两角差的余弦公式详细教案

合集下载

3.1.1 两角差的余弦公式 教案

3.1.1  两角差的余弦公式 教案

3.1.1 两角差的余弦公式一、教学目标1.引导学生建立两角差的余弦公式。

通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。

2.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。

二、教学重点难点重点:两角差余弦公式的探索和简单应用。

难点:探索过程的组织和引导。

三、学情分析之前学习了三角函数的性质,以及平面向量的运算和应用,在此基础上,要考虑如何利用任意角α、β,的正弦余弦值来表示cos(α-β),牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。

四、教学方法1.自主性学习法:通过自学掌握两角差的余弦公式。

2.探究式学习法:通过分析、探索、掌握两角差的余弦公式的过程。

3.反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距。

五、设计思路本节课利用向量的数量积运算的定义来推导两角差的余弦公式,在学习两角差的余弦公式时,应从特例入手,归纳、提炼、拓展到一般的两角差的余弦公式,从单位圆上的三角函数和向量两种不同的途径探索、推导公式。

六、教学过程(一)新课导入某城市的电视发射塔建在市郊的一座小山上.如图所示,小山高BC约为30米,在地平面上有一点A,测得A、C两点间距离约为60米,从A观测电视发射塔的视角(∠CAD)约为45°,∠CAB=15°.求这座电视发射塔的高度。

对于30°,45°,60°等特殊角的三角函数值可以直接写出,利用诱导公式还可进一步求出150°,210°,315°等角的三角函数值。

我们希望再引进一些公式,能够求更多的非特殊角的三角函数值,同时也为三角恒等变换提供理论依据。

若,αβ为两个任意角, 则Cos()Cos Cos αβαβ-=-成立吗? 令60,30αβ=︒=︒,显然Cos(6030)Cos60Cos30︒-︒≠︒-︒154530,Cos15Cos(4530)︒=︒-︒∴︒=︒-︒Q 。

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式教案
目标:学生能够理解和应用两角差的余弦公式解决相关问题。

教学步骤:
一、导入(5分钟)
1. 使用举例的方式引起学生对两角差的兴趣,并引导他们思考两角差的概念。

2. 提问学生:你们知道两角差的余弦公式是什么吗?有什么用途?
二、理论介绍(15分钟)
1. 介绍两角差的概念和符号表示。

2. 说明两角差的余弦公式的推导过程。

3. 引导学生理解公式的意义,并提供实际应用案例。

三、示范与实践(20分钟)
1. 通过具体的示范问题,展示如何使用两角差的余弦公式。

2. 导引学生解决练习题,巩固所学知识。

3. 现场纠正学生的错误答案,并让他们讲解正确答案的解题方法。

四、归纳总结(10分钟)
2. 与学生讨论公式的实际应用,并回答他们的问题。

五、拓展延伸(10分钟)
1. 提供更具挑战性的问题,让学生思考扩展形式。

六、作业布置(5分钟)
1. 布置相关练习题作为课后作业。

评估方法:
1. 课堂参与度:观察学生在课堂上的积极参与程度和回答问题的准确性。

2. 作业完成度:检查学生完成的作业,看是否能正确运用两角差的余弦公式。

教学资源:
1. 投影仪或白板,用于展示教学内容。

2. 复印的练习题和答案。

注意事项:
1. 确保教学步骤的顺序和时长合理,以确保学生的学习效果和兴趣。

2. 鼓励学生互动与讨论,以促进他们的思考和理解。

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式教案一.教学目标1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.2.通过指数函数与对数函数在图象与性质上的对比,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.3.通过观察指数函数与对数函数在图象,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.二.教材分析对数函数是函数中一类重要的基本初等函数,它是在学生已经学过指数函数、对数与对数运算基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.教学重点:理解对数函数的定义,掌握对数函数的图象性质. 教学难点:类比指数函数的图象和性质得到对数函数的图象和性质。

