角平分线的判定练习

合集下载

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题角平分线是初中数学中一个重要的概念,它有着广泛的应用。

在解决一些几何问题时,我们可以利用角平分线的性质来简化计算,提高解题效率。

下面我将给出一些角平分线的问题练习题并逐一解答。

1. 题目:在三角形ABC中,角A的角平分线交BC边于点D,若AB=AC,AD=5cm,BD=3cm,求BC的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件,可得3/DC = 1,解得DC=3cm。

由此可以知道,BC = BD+DC = 3+3 = 6cm。

2. 题目:在平行四边形ABCD中,角A的角平分线交BC边于点E,若AB=8cm,AD=10cm,BE=6cm,求CE的长度。

解析:由于平行四边形的特性,我们可以得知AE=AD=10cm。

根据角平分线的性质,可以得到BE/EC = AB/AC,代入已知条件可得6/EC = 8/(10+AC),解得EC=16cm。

因此,CE的长度为16cm。

3. 题目:在正方形ABCD中,角A的角平分线交BC边于点E,知AE=5cm,求BE的长度。

解析:由于正方形的特性,我们知道BE=BC。

根据角平分线的性质,我们可以得到AE/EC = AB/AC,即5/EC = 1。

解得EC=5cm,因此BE也等于5cm。

4. 题目:在三角形ABC中,角A的角平分线交BC边于点D,且AD=BD,若AC=6cm,BD=2cm,求AB的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件可得2/DC = AB/6。

由于AD=BD,即DC=2cm。

代入可得2/2 = AB/6,解得AB=6cm。

5. 题目:在梯形ABCD中,AB∥DC,角BAD的角平分线交BC边于点E,若BE=6cm,ED=9cm,求CD的长度。

解析:根据梯形的特性,我们可以得知AD∥BC。

根据角平分线的性质,可以得到BE/EC = BA/AD。

代入已知条件可得6/EC =AB/(AD+ED),即6/EC = BA/CD。

角平分线的性质定理 同步练习

角平分线的性质定理 同步练习

1.4 角平分线的性质第1课时角平分线的性质定理要点感知角平分线的性质定理:角的平分线上的点到__________的距离相等.预习练习已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3 cm,则点D到AC的距离是( )A.2 cmB.3 cmC.4 cmD.6 cm知识点角平分线的性质1.△ABC中,∠C=90°,AD平分∠BAC,BC=8,BD=5,则点D到AB的距离等于( )A.5B.4C.3D.22.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1B.2C.3D.4第2题图第3题图第4题图3.如图,P是∠AOB的平分线OC上一点(不与O重合),过P分别向角的两边作垂线PD,PE,垂足是D,E,连接DE,那么图中全等的直角三角形共有( )A.3对B.2对C.1对D.没有4.已知:如图,AD是△ABC的角平分线,且AB∶AC=3∶2,则△ABD与△ACD的面积之比为__________.5.如图,已知BD是∠ABC的内角平分线,CD是∠ACB的外角平分线,由D出发,作点D 到BC,AC和AB的垂线DE,DF和DG,垂足分别为E,F,G,则DE,DF,DG的关系是__________.第5题图第6题图6.如图,在Rt△ABC中,∠C=90°,BE是∠ABC的平分线,ED⊥AB于D,ED=3,AE=5,则AC=__________.7.如图,已知CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O且AO平分∠BAC.求证:OB=OC.8.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.9.如图,△ABC中,∠C=90°,BC=1,AB=2,BD是∠ABC的平分线,设△ABD,△BCD 的面积分别为S1、S2,则S1∶S2等于( )A.2∶1B.2∶1C.3∶2D.2∶3第9题图第10题图第11题图10.如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD等于( )A.4B.3C.2D.111.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC的长是( )A.3B.4C.5D.612.如图所示,若AB∥CD,AP、CP分别平分∠BAC和∠ACD,PE⊥AC于E,且PE=3 cm,则AB与CD之间的距离为( )A.3 cmB.6 cmC.9 cmD.无法确定第12题图第13题图第14题图13.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,AC=8 cm,且CD∶AD=1∶3,则点D到AB的距离为__________cm.14.通过学习我们已经知道三角形的三条内角平分线是交于一点.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为__________.15.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,求证:BD+DE=AC.16.已知:如图所示,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:CF=EB.17.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB,AC于E,F两点.求证:AD⊥EF.18.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB 于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.参考答案要点感知角的两边预习练习 B1.C2.B3.A4.3∶25.DE=DF=DG6.87.证明:∵AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,∴OE=OD.在Rt△OBE和Rt△OCD中,∠EOB=∠DOC,∠BEO=∠CDO=90°,∴△OBE≌△OCD(ASA).∴OB=OC.8.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°.∵D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,DE=DF,DB=DC,∴Rt△BDE≌Rt△CDF(HL).∴∠B=∠C.9.A 10.B 11.A 12.B 13.2 14.515.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE.∴BC=BD+CD=BD+DE.∵AC=BC,∴AC=BD+DE.16.证明:∵AD是∠BAC的平分线,DE⊥AB于E,DC⊥AC于C,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB.17.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°.∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA.∴AD⊥EF.18.相等.证明:连接EB,EC.∵AE是∠BAC的平分线,EF⊥AB,EG⊥AC,∴EF=EG.∵ED⊥BC于D,D是BC的中点,∴EB=EC.∴Rt△EFB≌Rt△EGC(HL).∴BF=CG.。

