铁东区实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

铁东区实验中学2018-2019学年高二上学期第二次月考试卷数学

铁东区实验中学2018-2019学年高二上学期第二次月考试卷数学

铁东区实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C .52D .562. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)3. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )A .﹣3<a <﹣1B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣1 4. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.5. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直6. 函数y=sin (2x+)图象的一条对称轴方程为( )A .x=﹣B .x=﹣C .x=D .x=7. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)8. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=9. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .3610.已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >211.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .xy e =12.已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )A .{x|x ≥0}B .{x|x ≤1}C .{﹣1,0,1}D .R二、填空题13.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为14.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .15.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .16.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .17.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 . 18.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .三、解答题19.如图,⊙O 的半径为6,线段AB 与⊙相交于点C 、D ,AC=4,∠BOD=∠A ,OB 与⊙O 相交于点. (1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .20.已知向量=(,1),=(cos ,),记f (x )=.(1)求函数f (x )的最小正周期和单调递增区间;(2)将函数y=f (x )的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x )﹣k 在的零点个数.21.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.22.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示(Ⅰ)求函数f(x)的解析式(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,其中a<c,f(A)=,且a=,b=,求△ABC的面积.23.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。

铁东区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

铁东区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

铁东区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.(理)已知tanα=2,则=()A.B.C.D.2.下列图象中,不能作为函数y=f(x)的图象的是()A.B.C.D.3.在复平面上,复数z=a+bi(a,b∈R)与复数i(i﹣2)关于实轴对称,则a+b的值为()A.1 B.﹣3 C.3 D.24.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()A.a>b B.a<bC.a=b D.a,b的大小与m,n的值有关5.在二项式的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.56.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()A.B.C.D.7.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()A.a>B.﹣<a<1 C.a<﹣1 D.a>﹣18.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.79.设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x10.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()A.4 B.5 C.D.11.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为()1111]A.10B.51C.20D.3012.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=0二、填空题13.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是.(填上所有正确结论的序号)①﹣,1是函数g(x)=2x2﹣1有两个不动点;②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;④函数g(x)=2x2﹣1共有三个稳定点;⑤若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同.14.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=.15.已知sinα+cosα=,且<α<,则sinα﹣cosα的值为.16.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.17.已知函数f(x)=,g(x)=lnx,则函数y=f(x)﹣g(x)的零点个数为.18.已知函数f(x)=,则关于函数F(x)=f(f(x))的零点个数,正确的结论是.(写出你认为正确的所有结论的序号)①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.三、解答题19.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.20.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)21.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.22.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.2.072 2.7063.841 5.024(参考公式:,其中n=a+b+c+d)23.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>C 的左顶点T 为圆心作圆T :222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_](1)求椭圆C 的方程;(2)求TM TN ⋅的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M 、N 的任意一点,且直线MP ,NP 分别与x 轴交于点R S 、(O 为坐标 原点),求证:OR OS ⋅为定值.【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.24.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集;(2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.铁东区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵tanα=2,∴===.故选D.2.【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.所以B不能作为函数图象.故选B.【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.3.【答案】A【解析】解:∵z=a+bi(a,b∈R)与复数i(i﹣2)=﹣1﹣2i关于实轴对称,∴,∴a+b=2﹣1=1,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.4.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.5.【答案】B【解析】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.6.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.7.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.8.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.9.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A .10.【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==GE ===4,BG AD EF CE ====所以最长为GC =考点:几何体的三视图及几何体的结构特征. 11.【答案】D 【解析】试题分析:分段间隔为50301500=,故选D. 考点:系统抽样 12.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x ﹣2y+3=0与x+y ﹣4=0的交点, 与直线2x+y ﹣1=0平行的直线方程为:2x+y+c=0, 把点(1,3)代入,得:2+3+c=0, 解得c=﹣5,∴直线方程是:2x+y ﹣5=0, 故选:A .二、填空题13.【答案】 ①②⑤【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.14.【答案】0.3.【解析】离散型随机变量的期望与方差.【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500,∵P(400<ξ<450)=0.3,∴根据对称性,可得P(550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.15.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.16.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.17.【答案】3【解析】解:令g(x)=f(x)﹣log4x=0得f(x)=log4x∴函数g(x)=f(x)﹣log4x的零点个数即为函数f(x)与函数y=log4x的图象的交点个数,在同一坐标系中画出函数f(x)与函数y=log4x的图象,如图所示,有图象知函数y=f(x)﹣log4 x上有3个零点.故答案为:3个.【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.18.【答案】②④【解析】解:①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,此时有无穷多个零点,故①错误;②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;(Ⅱ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.综上可得,当k<0时,函数有两零点,故②正确;③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,令f(f(x))=0,可得:,满足;(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;(Ⅲ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅳ)当x>1时,,此时f(f(x))=f()=k+1,令f(f(x))=0得:x=>1,满足;综上可得:当k>0时,函数有4个零点.故③错误,④正确.故答案为:②④.【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.三、解答题19.【答案】【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…(Ⅱ)解:∵BE=BC=2,CE=,∴CE2=BC2+BE2.∴△BCE为直角三角形,BE⊥BC,…又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).设K(0,0,m),平面BDF的一个法向量为=(x,y,z).由,,得可取=(1,﹣1,1),…又=(0,﹣2,m),于是sinφ==,∵30°≤φ≤45°,∴,即…结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.20.【答案】【解析】解:(1)根据散点图可知,x 与y 是负相关. (2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线方程,y =cω+d ,=-811374≈-2.17, a ^=y -c ^ω=38-(-2.17)×11=61.87.∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87, 又ωi =x 2i ,∴y 关于x 的回归方程为y =-2.17x 2+61.87. (3)当y =0时,x =61.872.17=6187217≈5.3.估计最多用5.3千克水. 21.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a 2=4,b 2=1;故椭圆E 的方程为+y 2=1;(Ⅱ)由题意知,当k 1=0时,M 点的纵坐标为0,直线MN 与y 轴垂直, 则点N 的纵坐标为0, 故k 2=k 1=0,这与k 2≠k 1矛盾. 当k 1≠0时,直线PM :y=k 1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.22.【答案】【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X~B(3,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴E(X)=3×=2.(Ⅱ)假设生二胎与年龄无关,K2==≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.23.【答案】【解析】(1)依题意,得2a =,c e a ==1,322=-==∴c a b c ;故椭圆C 的方程为2214x y += . (3分)(3)设),(00y x P 由题意知:01x x ≠,01y y ≠±.直线MP 的方程为),(010100x x x x y y y y ---=-令0=y 得101001y y y x y x x R --=,同理:101001y y y x y x x S ++=,∴212021202021y y y x y x x x S R --=⋅. (10分)又点P M ,在椭圆上,故)1(4),1(421212020y x y x -=-=,∴4)(4)1(4)1(421202120212021202021=--=----=y y y y y y y y y y x x S R ,4R S R S OR OS x x x x ∴⋅=⋅==,即OR OS ⋅为定值4.(13分)24.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤.试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲.。

