4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得 2403840x x -+=, 解得 1216,24x x == ∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y ==3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1. 9m 4≤2. 243. 0三、1.(1)121x x 12==, (2)12x x ==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0 ∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x == (6)19x =-,22x =2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4) 12x 7x 2==-, 2.∵ 221=+x x ∴ 2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0 ∴ m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2 三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅ ∴1k -=- ∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30° 5 . 三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90° ∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴21)2AGH ABH S S cm ∆∆===由122GH ⨯GH在Rt △AGH 中,根据勾股定理得:2AH GH ==∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4-- 画图如下: 3.画图如下:§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB ' ∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形 §23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y += 解得1x =-,2y =∴()221x y +=⨯-B′B3.(1)D的坐标为(3,-4)或(-7,-4)或(-1,8)(2)C的坐标为(-1,-2),D的坐标为(4,-2),画图如图:§23.3 课题学习图案设计一、1.D 2.C二、1.72° 2.基本图案绕(2)的O点依次旋转60°、120°、180°、240°、300°而得到.三、1.(略)2.如图3.(1)是,6条(2)是(3)60°、120°、180°、240°、300°第二十四章圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数经过这一点的直径 2. 30 3. 半径圆上三、1.提示:证对角线互相平分且相等 2.提示:证明:OCDOAB∠=∠§24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分弧 2. 3≤OM≤53.三、1. 120 2. (1)、图略(2)、10cm§24.1.3 弧、弦、圆心角一、1. D 2. C 3. C二、1.(1) ∠AOB=∠COD, = (2) ∠AOB=∠COD, AB=CD (3) =, AB=CD2. 15°3. 2三、1. 略2.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,OA=OB,∵AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,∴∠AOM=∠BON,∴AM=BN§24.1.4圆周角一、1.B 2. B 3.C二、1.28 2. 4 3.60°或120°三、1.90o 提示:连接AD 2.提示:连接AD§24.2.1点和圆的位置关系一、1.B 2.C 3. B二、1.d<r d r= ,d>r 2. OP>6 3. 内部, 斜边上的中点, 外部三、1.略 2. 5cm§24.2.2直线与圆的位置关系(一)一、1. B 2. D 3. A二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切⌒⌒§24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.3、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o 10cm 3. 1﹕2 三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D二、1. 相交 2. 83. 2 3 10三、1.提示:分别连接1212,,O O O B O B ;可得1216030OO O O B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点3. 2a π三、1. 22. 边长为4,面积为32 §24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434-3.83π三、1. 10.5 2. 112π(2cm ) §24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cmπ3. 2π三、1. (1)20π (2)220 2. S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16 三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2. 72 3. 51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.3652. 1613.214.31三、1.(1)12;(2)树状图为:两位女生同时当选正、副班长的概率是21126=. 2.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分. 3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23=(2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是 P (和为偶数)13=, ∵2133≠, ∴不公平.(1,2) (1,3) (1,4) 23 4 1(2,1) (2,3) (2,4) 1 3 4 2(3,1) (3,2) (3,4) 1 2 4 3(4,1) (4,2) (4,3) 1 2 3 4第一次 摸球 第二次 摸球§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白, (2)92 3. 9 4. 13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5 次,7出现6次,故P (和为6)536=,P (和为7)636=. ∴P (和为6)<P (和为7),∴小红获胜的概率大. 2.(1)31 (2)31 (3)31. 3.(1)树状图为: (2)由图可知评委给出A选手所有可能的结果有8种.对于A 选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A 选手“只有甲、乙两位评委给出相同结论”的概率是14. §25.3利用频率估计概率(一)一、1. B 2. C二、1. 常数 2. 2501 3. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%.3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31(3)0.31§25.3利用频率估计概率(二)一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1. (1)92 (2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c §25.4 课题学习通过 通过待定 待定通过 通过 待定 通过待定通过 待定通过 待定 甲 乙丙一、1.D 2. B二、1.概率 2.Z 3.31 三、1.(1) 91 (2) 31 (3) 32 2.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。