角平分线的性质与判定习题

角平分线的性质与判定习题

[角平分线的性质与判定]一、选择题1.如图BP为∠ABC的平分线,过点D作BC,BA的垂线,垂足分别为E,F,则下列结论中错误的是()A.∠DBE=∠DBFB.DE=DFC.2DF=DBD.∠BDE=∠BDF2.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.点MB.点NC.点PD.点Q3.如图已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.424.如图在平面直角坐标系中,AD平分∠OAB,DB⊥AB, BC∥OA交y轴于点C,若点B的横坐标为1,点D的坐标为(0,√3),则点C的坐标是()A.(0,2) B .(0,5) C.(0,√5) D.(0,√3+√2)二、填空题5.如图∠AOB=70°,QC⊥OA于点C,QD⊥OB于点D,若QC=QD,则∠CQO=°6.已知如图AB∥CD,AP,CP分别平分∠BAC和∠ACD, PE⊥AC于点E,且PE=3 cm,则AB与CD之间的距离为cm7.如图∠AOE=∠BOE=15°,EF∥OB,EC⊥OB.若EC=1,则EF=.8.如图AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和26,则△EDF的面积为.三、解答题9.如图在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB 于点E,CD=3.(1)求DE的长; (2)若AC=6,BC=8,求△ADB的面积10.如图P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F,G分别是OA,OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.11.如图在Rt△ABC中,∠C=90°,BD是Rt△ABC的一条角平分线,点O,E,F分别在BD,BC,AC上,且四边形OECF 是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.课时作业(十)[三角形三条内角的平分线]一、选择题1.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC的三条中线的交点处B.△ABC的三边的垂直平分线的交点处C.△ABC的三条角平分线的交点处D.△ABC的三条高所在直线的交点处2.如图已知△ABC的周长是18 cm,∠ABC和∠ACB的平分线交于点O,OD⊥BC于点D,若OD=3 cm,则△ABC的面积是()A.24 cm2B.27 cm2C.30 cm2D.33 cm2二、填空题3.如图,在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,则∠BDC的度数是.4.在△ABC中,AB=13 cm,AC=5 cm,BC=12 cm,若△ABC 内有一点P到各边的距离相等,则这个距离为cm.5.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC 的平分线BP相交于点P.若∠BPC=40°,则∠CAP=°.三、解答题如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠ACB的平分线,AD,CE相交于点F.请你判断FE与FD之间的数量关系(不需要证明).(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,则你在(1)中所得到的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(提示:四边形的内角和为360°)。

角平分线的性质和判定(人教版)(含答案)