东城区实验中学2018-2019学年上学期高二数学12月月考试题含解析

东城区实验中学2018-2019学年上学期高二数学12月月考试题含解析

东城区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ2. 函数y=+的定义域是( )A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3} 3. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .34. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4D .25. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1 D .x=﹣6. 已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a 7. 十进制数25对应的二进制数是( )A .11001B .10011C .10101D .100018. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=59. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,210.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .12.已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β二、填空题13.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]14.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .15.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .16.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.17.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .18.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .三、解答题19.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.20.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.21.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.22.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100. (1)求数列{a n },{b n }的通项公式(2)当d >1时,记c n =,求数列{c n }的前n 项和T n .23.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.24.本小题满分12分 设函数()ln x f x e a x =- Ⅰ讨论()f x 的导函数'()f x 零点个数; Ⅱ证明:当0a >时,()2ln f x a a a ≥-东城区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】考点:球的表面积和体积.2.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.3.【答案】C【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题;综上,以上3个命题中真命题的个数是2.故选:C4.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.5.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.6.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.7.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A.【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.8.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.9.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.10.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C11.【答案】D【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK==,取O为AD′的中点,得到△OAK是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.12.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.二、填空题13.【答案】8cm【解析】考点:平面图形的直观图. 14.【答案】 y=cosx .【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象; 故答案为:y=cosx .15.【答案】 [0,2] .【解析】解:∵|x ﹣m|﹣|x ﹣1|≤|(x ﹣m )﹣(x ﹣1)|=|m ﹣1|, 故由不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,可得|m ﹣1|≤1,∴﹣1≤m ﹣1≤1, 求得0≤m ≤2, 故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.16.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞.17.【答案】 .【解析】解:由方程组解得,x=﹣1,y=2故A (﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x 2)dx ﹣∫﹣11(﹣4x ﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.18.【答案】()53,44-- 【解析】 试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.三、解答题19.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x )×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.20.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.21.【答案】(1)详见解析;(2)详见解析.22.【答案】【解析】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.23.【答案】【解析】解:(1)∵y=+,∴,解得x≥﹣2且x≠﹣2且x≠3,∴函数y的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x≤4且x≠1且x≠3,∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].24.【答案】【解析】:Ⅰ'()x af x ex=-,因为定义域为(0,)+∞,'()0xaf x ex=⇒=有解即xxe a=有解. 令()xh x xe=,'()(1)xh x e x=+,当0,'()0,(0)0()0x h x h h x>>=∴>所以,当0a≤时,'()0,f x>无零点;当0a>时,有唯一零点.Ⅱ由Ⅰ可知,当0a>时,设'()f x在(0,)+∞上唯一零点为x,当(,),'()0x x f x∈+∞>,()f x在(,)x+∞为增函数;当(0,)x x∈,'()0,f x<()f x在(0,)x为减函数.00x xae e x ax=∴=0000000()ln ln(ln)ln2ln xxa a a af x e a x a a a x ax a a a a ax e x x∴=-=-=--=+-≥-。

铁东区高中2018-2019学年高二上学期第二次月考试卷数学

铁东区高中2018-2019学年高二上学期第二次月考试卷数学

铁东区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)2. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( )A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)3. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.4. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位5. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .2037. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R AB =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.8. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±39. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]10.“1<m <3”是“方程+=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( )A .1-B .C .1-或D .1-或2- 12.已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .27二、填空题 13.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)14.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.15.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .16.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .17.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .18.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .三、解答题19.在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 为BB 1中点. (Ⅰ)证明:AC ⊥D 1E ;(Ⅱ)求DE 与平面AD 1E 所成角的正弦值;(Ⅲ)在棱AD 上是否存在一点P ,使得BP ∥平面AD 1E ?若存在,求DP 的长;若不存在,说明理由.20.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数),(1)求{a n }的通项公式;(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .21.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .22.设函数f (x )=lnx+a (1﹣x ). (Ⅰ)讨论:f (x )的单调性;(Ⅱ)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围.23.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.24.已知f (α)=,(1)化简f (α);(2)若f (α)=﹣2,求sin αcos α+cos 2α的值.铁东区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是增函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A.2.【答案】A【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.3.【答案】C4.【答案】A【解析】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选A .【点评】本题主要考查诱导公式和三角函数的平移.属基础题.5. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .6. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.7. 【答案】B 【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R AB =ð{}|21x x -≤<,故选B.8. 【答案】B【解析】解:∵A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},∴2a ﹣1=9或a 2=9,当2a ﹣1=9时,a=5,A ∩B={4,9},不符合题意;当a 2=9时,a=±3,若a=3,集合B 违背互异性;∴a=﹣3. 故选:B .【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.9. 【答案】A 【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.10.【答案】B【解析】解:若方程+=1表示椭圆,则满足,即, 即1<m <3且m ≠2,此时1<m <3成立,即必要性成立,当m=2时,满足1<m <3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立故“1<m <3”是“方程+=1表示椭圆”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.11.【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 12.【答案】C 【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21c os 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.二、填空题13.【答案】 15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.14.【答案】1231n -- 【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式.15.【答案】 .【解析】解:∵数列{a n }为等差数列,且a 3=,∴a 1+a 2+a 6=3a 1+6d=3(a 1+2d )=3a 3=3×=,∴cos (a 1+a 2+a 6)=cos =.故答案是:.16.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 17.【答案】 9 .【解析】解:双曲线﹣=1的a=2,b=3,可得c 2=a 2+b 2=13,又||MF1|﹣|MF 2||=2a=4,|F 1F 2|=2c=2,∠F 1MF 2=90°,在△F 1AF 2中,由勾股定理得: |F 1F 2|2=|MF 1|2+|MF 2|2=(|MF 1|﹣|MF 2|)2+2|MF 1||MF 2|,即4c 2=4a 2+2|MF 1||MF 2|, 可得|MF 1||MF 2|=2b 2=18,即有△F 1MF 2的面积S=|MF 1||MF 2|sin ∠F 1MF 2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a 、b 、c 之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.18.【答案】[,﹣1].【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);F(﹣c,0);∵AF⊥BF,∴=0,即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,故c2﹣a2cos2α﹣b2sin2α=0,cos2α==2﹣,故cosα=,而|AF|=,|AB|==2c,而sinθ===,∵θ∈[,],∴sinθ∈[,],∴≤≤,∴≤+≤,∴,即,解得,≤e≤﹣1;故答案为:[,﹣1].【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.三、解答题19.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.20.【答案】【解析】解:(1)a1=S1=1+c,a2=S2﹣S1=3,a3=S3﹣S2=5﹣﹣﹣﹣﹣(2分)因为等差数列{a n},所以2a2=a1+a3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴a1=1,d=2,a n=2n﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)a2=3,a1+b1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.21.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.22.【答案】【解析】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f ()>2a ﹣2, ∴lna+a ﹣1<0,令g (a )=lna+a ﹣1, ∵g (a )在(0,+∞)单调递增,g (1)=0,∴当0<a <1时,g (a )<0, 当a >1时,g (a )>0, ∴a 的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.23.【答案】【解析】(1)由题意知,)cos )(sin cos (sin 23cos sin )(x x x x x x b a x f +-+=⋅= )32sin(2cos 232sin 21π-=-=x x x ……………………………………3分 令223222πππππ+≤-≤-k x k ,Z k ∈,则可得12512ππππ+≤≤-k x k ,Z k ∈.∴)(x f 的单调递增区间为]125,12[ππππ+-k k (Z k ∈).…………………………5分24.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)。