人教版初中九年级数学上册课堂同步试题及答案全册
21.1二次根式(1)中学初三数学备课组一、选择题1.以下式子中,必然是二次根式的是()A.BC D.x2.以下式子中,不是二次根式的是()A BC D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对4必然是二次根式的个数是().A.4 B.3 C.2 D.1二、填空题5.形如________的式子叫做二次根式.6.面积为a的正方形的边长为________.三、解答题7.某工厂要制作一批体积为1m3的产品包装盒,其高为,按设计需要,•底面应做成正方形,试问底面边长应是多少?8=0,求x y的值.21.1二次根式(2)中学初三数学备课组一、选择题1.以下各式中必然是二次根式的是( )A.10- B.22-aC.327D.132+x2.以下计算正确的选项是( ) A.()2552=B.()332-=-C.416±=D.749=3.若是a 为任意实数,那么以下各式中正确的选项是( ) A.a ≥0 B.a -≥0C.2a ≥0D.a -≥0二、填空题4.若a 的算式平方根是21,那么a =_______________. 5.计算:(1)()=222-_______;(2)=⎪⎭⎫⎝⎛--221________. 6.已知一个直角三角形的两直角边别离为x 和y ,那么斜边用代数式表示为_________________;当x =6,y =8时,斜边长为__________.三、解答题7.当x 是多少时,以下各式在实数范围内成心义?(1)x 2-;(2)121-x .8.当5=a 时,求式子221a a a +-+的值.21.2二次根式的乘除(1)中学 初三数学备课组一、选择题1.已知12)1(2-•=-x x ,那么有( )A.x >1 B.x <1C.x ≥1D.x ≤12.计算xx 2•的结果是( ) A.xB.2C.xD.23.以下计算正确的选项是( ) A.3163838=⨯ B.652535=⨯C.562234=⨯D.15125236=⨯二、填空题4.=⨯44__________,.__________62=⨯ 5.化简38)2(2⨯⨯-的结果是____________.三、解答题6.化简:(1)16925⨯;(2)429y x .7.假设直角三角形两条直角边长别离为15cm 和12cm ,求此直角三角形的面积.21.2二次根式的乘除(2)中学 初三数学备课组一、选择题1.以下各式是最简二次根式的为( )A.12+xB.32y xC.12- D.5.22.化简231+的结果为( )A.23+B.23-C.2 D.13.已知a aaa -=-112,那么a 的取值范围是( ) A.a ≤0 B.a <0C.0<a ≤1D.a >0二、填空题4.__________2385=÷,___________3=÷a b a .5.___________3625=,___________3611214=⨯.三、解答题6.把以下各式化为最简二次根式(1)326-;(2)328aa.7.已知长方形的面积是48,一边长是12,那么另一边长是多少?21.2二次根式的乘除(3)中学 初三数学备课组一、选择题1.以下化简中,正确的选项是( )A.1535925=⨯=⨯B.632=⨯C.222543=+D.33-12=2.以下计算正确的选项是( )A .3232--=-- B .a a 3313= C .a a=33D .a a333= 3.把(a -1)11-a根号外的因式移入根号内,其结果是( ) A .1-a B .-1-a C .a -1 D .-a -1二、填空题4.= . 5.把aa 1-中根号外面的因式移到根号内的结果是三、解答题6.计算:(1)213675÷⨯7.已知x+y=4,xy=2.求;xyy x 的值。
【金识源】2013年秋人教版九年级数学上21.3《二次根式的加减》习题精选
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
九年级数学上册(二次根式的加减(1))练习 试题
轧东卡州北占业市传业学校二次根式的加减〔1〕
一、学习目标:
1.了解同类二次根式的概念, 掌握判断同类二次根式的方法;
2.能正确合并同类二次根式,进行二次根式的加减运算.
二、学习重难点:同类二次根式的概念及掌握合并同类二次根式的方法 三、学习过程: 〔一〕学前准备
1.整式的加减 (1)2a +5a ; (2) 3a 2
b +ab -4a 2
b ; (3) —5x 2
—x -(2x -x 2
)
2.以下问题你能用同样的方法计算吗?
3. 几个二次根式化成最简二次根式以后,如果 相同,这几个二次根式就叫做同类二次根式。
〔二〕交流展示 互动探究 精讲点拨
1.计算: 〔1〕23
+ 32 - 22 + 3 〔2〕12 +
18 - 8 - 32
〔3〕
40
- 10
1
5
+ 10 2.如图,两个圆的圆心相同,面积分别为8㎝2、18㎝2
3.计算
四、达标稳固〔标★为选做题〕
1.计算:-=
2.=
3.a =
4.合并的二次根式是〔〕
〔A〔B〔C〔D
五、拓展应用
1.计算:
(1) (+ (2)
-
2.最简二次根式a有意义的x的取值范
围吗?
六、小结反思评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用心 爱心 专心
- 1 -
21.3二次根式的加减同步练习
第1课时
1.把下列各式化成最简二次根式:
(1)8=
(2)25a=
(3)80=
(4)348=
(5)163=
(6)1.8=
2.判断正误:对的画“√”,错的画“×”.
(1)2+3=5; ( )
(2)8-3=5; ( )
(3)2+2=22; ( )
(4)32-2=3; ( )
(5)22+2=22; ( )
(6)43-3=33. ( )
3.计算:
(1)27-67
=
=
(2)50+32
=
=
=
用心 爱心 专心
- 2 -
(3)112+63
=
=
=
(4)2x-8x
=
=
=
第2课时
1.填空:
二次根式加减法的法则是:二次根式加减时,可以先将二次根式化成
二次根式,再将 相同的二次根式进行合并.
2.计算:
(1)920-55
=
=
=
(2)16aa+629
=
=
=
3.计算:
(1)80-20+5
=
=
用心 爱心 专心
- 3 -
(2)18+98-27
=
=
(3)124+0.5--68
=
=
(4)2x19x+6-2x34x
=
=
第3课时
1.计算:
4140-5+10510
=
=
2.计算:
(1)25+7
=
=
(2)8-53627
=
=
=
(3)12-37523
=
用心 爱心 专心
- 4 -
=
=
(4)48+3153
=
=
=
3.计算:
(1)3+23+3
=
=
=
(2)22+132-2
=
=
=
(3)x+yx-2y
=
=
=
第4课时
1.计算:
(1)212-623
=
=
=
(2)5+652-23
=
=
用心 爱心 专心
- 5 -
=
2.填空:
(1)平方差公式:(a+b)(a-b)= ;
(2)完全平方公式:(a+b)2= ,
(a-b)2= .
3.计算:
(1)4+74-7
=
=
=
(2)2210+310-3
=
=
=
(3)23+2
=
=
=
(4)2226-
=
=
=