角平分线的性质和判定(人教版)(含答案)
C.①和② D.①,②和③
答案:C
解题思路:
解:如图,
连接AP,
在Rt△APR和Rt△APS中,
,
∴Rt△APR≌Rt△APS(HL)
∴∠1=∠2,AR=AS,
∵AQ=PQ
∴∠2=∠3
∴∠1=∠3
∴PQ∥AR
故①,②正确,③不确定,综上,选C
试题难度:三颗星知识点:全等三角形的性质与判定
10.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P.若∠BPC=40°,则∠CAP等于( )
A.40° B.45°
C.50° D.60°
答案:C
解题思路:
1.思路点拨
①见到两条角平分线相交,考虑角平分线的性质,过点P分别向角的两边作垂线,垂线段相等.
②借助常见结构:找到∠BPC和∠BAC的关系,求出∠BAC的度数.
③借助三角形的内角和定理和平角解决问题.
2.解题过程
解:如图,
过点P分别向BC,AC,BA边所在直线作垂线,垂足分别为点E,F,G,
3.如图,已知点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC等于( )
A.110° B.120°
C.130° D.140°
答案:A
解题思路:
①由点O到△ABC三边的距离相等,可知点O是△ABC三个角的角平分线;
②设 ,
分别在△ABC和△BOC中利用三角形内角和定理,
答案:C
解题思路:
(1)根据角平分线的性质:角平分线上的点到角两边的距离相等,可以得到DE=DC,
∴①正确;
(2)角平分线可以看成一个角的对称轴,对称轴两侧的图形全等,即△ADC≌△ADE,