铁山区民族中学2018-2019学年上学期高二数学12月月考试题含解析

铁山区民族中学2018-2019学年上学期高二数学12月月考试题含解析

铁山区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程:①4x+2y ﹣1=0; ②x 2+y 2=3; ③+y 2=1; ④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是()A .①③B .②④C .①②③D .②③④2. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )A .﹣3<a <﹣1B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣13. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是()A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不能被5整除D .a ,b 有1个不能被5整除4. 已知不等式组表示的平面区域为,若内存在一点,使,则的取值⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x D D 00(,)P x y 001ax y +<a 范围为()A .B .C .D .(,2)-∞(,1)-∞(2,)+∞(1,)+∞5. 函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π6. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A .k >7B .k >6C .k >5D .k >47. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .28. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则()A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=29. 若直线上存在点满足约束条件2y x =(,)x y 则实数的最大值为 30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩m A 、B 、C 、D 、1-32210.已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为()A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=111.独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是()A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%12.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种二、填空题13.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .14.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .15.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]16.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.17.已知是函数两个相邻的两个极值点,且在1,3x x ==()()()sin 0f x x ωϕω=+>()f x 32x =处的导数,则___________.302f ⎛⎫'<⎪⎝⎭13f ⎛⎫= ⎪⎝⎭18.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .三、解答题19.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表:甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.20.已知椭圆:(),点在椭圆上,且椭圆的离心率为.C 22221x y a b +=0a b >>3(1,)2C C 12(1)求椭圆的方程;C (2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别C F C P Q A C PA QA 交直线:于、两点,求证:.4x =M N FM FN ⊥21.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆的极坐标方程为,点为其左、右焦点,直线的参数方程为C 222123cos 4sin ρθθ=+12,F F(为参数,).2x y ⎧=+⎪⎪⎨⎪=⎪⎩t R ∈(1)求直线和曲线的普通方程;C (2)求点到直线的距离之和.12,F F 23.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.24.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B BA(I )求角的值;C (II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.铁山区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.MN的中点坐标为(﹣,0),MN斜率为=∴MN的垂直平分线为y=﹣2(x+),∵①4x+2y﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x2+y2=3与y=﹣2(x+),联立,消去y得5x2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y得9x2﹣24x﹣16=0,△>0可知③中的曲线与MN的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y得7x2﹣24x+20=0,△>0可知④中的曲线与MN的垂直平分线有交点,故选D2.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.3.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.4. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域如图所示,先求的最小值,当D z ax y =+12a ≤时,,在点取得最小值;当时,,在点取12a -≥-z ax y =+1,0A ()a 12a >12a -<-z ax y =+11,33B ()得最小值.若内存在一点,使,则有的最小值小于,∴或1133a +D 00(,)P x y 001ax y +<z ax y =+1121a a ⎧≤⎪⎨⎪<⎩,∴,选A .1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩2a <5. 【答案】C【解析】解:函数y=2sin 2x+sin2x=2×+sin2x=sin (2x ﹣)+1,则函数的最小正周期为=π,故选:C .【点评】本题主要考查三角恒等变换,函数y=Asin (ωx+φ)的周期性,利用了函数y=Asin (ωx+φ)的周期为,属于基础题.6. 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表:K S是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41是第五圈 6 88 否故退出循环的条件应为k >5?故答案选C .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7. 【答案】D【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1.下列a 的取值能使“¬p ”是真命题的是a=2.故选;D . 8. 