角平分线的性质和判定最新中考试题汇集练习及答案

角平分线的性质和判定最新中考试题汇集练习及答案

角平分线的性质和判定最新中考试题汇集练习及答案一.选择题(共10小题)1.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S△ABD=()A.28 B.21 C.14 D.72.如用,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=24,DE=4,AB=5,则AC的长是()A.4 B.5 C.6 D.73.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=9cm,则点D到AB的距离为()A.3cm B.2cm C.1cm D.4.5cm4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ 的最小值为()A.1.5 B.2 C.3 D.45.已知点P在∠AOB的平分线上,∠AOB=60°,OP=10cm,那么点P到OA,OB的距离分别是()A.5cm,cm B.4cm,5cm C.5cm,5cm D.5cm,10cm6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.10 B.9 C.8 D.67.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为()A.6.5 B.5.5 C.8 D.138.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.如图,△ABC的三边长分别是6,9,12,其三条角平分线将其分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:510.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.3cm B.4cm C.5cm D.7 cm二.填空题(共1小题)11.如图∠AOP=∠BOP=22.5°,PC∥OA,PD⊥OA于点D,若PD=1,则PC等于.三.解答题(共4小题)12.如图,在平面直角坐标系中,已知点A(a﹣1,a+b),B(a,0),且(a+b﹣3)2+|a﹣2b|=0,C为x轴上点B右侧的动点,以AC为腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)线段AO与线段AB的数量关系是(填“>”、“≥”、“≤”、“<”或“=”);(2)求证:△AOC≌△ABD;(3)若∠CAD=30°,当点C运动时,点P在y轴上的位置是否发生改变,为什么?13.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.14.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=BC=8,若S△ABC=28,求DE的长.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.角平分线的性质和判定最新中考试题汇集练习及答案一.选择题(共10小题)1.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S△ABD=()A.28 B.21 C.14 D.7【分析】利用角平分线的性质定理即可解决问题;【解答】解:作DH⊥BA于H.∵BD平分∠ABC,BC⊥DE,DH⊥AB,∴DH=DE=4,∴S△ABD=×7×4=14,故选:C.【点评】本题考查角平分线的性质定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.如用,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=24,DE=4,AB=5,则AC的长是()A.4 B.5 C.6 D.7【分析】作DF⊥AC于F,如图,根据角平分线定理得到DE=DF=4,再利用三角形面积公式和S△ADB+S△ADC=S△ABC得到×5×4+×AC×4=8,然后解一次方程即可.【解答】解:作DF⊥AC于F,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=4,∵S△ADB+S△ADC=S△ABC,∴×5×4+×AC×4=24,∴AC=7.故选:D.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.3.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=9cm,则点D到AB的距离为()A.3cm B.2cm C.1cm D.4.5cm【分析】如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=9cm,则点D到AB的距离为【解答】解:如图,过点D作DE⊥AB于E,∵BD:DC=2:1,BC=79,∴DC=,∵AD平分∠BAC,∠C=90°,∴DE=DC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,要注意DC的求法.4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ 的最小值为()A.1.5 B.2 C.3 D.4【分析】根据角平分线的性质结合点到直线垂线段最短,即可得出PQ≥PA,此题得解.【解答】解:∵OP平分∠MON,PA⊥ON于点A,PA=3,∴PQ≥PA=3.故选:C.【点评】本题考查了角平分线的性质以及垂线段最短,根据角平分线的性质结合垂线段最短,求出PQ的最小值是解题的关键.5.已知点P在∠AOB的平分线上,∠AOB=60°,OP=10cm,那么点P到OA,OB的距离分别是()A.5cm,cm B.4cm,5cm C.5cm,5cm D.5cm,10cm【分析】由已知可得∠AOP=∠BOP=30°,已知PC⊥OA,PD⊥OB,OP=10cm,根据直角三角形中30度所对的边是斜边的一半可求得PC,PD的长.【解答】解:∵点P在∠AOB的平分线上,∠AOB=60°,∴∠AOP=∠BOP=30°,∵PC⊥OA,PD⊥OB,OP=10cm,∴PC=PD=OP=5cm.故选:C.【点评】此题主要考查含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.10 B.9 C.8 D.6【分析】作EH⊥BC于H,根据角平分线的性质得到EH=DE=3,根据三角形的面积公式计算即可.【解答】解:作EH⊥BC于H,∵BE平分∠ABC,CD是AB边上的高线,EH⊥BC,∴EH=DE=3,∴△BCE的面积=×BC×EH=9,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为()A.6.5 B.5.5 C.8 D.13【分析】作DH⊥AC于H,根据角平分线的性质得到DF=DH,证明Rt△DFE≌Rt△DHG,根据题意列出方程,解方程即可.【解答】解:设△EDF的面积为x,作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△DFE和Rt△DHG中,,∴Rt△DFE≌Rt△DHG,由题意得,38+x=51﹣x,解得,x=6.5,∴△EDF的面积为6.5,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.【点评】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.如图,△ABC的三边长分别是6,9,12,其三条角平分线将其分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:如图,过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=6,BC=9,AC=12,∴S△ABO:S△BCO:S△CAO=2:3:4.故选:C.【点评】此题主要考查角平分线的性质和三角形面积的求法,解题时注意:角的平分线上的点到角的两边的距离相等.10.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.3cm B.4cm C.5cm D.7 cm【分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【解答】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.二.填空题(共1小题)11.如图∠AOP=∠BOP=22.5°,PC∥OA,PD⊥OA于点D,若PD=1,则PC等于.【分析】过P作PE⊥OB于E,根据角平分线的性质求出PE,根据平行线的性质求出∠CPO,根据三角形外角性质求出∠ECP=45°,解直角三角形求出PC即可.【解答】解:过P作PE⊥OB于E,∵∠AOP=∠BOP=22.5°,PD⊥OA,PD=1,∴PE=OD=1,∵PC∥OA,∠AOP=22.5°,∴∠CPO=∠AOP=22.5°,∵∠BOP=22.5°,∴∠ECP=∠CPO+∠BOP=45°,∵∠PEO=90°,∴CP==,故答案为:.【点评】本题考查了角平分线的性质,平行线的性质,解直角三角形,三角形外角的性质等知识点,能求出PE的长和能求出∠ECP的度数是解此题的关键.三.解答题(共4小题)12.如图,在平面直角坐标系中,已知点A(a﹣1,a+b),B(a,0),且(a+b﹣3)2+|a﹣2b|=0,C为x轴上点B右侧的动点,以AC为腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)线段AO与线段AB的数量关系是=(填“>”、“≥”、“≤”、“<”或“=”);(2)求证:△AOC≌△ABD;(3)若∠CAD=30°,当点C运动时,点P在y轴上的位置是否发生改变,为什么?【分析】(1)先根据非负数的性质求出a、b的值,作AE⊥OB于点E,由SAS定理得出△AEO≌△AEB,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB,得出∠OAC=∠BAD,再由SAS定理即可得出△AEO≌△AEB;(3)不变.直线DB过定点B且与x轴相交所成的锐角度数为30°;【解答】解(1)证明:∵+(a﹣2b)2=0,∴,解得,∴A(1,3),B(2,0),作AE⊥OB于点E∵A(1,3),B(2,0),∴OE=1,BE=2﹣1=1,在△AEO与△AEB中,∵,∴△AEO≌△AEB,∴AO=AB;故答案为=.(2)证明:∵∠CAD=∠OAB,∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,在△AOC与△ABD中,∵,∴△AOC≌△ABD(SAS);(3)不变.直线DB过定点B且与x轴相交所成的锐角度数为30°.理由:设AC交BD于K.∵由(2)知,△AOC≌△ABD,∴∠ADB=∠ACO,∵∠AKD=∠BKC,∴∠DBC=∠DAC=30°,∴∠OBP=∠DBC=30°∵OB=2,∠OBP为定值,∠POB=90°,∴OP长度不变,∴点P在y轴上的位置不发生改变.【点评】本题考查的是全等三角形的判定与性质、非负数的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.13.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【分析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.14.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=BC=8,若S△ABC=28,求DE的长.【分析】根据角平分线性质得出DE=DF,根据三角形的面积公式得出关于DE的方程,求出即可.【解答】解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABC=28,AB=BC=8,∴×8×DE+×8×DF=28,∴8DE=28.∴DE=3.5.【点评】本题考查了角平分线定义的应用,能根据角平分线性质得出DE=DF是解此题的关键.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.【分析】(1)根据角平分线的性质得到DC=DE,根据直角三角形全等的判定定理得到Rt△DCF≌Rt△DEB,根据全等三角形的性质定理得到答案;(2)根据全等三角形的性质定理得到AC=AE,根据(1)的结论得到答案.【解答】证明:(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB,∴CF=EB;(2)AF+BE=AE.∵Rt△DCF≌Rt△DEB,∴AC=AE,∴AF+FC=AE,即AF+BE=AE.【点评】本题考查的是角平分线的性质和三角形全等的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意直角三角形全等的判定方法.。