【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos +cos2xsin)=2sin (2x+),∴T==π,A=2故选:B 9. 【答案】B【解析】如图,当直线经过函数的图象m x =x y 2=与直线的交点时,03=-+y x 函数的图像仅有一个点在可行域内,x y 2=P 由,得,∴.230y xx y =⎧⎨+-=⎩)2,1(P 1≤m 10.【答案】C 【解析】解:如图,++().故选C .4254141543211.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.12.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.二、填空题13.【答案】 {2,3,4} .【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}14.【答案】 .【解析】解:由题意,函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,∴a 取1时,b 可取2,3,4,5,6;a 取2时,b 可取4,5,6;a 取3时,b 可取6,共9种∵(a ,b )的取值共36种情况∴所求概率为=.故答案为:.15.【答案】8cm 【解析】考点:平面图形的直观图.16.【答案】871-<<-d 【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d .考点:数列与不等式综合.17.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,ω可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,ϕϕ302f ⎛⎫'< ⎪⎝⎭()f x 就可以求出.113f ⎛⎫⎪⎝⎭18.【答案】 5 .【解析】解:P (1,4)为抛物线C :y 2=mx 上一点,即有42=m ,即m=16,抛物线的方程为y 2=16x ,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题. 三、解答题19.【答案】(1),,,,甲单位对法律知识的掌握更稳定;(2).90=甲x 90=乙x 5242=甲s 82=乙s 21【解析】试题分析:(1)先求出甲乙两个单位职工的考试成绩的平均数,以及他们的方差,则方差小的更稳定;(2)从乙单位抽取两名职工的成绩,所有基本事件用列举法得到共种情况,抽取的两名职工的分数差至少是的事件10用列举法求得共有种,由古典概型公式得出概率.试题解析:解:(1),90939191888751=++++=)(甲x 90939291898551=++++=)(乙x524])9093()9091()9091()9088()9087[(51222222=-+-+-+-+-=甲s 8])9093()9092()9091()9089()9085[(51222222=-+-+-+-+-=乙s ∵,∴甲单位的成绩比乙单位稳定,即甲单位对法律知识的掌握更稳定. (6分)8524<考点:1.平均数与方差公式;2.古典概型.20.【答案】(1) ;(2)证明见解析.22143x y +=【解析】试题分析: (1)由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;c b a ,,b a ,(2)可设直线的方程,联立椭圆方程,由根与系数的关系得,,得P Q 122634m y y m -+=+122934y y m -=+直线,直线,求得点 、坐标,利用得.PA l QA l M N 0=⋅FN FM FM FN ⊥试题解析: (1)由题意得解得22222191,41,2,a b c a a b c⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩2,a b =⎧⎪⎨=⎪⎩∴椭圆的方程为.C 22143x y +=又,,111x my =+221x my =+∴,,则,,112(4,)1y M my -222(4,)1y N my -112(3,1y FM my =- 222(3,1y FN my =- 1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++ 22222363499906913434m m m m m -+=+=-=---+++∴FM FN⊥考点:椭圆的性质;向量垂直的充要条件.21.【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcos θ,y=ρsin θ,x2+y2=ρ2,即可得到曲线C 1的直角坐标方程,再由代入法,即可化简曲线C 2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y ﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,可化为直角坐标方程x 2+y 2﹣2x+4y+4=0,即圆(x ﹣1)2+(y+2)2=1;曲线C 2的参数方程为(t 为参数),可化为普通方程为:3x+4y ﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y ﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.22.【答案】(1)直线的普通方程为,曲线的普通方程为;(2).2y x =-C 22143x y +=【解析】试题分析:(1)由公式可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;cos sin xy ρθρθ=⎧⎨=⎩考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.23.【答案】【解析】【分析】(1)因为直线l 过点A (4,0),故可以设出直线l 的点斜式方程,又由直线被圆C 1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 的方程.(2)与(1)相同,我们可以设出过P 点的直线l 1与l 2的点斜式方程,由于两直线斜率为1,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,故我们可以得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 1与l 2的方程.【解答】解:(1)由于直线x=4与圆C 1不相交;∴直线l 的斜率存在,设l 方程为:y=k (x ﹣4)(1分)圆C 1的圆心到直线l 的距离为d ,∵l 被⊙C 1截得的弦长为2∴d==1(2分)d=从而k (24k+7)=0即k=0或k=﹣∴直线l 的方程为:y=0或7x+24y ﹣28=0(5分)(2)设点P (a ,b )满足条件,由题意分析可得直线l 1、l 2的斜率均存在且不为0,不妨设直线l 1的方程为y ﹣b=k (x ﹣a ),k ≠0则直线l 2方程为:y ﹣b=﹣(x ﹣a )(6分)∵⊙C 1和⊙C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,∴⊙C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等即=(8分)整理得|1+3k+ak ﹣b|=|5k+4﹣a ﹣bk|∴1+3k+ak ﹣b=±(5k+4﹣a ﹣bk )即(a+b ﹣2)k=b ﹣a+3或(a ﹣b+8)k=a+b ﹣5因k 的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P 1(,﹣)或点P 2(﹣,)(12分)24.【答案】【解析】(I )∵,1cos )sin 3(cos 2cos 22=-+C B B A∴,0cos sin 3cos cos cos =-+C B C B A ∴,0cos sin 3cos cos )cos(=-++-C B C B C B∴,0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B ∴,因为,所以0cos sin 3sin sin =-C B C B sin 0B >3tan =C 又∵是三角形的内角,∴.C 3π=C。

东区一中2018-2019学年上学期高二数学12月月考试题含解析

东区一中2018-2019学年上学期高二数学12月月考试题含解析

东区一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内2.直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多只有一个公共点3.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为()A.(﹣,﹣2] B.[﹣1,0] C.(﹣∞,﹣2] D.(﹣,+∞)4.如图,三行三列的方阵中有9个数a ij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是()A.B.C.D.5.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5﹣b,P=()c,则M、N、P的大小关系为()A.M>N>P B.P<M<N C.N>P>M6.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()A.B.C.D.7.“x≠0”是“x>0”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60°B.120°C.150°D.60°或120°9.设x,y∈R,且满足,则x+y=()A.1 B.2 C.3 D.410.函数y=﹣lnx(1≤x≤e2)的值域是()A.[0,2] B.[﹣2,0] C.[﹣,0] D.[0,]11.已知命题p:“∀∈[1,e],a>lnx”,命题q:“∃x∈R,x2﹣4x+a=0””若“p∧q”是真命题,则实数a的取值范围是()A.(1,4] B.(0,1] C.[﹣1,1] D.(4,+∞)12.已知向量=(1,2),=(m,1),如果向量与平行,则m的值为()A.B. C.2 D.﹣2二、填空题13.如图所示是y=f(x)的导函数的图象,有下列四个命题:①f(x)在(﹣3,1)上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f(x)的极小值点.其中真命题为(填写所有真命题的序号).14.已知函数f(x)=x2+x﹣b+(a,b为正实数)只有一个零点,则+的最小值为.15.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .16.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .17.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.18.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19.已知函数f (x )=lnx+ax 2+b (a ,b ∈R ).(Ⅰ)若曲线y=f (x )在x=1处的切线为y=﹣1,求函数f (x )的单调区间;(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f (x )在区间(m ,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由.20.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.21.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.22.已知等比数列{a n }中,a 1=,公比q=.(Ⅰ)S n 为{a n }的前n 项和,证明:S n =(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.23.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.24.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一 次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指 数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留幸福感强 幸福感弱 总计 留守儿童 非留守儿童 总计1111](2)从5人中随机抽取2人进行家访, 求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++附表:20()P K k ≥ 0.050 0.010 0k3.8416.635东区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.2.【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,∴直线在平面外,则直线与平面最多只有一个公共点.故选D.3.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.4.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.5.【答案】A【解析】解:∵0<a<b<c<1,∴1<2a<2,<5﹣b<1,<()c<1,5﹣b=()b>()c>()c,即M>N>P,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.6.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.7.【答案】B【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.当x>0时,一定有x≠0成立,∴“x≠0”是“x>0”是的必要不充分条件.故选:B.8.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.9.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.10.【答案】B【解析】解:∵函数y=lnx在(0,+∞)上为增函数,故函数y=﹣lnx在(0,+∞)上为减函数,当1≤x≤e2时,若x=1,函数取最大值0,x=e2,函数取最小值﹣2,故函数y=﹣lnx(1≤x≤e2)的值域是[﹣2,0],故选:B【点评】本题考查的知识点是对数函数的值域与最值,熟练掌握对数函数的图象和性质,是解答的关键.11.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.12.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.二、填空题13.【答案】①【解析】解:由图象得:f(x)在(1,3)上递减,在(﹣3,1),(3,+∞)递增,∴①f(x)在(﹣3,1)上是增函数,正确,x=3是f(x)的极小值点,②④不正确;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,故答案为:①.14.【答案】9+4.【解析】解:∵函数f(x)=x2+x﹣b+只有一个零点,∴△=a﹣4(﹣b+)=0,∴a+4b=1,∵a,b为正实数,∴+=(+)(a+4b)=9++≥9+2=9+4当且仅当=,即a=b时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.15.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18 16.【答案】 ﹣2 .【解析】解:∵曲线y=x n+1(n ∈N *),∴y ′=(n+1)x n,∴f ′(1)=n+1,∴曲线y=xn+1(n ∈N *)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),该切线与x 轴的交点的横坐标为x n =,∵a n =lgx n ,∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2.故答案为:﹣2.17.【答案】()2245f x x x =-+ 【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+.考点:函数的解析式.18.【答案】6π,18+ 【解析】三、解答题19.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m ,只须取满足的实数a ,就能使得函数f (x )在区间(m ,+∞)上不单调.…(Ⅲ)存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0).…证明如下:令g (x )=lnx ﹣x+1(x >0),则,易得g (x )在x=1处取到最大值,且最大值g (1)=0,即g (x )≤0,从而得lnx ≤x ﹣1. (*)…由,得.…令,,则p (x ),q (x )在区间[x 1,x 2]上单调递增.且,,结合(*)式可得,,.令h (x )=p (x )+q (x ),由以上证明可得,h (x )在区间[x 1,x 2]上单调递增,且h (x 1)<0,h (x 2)>0,… 所以函数h (x )在区间(x 1,x 2)上存在唯一的零点x 0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b 的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.20.【答案】(1)()2=+1f x x x -;(2)1m <-. 【解析】试题分析:(1)根据二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为231m x x <-+,设()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围.试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==()()()()2212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,故()2=+1f x x x -.考点:函数的解析式;函数的恒成立问题.【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键.21.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】【解析】证明:(I )∵数列{a n }为等比数列,a 1=,q=∴a n =×=,S n =又∵==S n∴S n =(II )∵a n =∴b n =log 3a 1+log 3a 2+…+log 3a n =﹣log 33+(﹣2log 33)+…+(﹣nlog 33)=﹣(1+2+…+n )=﹣∴数列{b n }的通项公式为:b n =﹣【点评】本题主要考查等比数列的通项公式、前n 项和以及对数函数的运算性质.23.【答案】(1)单调递增区间为 ;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.24.【答案】(1)有95%的把握认为孩子的幸福感强与是否留守儿童有关;(2)3 5 .【解析】∴240(67918)4 3.84115252416K ⨯⨯-⨯==>⨯⨯⨯. ∴有95%的把握认为孩子的幸福感强与是否留守儿童有关.(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:1a ,2a ;幸福感强的孩子3人,记作:1b ,2b ,3b .“抽取2人”包含的基本事件有12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,12(,)b b ,13(,)b b ,23(,)b b 共10个.事件A :“恰有一人幸福感强”包含的基本事件有11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b 共6个. 故63()105P A ==. 考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.。

铁东区高中2018-2019学年高二上学期第二次月考试卷数学(1)

铁东区高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.已知直线y=ax+1经过抛物线y2=4x的焦点,则该直线的倾斜角为()A.0 B.C.D.2.将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为()A.B.﹣C.﹣D.3.复数=()A.B.C.D.4.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是()A.=1.23x+4 B.=1.23x﹣0.08 C.=1.23x+0.8 D.=1.23x+0.085.设a>0,b>0,若是5a与5b的等比中项,则+的最小值为()A.8 B.4 C.1 D.6.已知函数f(x)=lg(1﹣x)的值域为(﹣∞,1],则函数f(x)的定义域为()A.[﹣9,+∞)B.[0,+∞)C.(﹣9,1)D.[﹣9,1)7.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:(1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m,(3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β,其中正确命题是()A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)8.记,那么ABCD9. 已知向量=(2,1),=10,|+|=,则||=( )A .B .C .5D .2510.设集合M={x|x 2+3x+2<0},集合,则M ∪N=( )A .{x|x ≥﹣2}B .{x|x >﹣1}C .{x|x <﹣1}D .{x|x ≤﹣2}11.i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i12.已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )A .B .C .D .二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .15.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .16.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .17.已知z,ω为复数,i为虚数单位,(1+3i)z为纯虚数,ω=,且|ω|=5,则复数ω=.18.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .三、解答题19.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).20.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.21.已知△ABC的顶点A(3,1),B(﹣1,3)C(2,﹣1)求:(1)AB边上的中线所在的直线方程;(2)AC边上的高BH所在的直线方程.22.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.23.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB﹣ccosB.(Ⅰ)求cosB的值;(Ⅱ)若,且,求a和c的值.24.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.铁东区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.2.【答案】D【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣)的图象,∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,故选:D.3.【答案】A【解析】解:===,故选A.【点评】本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.4.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D.【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.5.【答案】B【解析】解:∵是5a与5b的等比中项,∴5a•5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.6.【答案】D【解析】解:函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,则有0<1﹣x≤10,解得,﹣9≤x<1.则定义域为[﹣9,1),故选D.【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.7.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.8.【答案】B【解析】【解析1】,所以【解析2】,9.【答案】C【解析】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.10.【答案】A【解析】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.11.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.12.【答案】A【解析】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)=故选A .二、填空题13.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。

铁东区高中2018-2019学年高二上学期第一次月考试卷数学(1)