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。

人教版八年级数学上《角的平分线的性质》拔高练习

人教版八年级数学上《角的平分线的性质》拔高练习

《角的平分线的性质》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,OB平分∠MON,A为OB的中点,AE⊥ON,垂足为点E,EA=3,D为OM上的一个动点,C是DA的延长线与BC的交点,BC∥OM,则CD的最小值为()A.6B.8C.10D.122.(5分)如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE =∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2B.2:3C.1:4D.4:93.(5分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()A.1个B.2个C.3个D.4个4.(5分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5°5.(5分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画圆弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE长为半径画圆弧,两弧交于点F,作射线AF交边BC于点G.若CG=3,AB=10,则△ABG的面积是()A.3B.10C.15D.30二、填空题(本大题共5小题,共25.0分)6.(5分)已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为cm.7.(5分)如图,在Rt△ABC中,∠B=90°,CD是∠ACB的平分线,若BD=2,则D到AC的距离为.8.(5分)如图,AB∥CD,∠ABC和∠DCB的角平分线BP,CP交于点P,过点P作P A ⊥AB于A,交CD于D.若AD=10,则点P到BC的距离是,∠BPC=°.9.(5分)如图,已知Rt△ABC,∠C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是.10.(5分)如图,△ABC中,AB=6,∠BAC的平分线交BC于点D,DE⊥AC于点E,DE =4,则△ABD面积是.三、解答题(本大题共5小题,共50.0分)11.(10分)已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB 于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.12.(10分)如图所示,在△ABC中:(1)下列操作中,作∠ABC的平分线的正确顺序是(将序号按正确的顺序写在横线上).①分别以点M、N为圆心,大于MN的长为半径作圆弧,在∠ABC内,两弧交于点P;②以点B为圆心,适当长为半径作圆弧,交AB于点M,交BC于N点;③画射线BP,交AC于点D.(2)能说明∠ABD=∠CBD的依据是(填序号).①SSS.②ASA.③AAS.④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S△ABC=120,过点D作DE⊥AB于点E,求DE的长.13.(10分)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.14.(10分)在△ABC中,∠C=90°,BD平分∠ABC,CD=3cm,AB=10cm,求△ABD 的面积.15.(10分)如图,在△ABC中,点P是BC上一点,PR⊥AB,PS⊥AC,垂足分别为点R、S,PR=PS,点Q是AC上一点,且AQ=PQ.(1)求证:QP∥AR;(2)AR、AS相等吗?说明理由.《角的平分线的性质》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,OB平分∠MON,A为OB的中点,AE⊥ON,垂足为点E,EA=3,D为OM上的一个动点,C是DA的延长线与BC的交点,BC∥OM,则CD的最小值为()A.6B.8C.10D.12【分析】根据两条平行线之间的距离可知当CD⊥OM时,CD取最小值,利用全等三角形的判定和性质得出AC=AD=AE=3,进而解答即可.【解答】解:由题意可得,当CD⊥OM时,CD取最小值,∵OB平分∠MON,AE⊥ON于点E,CD⊥OM,∴AD=AE=3,∵BC∥OM,∴∠DOA=∠B,∵A为OB的中点,∴AB=AO,在△ADO与△ABC中,∴△ADO≌△ABC(SAS),∴AC=AD=3,∴CD=AC+AD=3+3=6,故选:A.【点评】此题考查全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC=AD=AE=3.2.(5分)如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE =∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2B.2:3C.1:4D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S即可求得.△ABE【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.【点评】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.3.(5分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解答】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选:B.【点评】本题主要考查了角平分线的性质,是一道结论开放性题目,考查了学生利用角平分线的性质解决问题的能力,有利于培养发散思维能力.4.(5分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5°【分析】利用全等直角三角形的判定定理HL证得Rt△ACD≌Rt△AED,则对应角∠ADC =∠ADE;然后根据已知条件“DE平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【解答】解:∵在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,∴CD=ED.在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴∠ADC=∠ADE(全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE平分∠ADB,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B.【点评】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.5.(5分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画圆弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE长为半径画圆弧,两弧交于点F,作射线AF交边BC于点G.若CG=3,AB=10,则△ABG的面积是()A.3B.10C.15D.30【分析】根据角平分线的性质得到GH=CG=3,根据三角形的面积公式计算即可.