铁东区高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .42. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.3. 复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.4. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个5. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}6. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( ) A .4320 B .2400 C .2160 D .13207. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2C .2D .68. 在ABC ∆中,60A =,1b =sin sin sin a b cA B C++++等于( )A .BCD 9. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .10.已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )A .﹣2B .2C .﹣D .11.已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣212.数列{a n }满足a 1=, =﹣1(n ∈N *),则a 10=( )A .B .C .D .二、填空题13.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .14.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .15.若函数y=ln (﹣2x )为奇函数,则a= .16.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .17.已知线性回归方程=9,则b= .18.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .三、解答题19.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1). (Ⅰ) 讨论函数f (x )的单调性; (Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ). (1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值.20.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.ABCDP21.(本小题满分12分) 已知函数2()x f x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.22.已知椭圆+=1(a >b >0)的离心率为,且a 2=2b .(1)求椭圆的方程;(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.23.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.24.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.铁东区高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:方程|x 2+3x ﹣3|=a 的解的个数可化为函数y=|x 2+3x ﹣3|与y=a 的图象的交点的个数, 作函数y=|x 2+3x ﹣3|与y=a 的图象如下,,结合图象可知, m 的可能值有2,3,4; 故选A .2. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.3. 【答案】C【解析】i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.4. 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N , 又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3, 即M={x|﹣1≤x ≤3}, 在此范围内的奇数有1和3.所以集合M ∩N={1,3}共有2个元素,故选B .5. 【答案】D【解析】解:∵M ∪N=M ,∴N ⊆M , ∴集合N 不可能是{2,7}, 故选:D【点评】本题主要考查集合的关系的判断,比较基础.6. 【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种, 故选D .【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.7. 【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:===2+4﹣2+2=6. 故选:D .【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.8. 【答案】B 【解析】试题分析:由题意得,三角形的面积011sin sin 60224S bc A bc ====4bc =,又1b =,所以4c =,又由余弦定理,可得2222202cos 14214cos6013a b c bc A =+-=+-⨯⨯=,所以a =sin sin sin sin sin 603a b c a A B C A ++===++,故选B . 考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到sin sin sin sin a b c aA B C A++=++是解答的关键,属于中档试题.9. 【答案】B【解析】解:根据选项可知a ≤0a 变动时,函数y=2|x|的定义域为[a ,b],值域为[1,16],∴2|b|=16,b=4故选B .【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.10.【答案】C【解析】解:两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,∴存在非0实数k 使得m +n =k (﹣2)=k ﹣2k ,或k (m +n )=﹣2,∴,或,则=﹣. 故选:C .【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.11.【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 12.【答案】C【解析】解:∵=﹣1(n∈N*),∴﹣=﹣1,∴数列是等差数列,首项为=﹣2,公差为﹣1.∴=﹣2﹣(n﹣1)=﹣n﹣1,∴a n=1﹣=.∴a10=.故选:C.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.二、填空题13.【答案】9.【解析】解:双曲线﹣=1的a=2,b=3,可得c2=a2+b2=13,又||MF1|﹣|MF2||=2a=4,|F1F2|=2c=2,∠F1MF2=90°,在△F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|﹣|MF2|)2+2|MF1||MF2|,即4c2=4a2+2|MF1||MF2|,可得|MF1||MF2|=2b2=18,即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.14.【答案】16π【解析】如图所示,∵222AB AC BC+=,∴CAB∠为直角,即过△ABC的小圆面的圆心为BC的中点O',ABC△和DBC△所在的平面互相垂直,则球心O在过DBC△的圆面上,即DBC△的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==15.【答案】 4 .【解析】解:函数y=ln (﹣2x )为奇函数,可得f (﹣x )=﹣f (x ),ln (+2x )=﹣ln (﹣2x ).ln (+2x )=ln ()=ln ().可得1+ax 2﹣4x 2=1,解得a=4.故答案为:4.16.【答案】 6【解析】解:根据题意,得; ∵f (2x )=2f (x ), ∴f (34)=2f (17)=4f ()=8f ()=16f ();又∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|,∴f ()=1﹣|﹣3|=,∴f (2x )=16×=2;当2≤x ≤4时,f (x )=1﹣|x ﹣3|≤1,不存在;当4≤x ≤8时,f (x )=2f ()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.17.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.18.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a 1=10,所以a 2=f (a 1)=f (10)=30+ln10,可知a 2>a 1>0, 假设0<a k <a k+1(k ≥1),因为函数f (x )在区间(0,+∞)上单调递增, ∴f (a k+1)>f (a k ),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n 对于一切正整数n 都成立, ∴数列{a n }为递增数列.(2)由(1)知:当且仅当0<a 1<a 2,数列{a n }为递增数列,∴f (a 1)>a 1,即(a 1为正整数),设(x ≥1),则,∴函数g (x )在区间上递增,由于,g (6)=ln6>0,又a 1为正整数,∴首项a 1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】 20.【答案】【解析】解: (Ⅰ)当13PE PB =时,//CE 平面PAD . 设F 为PA 上一点,且13PF PA =,连结EF 、DF 、EC ,那么//EF AB ,13EF AB =.∵//DC AB ,13DC AB =,∴//EF DC ,EF DC =,∴//EC FD .又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,(1,2,0)C -.由(6)(2PO ==-=知(0,0,2)P . (9分)设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r则00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|||||AP n AP n AP n θ⋅=<>==⋅ ∴πθ=,∴直线PB 与平面PAD 所成角为3π. (13分)21.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4e a ∈+∞时,有个公共点;(2)证明见解析. 【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x=,构造函数2()xe h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2(2)4e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1试题解析:当2(0,)4ea ∈时,有0个公共点; 当24e a =,有1个公共点;当2(,)4e a ∈+∞有2个公共点.(2)证明:设2()1x h x e x x =---,则'()21xh x e x =--,令'()()21xm x h x e x ==--,则'()2xm x e =-,因为1(,1]2x ∈,所以,当1[,ln 2)2x ∈时,'()0m x <;()m x 在1[,ln 2)2上是减函数,当(ln 2,1)x ∈时,'()0m x >,()m x 在(ln 2,1)上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0).联立直线y=x+m与椭圆的方程得,即3x2+2mx+m2﹣2=0,△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,x1+x2=﹣,所以x0==﹣,y0=x0+m=,即M(﹣,).又因为M点在圆x2+y2=5上,可得(﹣)2+()2=5,解得m=±3与m2<3矛盾.故实数m不存在.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.23.【答案】【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.24.【答案】【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,∴,∴对一切n∈N*,<.(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.。

城东区实验中学2018-2019学年上学期高二数学12月月考试题含解析

城东区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b ﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()A.B.C.D.2.487被7除的余数为a(0≤a<7),则展开式中x﹣3的系数为()A.4320 B.﹣4320 C.20 D.﹣203.若函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,则该函数的最大值为()A.5 B.4 C.3 D.24.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?5.下列满足“∀x∈R,f(x)+f(﹣x)=0且f′(x)≤0”的函数是()A.f(x)=﹣xe|x| B.f(x)=x+sinxC.f(x)=D.f(x)=x2|x|6.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为()A.35B.C.D.537.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件8. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=9. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .10.已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1211.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .12.已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( )A .B .C .2 D .4二、填空题13.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .14.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .15.不等式()2110ax a x +++≥恒成立,则实数的值是__________. 16.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= . 17. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.三、解答题19.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.20.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,). (1)求a 的值;(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a (x ≥0)的值域.21.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCCB1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.122.一艘客轮在航海中遇险,发出求救信号.在遇险地点A南偏西45方向10海里的B处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;中,求角B的正弦值.(2)若最短时间内两船在C处相遇,如图,在ABC23.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).(Ⅰ)求k 的值; (Ⅱ)求g (x )在[﹣1,2]上的最大值;(Ⅲ)当时,g (x )≤t 2﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.24.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.城东区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.2.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..3.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.4.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s 的,则判断框中应填入的条件是i ≤4. 故选:B .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5. 【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数, A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数, 故选:A .6. 【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D .【点评】本题主要考查分步计数原理的应用,属于基础题.7. 【答案】A【解析】解:p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列, 则¬p :∃n ∈N *,a n+2﹣a n+1≠d ;¬q :数列 {a n }不是公差为d 的等差数列,由¬p ⇒¬q ,即a n+2﹣a n+1不是常数,则数列 {a n }就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.8.【答案】C【解析】解:A.在定义域内没有单调性,∴该选项错误;B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R上为减函数,∴该选项正确;D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R上不是减函数,∴该选项错误.故选:C.【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.9.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C10.【答案】D【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 11.【答案】 D【解析】解:∵g (x )=﹣f (2﹣x ),∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,设h (x )=f (x )+f (2﹣x ), 若x ≤0,则﹣x ≥0,2﹣x ≥2,则h (x )=f (x )+f (2﹣x )=2+x+x 2,若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x >2,﹣x <﹣2,2﹣x <0, 则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.12.【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==.∴1212S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质.二、填空题13.【答案】5 【解析】试题分析:'2'()323,(3)0,5f x x ax f a =++∴-=∴=. 考点:导数与极值. 14.【答案】 60° .【解析】解:∵|﹣|=,∴∴=3,∴cos <>==∵∴与的夹角为60°. 故答案为:60° 【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.15.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题.16.【答案】7-. 【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法 (1)求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 17.【答案】①②④ 【解析】18.【解析】三、解答题19.【答案】(1)证明见解析;(2)【解析】试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.20.【答案】【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),∴a2=,∴a=(2)∵f(x)=()x在R上单调递减,又2<b2+2,∴f(2)≥f(b2+2),(3)∵x≥0,x2﹣2x≥﹣1,∴≤()﹣1=3∴0<f(x)≤(0,3]21.【答案】【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1,∵BC1⊄平面A1CD,DO⊂平面A1CD,∴BC1∥平面A1CD.解:∵底面△ABC是边长为2等边三角形,D为AB的中点,四边形BCCB1是正方形,且A1D=,1∴CD⊥AB,CD==,AD=1,∴AD2+AA12=A1D2,∴AA1⊥AB,∵,∴,∴CD ⊥DA 1,又DA 1∩AB=D ,∴CD ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BB 1⊥CD , ∵矩形BCC 1B 1,∴BB 1⊥BC , ∵BC ∩CD=C ∴BB 1⊥平面ABC , ∵底面△ABC 是等边三角形, ∴三棱柱ABC ﹣A 1B 1C 1是正三棱柱.以C 为原点,CB 为x 轴,CC 1为y 轴,过C 作平面CBB 1C 1的垂线为z 轴,建立空间直角坐标系,B (2,0,0),A (1,0,),D (,0,),A 1(1,2,),=(,﹣2,﹣),平面CBB 1C 1的法向量=(0,0,1),设直线A 1D 与平面CBB 1C 1所成角为θ,则sin θ===.∴直线A 1D 与平面CBB 1C 1所成角的正弦值为.22.【答案】(1)23小时;(2)14. 【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =.由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠, 所以2221(21)10(9)2109()2t t t =+-⨯⨯⨯-,化简得2369100t t --=,解得23t =或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23小时.(2)由2963AC =⨯=,221143BC =⨯=.在ABC ∆中,由正弦定理得6sin 6sin1202sin 1414AC BAC B BC⨯∠====. 所以角B 的正弦值为14. 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键. 23.【答案】【解析】解:(Ⅰ)由f (﹣x )=﹣f (x )得 kx 2﹣2x=﹣kx 2﹣2x ,∴k=0.(Ⅱ)∵g (x )=a f (x )﹣1=a 2x ﹣1=(a 2)x﹣1①当a 2>1,即a >1时,g (x )=(a 2)x ﹣1在[﹣1,2]上为增函数,∴g (x )最大值为g (2)=a 4﹣1.②当a 2<1,即0<a <1时,∴g (x )=(a 2)x 在[﹣1,2]上为减函数, ∴g (x )最大值为.∴(Ⅲ)由(Ⅱ)得g (x )在x ∈[﹣1,1]上的最大值为,∴1≤t 2﹣2mt+1即t 2﹣2mt ≥0在[﹣1,1]上恒成立令h (m )=﹣2mt+t 2,∴即 所以t ∈(﹣∞,﹣2]∪{0}∪[2,+∞). 【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.24.【答案】【解析】(1)]0,222[-;(2)2.(1)由1=a 且c b =,得4)2()(222b b b x b bx x x f -++=++=,当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2min max ()()124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分112≤+=,…………13分且当2a =,0b =,1c =-时,若1≤x ,则112)(2≤-=x x f 恒成立, 且当0=x 时,2)(2+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分。

城区实验中学2018-2019学年上学期高二数学12月月考试题含解析(2)