【解答】解:作GH⊥AB于H,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GH⊥AB,∴GH=CG=3,∴△ABG的面积=×AB×GH=15,故选:C.【点评】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为6cm.【分析】连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算,得到答案.【解答】解:连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,∵OB平分∠ABC,OD⊥AB,OE⊥BC,∴OD=OE,同理,OD=OE=OF,则AB•OD+AC•OF+CB•OE=36,即×(AB+AC+BC)×OD=36,∴OD=6(cm),故答案为:6.【点评】本题考查的是角平分线的性质,角的平分线上的点到角的两边的距离相等.7.(5分)如图,在Rt△ABC中,∠B=90°,CD是∠ACB的平分线,若BD=2,则D到AC的距离为2.【分析】作DH⊥AC于H,根据角平分线的性质求出DH即可.【解答】解:作DH⊥AC于H,∵CD是∠ACD的平分线,∠B=90°,DH⊥AC,∴DH=DB=2,故D到AC的距离为2,故答案为:2.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(5分)如图,AB∥CD,∠ABC和∠DCB的角平分线BP,CP交于点P,过点P作P A ⊥AB于A,交CD于D.若AD=10,则点P到BC的距离是5,∠BPC=90°.【分析】作PH⊥BC于H,根据角平分线的性质得到P A=PH,PD=PH,得到P A=PD;证明Rt△ABP≌Rt△HBP,根据全等三角形的性质计算即可.【解答】解:作PH⊥BC于H,∵AB∥CD,P A⊥AB,∴P A⊥CD,∵BP是∠ABC的平分线,P A⊥AB,PH⊥BC,∴P A=PH,同理,PD=PH,∴P A=PD=5,则点P到BC的距离为5,在Rt△ABP和Rt△HBP中,,∴Rt△ABP≌Rt△HBP(HL)∴∠APB=∠HPB,同理,∠CPH=∠CPD,∴∠BPC=∠HPB+∠HPC=×180°=90°,故答案为:5;90.【点评】本题考查的是角平分线的性质、平行线的性质,角的平分线上的点到角的两边的距离相等.9.(5分)如图,已知Rt△ABC,∠C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是3.【分析】依据角平线的性质可得点D到AB和BC的距离相等,求出CD的长度即可得到D点到AB的距离.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,BD=5,BC=4,∴由勾股定理得:CD=3,又∵BD是∠ABC的平分线,∴DE=DC=3,即点D到AB的距离是3.故答案为:3.【点评】本题主要考查了角平分线的性质,解题时注意:角平分线上点到角两边距离相等.10.(5分)如图,△ABC中,AB=6,∠BAC的平分线交BC于点D,DE⊥AC于点E,DE =4,则△ABD面积是12.【分析】过D作DF⊥AB于F,依据角平分线的性质,即可得到DF=DE=4,再根据三角形的面积公式列式进行计算得出△ABD的面积.【解答】解:如图,过D作DF⊥AB于F,∵AD平分∠BAC,DE⊥AC,∴DF=DE=4,又∵AB=6,∴△ABD面积=×AB×DF=×6×4=12,故答案为:12.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.【分析】(1)直接利用三角形内角和定理得出∠BAC的度数,再利用角平分线的定义得出答案;(2)过D作DF⊥AC于F,依据角平分线的性质,即可得到DF=DE=3,再根据S△ABC =×AB×DE+×AC×DF进行计算即可.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=×AB×DE+×AC×DF=×10×3+×8×3=27.【点评】本题主要考查了角平分线的性质以及三角形的面积,角的平分线上的点到角的两边的距离相等.12.(10分)如图所示,在△ABC中:(1)下列操作中,作∠ABC的平分线的正确顺序是②①③(将序号按正确的顺序写在横线上).①分别以点M、N为圆心,大于MN的长为半径作圆弧,在∠ABC内,两弧交于点P;②以点B为圆心,适当长为半径作圆弧,交AB于点M,交BC于N点;③画射线BP,交AC于点D.(2)能说明∠ABD=∠CBD的依据是①(填序号).①SSS.②ASA.③AAS.④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S△ABC=120,过点D作DE⊥AB于点E,求DE的长.【分析】(1)根据尺规作图作角平分线的步骤解答;(2)根据全等三角形的判定定理和性质定理解答;(3)过点D作DF⊥BC与F,根据角平分线的性质定理得到DE=DF,根据三角形的面积公式计算即可.【解答】解:(1)作∠ABC的平分线的正确顺序是②①③,故答案为:②①③;(2)在△MBP和△NBP中,,∴△MBP≌△NBP(SSS),∴∠ABD=∠CBD,故答案为:①;(3)过点D作DF⊥BC与F,∵∠ABD=∠CBD,DE⊥AB,DF⊥BC,∴DE=DF,S△ABC=S△ABD+S△CBD,即×AB×DE+×BC×DF=120,∴×18×DE+×12×DE=120,解得,DE=8.【点评】本题考查的是角平分线的性质,全等三角形的判定和性质,角平分线的作法,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.(10分)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【分析】利用“HL”证明Rt△PFD和Rt△PGE全等,根据全等三角形对应边相等可得PD=PE,再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出全等三角形是解题的关键.14.(10分)在△ABC中,∠C=90°,BD平分∠ABC,CD=3cm,AB=10cm,求△ABD 的面积.【分析】作出图形,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用三角形的面积公式列式计算即可得解.【解答】解:过点D作DE⊥AB,垂足为点E∵BD平分∠ABC,DE⊥AB DC⊥BC∴DE=DC又∵DC=3cm∴DE=3cm∴cm2.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.15.(10分)如图,在△ABC中,点P是BC上一点,PR⊥AB,PS⊥AC,垂足分别为点R、S,PR=PS,点Q是AC上一点,且AQ=PQ.(1)求证:QP∥AR;(2)AR、AS相等吗?说明理由.【分析】(1)依据角平分线的判定,即可得到∠P AR=∠P AS,依据等边对等角,由AQ =PQ,推出∠P AS=∠APQ,即可推出∠P AR=∠APQ,进而得出PQ∥AR.(2)只要利用HL,证明Rt△APR≌Rt△APS,即可推出AS=AR.【解答】解:(1)∵PR⊥AB,PS⊥AC,PR=PS,∴AP平分∠BAC,∴∠BAP=∠CAP,又∵AQ=PQ,∴∠CAP=∠APQ,∴∠BAP=∠APQ,∴QP∥AR;(2)相等,理由:∵PR⊥AB,PS⊥AC,∴∠ARP=∠ASP=90°,在Rt△APR和Rt△APS中,,∴Rt△APR≌Rt△APS(HL),∴AS=AR.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是熟练掌握全等三角形的判定和性质.。