城区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π2. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( )A .0B .1C .2D .33. 记,那么AB C D4. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .5. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log xx y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.6. 命题:“∀x ∈R ,x 2﹣x+2<0”的否定是( )A .∀x ∈R ,x 2﹣x+2≥0B .∃x ∈R ,x 2﹣x+2≥0C .∃x ∈R ,x 2﹣x+2<0D .∀x ∈R ,x 2﹣x+2<07. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个8. 若圆心坐标为的圆在直线上截得的弦长为)()2,1-10x y --=A . B . ()()22210x y -++=()()22214x y -++=C . D .()()22218x y -++=()()222116x y -++=9. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是()A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)10.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( )A .x+y=0B .x+y=2C .x ﹣y=2D .x ﹣y=﹣211.已知,满足不等式则目标函数的最大值为( )y 430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩2z x y =+A .3B .C .12D .1513212.执行如图所示的程序框图,如果输入的t =10,则输出的i =()A .4B .5C .6D .7二、填空题13.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .14.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .15.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .所示的框图,输入,则输出的数等于17.函数()2log f x x =在点()1,2A 处切线的斜率为▲ .18.函数在区间上递减,则实数的取值范围是.2()2(1)2f x x a x =+-+(,4]-∞三、解答题19.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1).(Ⅰ) 讨论函数f (x )的单调性;(Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ).(1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值. 20.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.21.【常熟中学2018届高三10月阶段性抽测(一)】已知函数.()()2ln R f x x ax x a =-+-∈(1)若函数是单调递减函数,求实数的取值范围;()f x a (2)若函数在区间上既有极大值又有极小值,求实数的取值范围.()f x ()0,3a 22.(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变C 2sin cos 10ρθρθ+=1cos :sin x C y θθ=⎧⎨=⎩α换后得到曲线.32x xy y'=⎧⎨'=⎩2C (1)求曲线的参数方程;2C (2)若点的在曲线上运动,试求出到曲线的距离的最小值.M 2C M C23.(本小题满分10分)选修4­1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D.(1)求证:CD=DA;(2)若CE=1,AB=,求DE的长.224.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.城区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.2.【答案】B【解析】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,∴命题P是真命题,∴命题P的逆否命题是真命题;¬P:“若直线m不垂直于α,则m不垂直于l”,∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.故选:B.3.【答案】B【解析】【解析1】,所以【解析2】,4.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.5. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log x x y a =B )1,0(∈x ,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=x x y a A +∞→x 0→y D C 6. 【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“∀x ∈R ,x 2﹣x+2<0”的否定是∃x ∈R ,x 2﹣x+2≥0.故选:B .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 7. 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N ,又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3,即M={x|﹣1≤x ≤3},在此范围内的奇数有1和3.所以集合M ∩N={1,3}共有2个元素,故选B . 8. 【答案】B 【解析】考点:圆的方程.1111]9. 【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立;③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.10.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.11.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题y的基础.(2)目标函数的意义,有的可以用直线在轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.12.【答案】【解析】解析:选B.程序运行次序为第一次t =5,i =2;第二次t =16,i =3;第三次t =8,i =4;第四次t =4,i =5,故输出的i =5.二、填空题13.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.14.【答案】 [,] .【解析】解:由m 2﹣7am+12a 2<0(a >0),则3a <m <4a即命题p :3a <m <4a ,实数m 满足方程+=1表示的焦点在y 轴上的椭圆,则,,解得1<m <2,若p 是q 的充分不必要条件,则,解得,故答案为[,].【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p ,q 的等价条件是解决本题的关键.15.【答案】V【解析】【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C ,所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:故答案为:16.【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁东区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1)D .[﹣9,1)2. 二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.3. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位4. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .5. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 6. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .47. 若某算法框图如图所示,则输出的结果为( )A.7 B.15 C.31 D.638.已知直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8平行,则实数m的值为()A.﹣7 B.﹣1 C.﹣1或﹣7 D.9.已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是()A.2 B.C.D.10.设x,y∈R,且满足,则x+y=()A.1 B.2 C.3 D.411.设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n12.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,则f(2)+g(2)=()A.16 B.﹣16 C.8 D.﹣8二、填空题13.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a= .14.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .15.曲线y=x+e x 在点A (0,1)处的切线方程是 .16.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = . 17.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.18.已知函数f (x )=,若f (f (0))=4a ,则实数a= .三、解答题19.设F 是抛物线G :x 2=4y 的焦点.(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.20.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f (x )的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.21.已知集合A={x|x 2+2x <0},B={x|y=}(1)求(∁R A )∩B ;(2)若集合C={x|a <x <2a+1}且C ⊆A ,求a 的取值范围.22.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .23.2()sin 2f x x x =. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.246(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.铁东区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10, 解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.2. 【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 3. 【答案】A【解析】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选A .【点评】本题主要考查诱导公式和三角函数的平移.属基础题.4. 【答案】D【解析】解:∵函数f (x )=(x ﹣3)e x , ∴f ′(x )=e x +(x ﹣3)e x =(x ﹣2)e x,令f ′(x )>0,即(x ﹣2)e x>0,∴x ﹣2>0, 解得x >2, ∴函数f (x )的单调递增区间是(2,+∞).故选:D .【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.5. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 6. 【答案】 B【解析】解:∵①若m ∥l ,m ⊥α,则由直线与平面垂直的判定定理,得l ⊥α,故①正确; ②若m ∥l ,m ∥α,则l ∥α或l ⊂α,故②错误; ③如图,在正方体ABCD ﹣A 1B 1C 1D 1中, 平面ABB 1A 1∩平面ABCD=AB , 平面ABB 1A 1∩平面BCC 1B 1=BB 1, 平面ABCD ∩平面BCC 1B 1=BC , 由AB 、BC 、BB 1两两相交,得:若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n 不成立,故③是假命题; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则由α∩γ=n 知,n ⊂α且n ⊂γ,由n ⊂α及n ∥β,α∩β=m , 得n ∥m ,同理n ∥l ,故m ∥l ,故命题④正确. 故选:B .【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.7. 【答案】 D【解析】解:模拟执行算法框图,可得 A=1,B=1满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4满足条件A≤5,B=31,A=5满足条件A≤5,B=63,A=6不满足条件A≤5,退出循环,输出B的值为63.故选:D.【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.8.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.9.【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=﹣2x+z,由图可知z max=2×1+1=3,z min=2a+a=3a,由6a=3,得a=.故选:B.【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.10.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.11.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.12.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.二、填空题13.【答案】.【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.14.【答案】4.【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.15.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.16.【答案】5【解析】试题分析:'2'=++∴-=∴=.()323,(3)0,5f x x ax f a考点:导数与极值.17.【答案】±.【解析】分析题意得,问题等价于264x ax++≤只有一解,++≤只有一解,即220x ax∴280∆=-=⇒=±,故填:±.a a18.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.三、解答题19.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD=|AC||BD|==8(2+k2+)≥32.当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.20.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.21.【答案】【解析】解:(1)A={x|x2+2x<0}={x|﹣2<x<0},B={x|y=}={x|x+1≥0}={x|x≥﹣1},∴∁R A={x|x≤﹣2或x≥0},∴(∁R A)∩B={x|x≥0};…(2)当a≥2a+1时,C=∅,此时a≤﹣1满足题意;当a <2a+1时,C ≠∅, 应满足,解得﹣1<a ≤﹣; 综上,a 的取值范围是.…22.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21n n +. 【解析】试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,36.d q ⎧=-⎪⎨⎪=⎩∴21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=.(2)若+1n n a a <,由(1)知21n a n =-,∴111111()(21)(21)22121n n a a n n n n +==--+-+, ∴111111(1)2335212121n nT n n n =-+-++-=-++….考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用. 23.【答案】(1)5,36k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z );(2)23【解析】试题分析:(1)根据3222262k x k πππππ+≤-≤+可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫= ⎪⎝⎭可得3A π=,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1)1131()cos 2sin 2sin(2)2262f x x x x π=-+=-+, 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+,k Z ∈,∴()f x 的单调递减区间为5[,]36k k ππππ++(k Z ∈).考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 24.【答案】【解析】解:(1)依题意,画出散点图如图所示, (2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.。

相关文档
最新文档