角平分线的性质练习题

角平分线的性质练习题

处 D 、4处第4题 第5题 第6题DCAEB1. 已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为的度数为 . 2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 4.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 课堂练习课堂练习5.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm . 6.如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF . 7.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为(为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定、不能确定9. 如图,已知△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等. D CB A8.三角形的三条角平分线相交于一点,并且这一点到________________相等.相等.9.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________. 12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是(,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD 3.如图,.如图,直线直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(的距离相等,则可供选择的地址有( )A 、1处B 、2处C 、321DAP OE 、∠QTN =90° D 、∠NQT =∠MQTNTQPMEDCBAEDC BAF第15题 第16题 第17题16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( ) A .2 cmB .3 cmC .4 cmD .5 cm 17.如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是(的平分线上.其中正确的是( )A .①.①B .②.②C .①和②.①和②D .①②③.①②③22. 如图,已知BE ⊥AC于Bl 2l 1l 3第12题 第13题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( )A 、TQ =PQB 、∠MQT =∠MQPC E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD .求证:AD 平分∠BAC . 26.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB . 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 4
如图:AB是/CAD的平分线,则有: CB=BD。
点击二:角平分线判定定理:到一个角的两边的距离相等的点在这个角的平分线上.
如图:如果有 CB=BD ,则有 AB 是/CAD的平分线。

点击三:三角形的三条角平分线交于三角形内一点, ?并且这个点到三角形三边的距离相
等.

如图:在三角形 ABC中,AD 是/BAC , BE 是/ABC的角平分线,则有 IH=IG=IF

典例引路
题型一:求证角平分线的性质定理 例1如图,BE=CF , BE丄AC于F, CE丄
AB于E,BF和CE交于点 D, 求证:AD平分/BAC.
B

F
2 / 4

练习1.如图在△ ABC中,/ B= ZC ,D是BC的中点,DE丄AB于E, DF丄AC于F,求证:AD平分/ BAC
练习2.如图BE丄AC于E, CF丄AB于F, BE,CF相交于点 D,且CE=BF ,
求证:点D在/BAC的平分线上

例 2.如图,在△ ABC 中,Z C=90。,AD 平分Z BAC , DE丄 AB 于 E, F 在 AC 上,
BD=DF,求证:CF=EB

练习 如图,在 Rt △ABC 中,/C=90 0, AC=BC , AD 为 ZBAC 的平分线,AE=BC ,
DE丄AB,垂足为 E,求证ADBE的周长等于 AB.

题型二、辅助线习题 例3如图,在△ ABC中,外角Z CBE和ZBCG的平分线相交于点 F,
求证:点 F 在ZBAC的平分线上

例4如图,已知Z B= ZC=90。,DM 平分ZADC , AM 平分Z DAB , 探究线
段BM与CM的关系,说明理由。

例5已知:如图在△ ABC中,BD=DC,/仁Z,求证:AD平分Z BAC.

C
B

1
D
2
3 / 4

例 6 如图,AB=AC , BD=CD , DE 丄 AB 于 E, DF 丄 AC 于 F,求证:DE=DF
类型三:利用角平分线的性质求线段之比
例7 :如图,已知:/BAC=30,G为/BAC的平分线上的一点,
若 EG //AC 交 AB 于 E, GD 丄 AC 于 D ,
GD : GE=( )

E
4 / 4

类型四:利用角平分线的性质求角的度数 例 8 :在△ ABC 中,/ABC=100,/ACB=20 , CE 平分/ACB 交 AB 于
E, D 在 AC 上,且/CBD=20。

求ZCED的度数。

【解析】此题是考查利用角平分线的性质求角的度数。
【答案】作 EF丄AC,延长CB,作EG丄CB

相关文档
最新文档