三:教法建议(1)对数函数及其性质在引入前,就应让学生回顾的指数函数及其性质得来的整个过程,让学生通过对指数函数的认识逐步转化为对对数函数的认识,从而了解知识的共性以及一般的认知规律。

在画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地类比指数函数引导学生思考.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.四.教学方法启发研讨式五.学情分析所教学生中考分数普遍偏低,基础较薄弱,探究能力也较弱,但求知欲旺盛,课堂很活跃,需要授课时主次分明、逻辑清晰,提问明确,对于难点要放慢节奏,适时引导并保留一定的时间供学生消化、揣摩、反思、讨论,对于个别学生还需点拨、辅导,巩固练习要重基础知识,讲究一题多变,借以提高学生的应变能力。

高中数学必修四《两角差的余弦公式》优秀教学设计

高中数学必修四《两角差的余弦公式》优秀教学设计

3.1.1两角差的余弦公式一、教材分析《两角差的余弦公式》是人教A 版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。

本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。

二、教学目标1.引导学生建立两角差的余弦公式。

通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。

2.通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。

3.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。

三、教学重点难点重点 两角差余弦公式的探索和简单应用。

难点 探索过程的组织和引导。

四、学情分析之前学习了三角函数的性质,以及平面向量的运算和应用,在此基础上,要考虑如何利用任意角αβ,的正弦余弦值来表示cos()αβ-,牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。

五、教学方法1.自主性学习法:通过自学掌握两角差的余弦公式.2.探究式学习法:通过分析、探索、掌握两角差的余弦公式的过程.3.反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距 六、课时安排:2课时 七、教学过程(一)创设情景,揭示课题以文峰塔高度测量为背景素材(见课件)引入问题。

并针对问题中的0cos15用计算器或不用计算器计算求值,以激趣激疑,导入课题。

问题:(1)能不能不用计算器求值 :0cos 45 ,0cos30 ,0cos15(2)0cos(4530)cos 45cos30-=-是否成立?(3)如何用450和300求0cos15?设计意图:由给出的背景素材,使学生感受数学源于生活,又应用于生活,唤起学生解决问题的兴趣,和抛出新知识引起学生的疑惑,在兴趣和疑惑中,激发学生的求知欲,引导学习方向。

(二)、研探新知 1.三角函数线法:问:①怎样作出角α、β、αβ-的终边。

必修4教案3.1两角差的余弦公式

必修4教案3.1两角差的余弦公式
3 3 3
例 4、化简① sin sin 3 cos cos3 ( cos 2 ) ②
1 sin cos ( tan ) 1 sin cos 2
例 5、已知 tan tan
3 求 (2 cos 2 )(2 cos 2 ) 的值(3) 3

= sin cos cos sin ② sin( ) sin cos cos sin ③ tan( )
sin( ) sin cos cos sin cos( ) cos cos sin sin
cos( ) cos cos sin sin sin( ) sin cos cos sin sin( ) sin cos cos sin
tan( )
tan tan 1 tan tan tan tan 1 tan tan

4
)
4 3 且 求 cos ( 2 10 ) 5 4 4
5 10 , cos 求 的值( 4 ) 5 10
例2、
、 均为锐角,且 sin
例3、 ①已知 sin sin
2 4 且 cos cos 求 cos( ) ( 1 9 ) 3 3 1 1 ②已知 、 (0, ) , sin sin , cos cos 2 2 2
求 cos2 的值( 7 25 )
例 2、已知 sin 3sin(2 ) 求证: tan( ) 2 tan 0 例 3、①求值
2sin 500 sin100 ( 3) cos100

两角差的余弦公式教案(示范课)

两角差的余弦公式教案(示范课)

《3.1.1两角差的余弦公式》教案玉林高中数学科 授课人:饶蔼教学目标1. 知识与技能:通过让学生探索、猜想、发现并推导“两角差的余弦公式”,通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础.2. 过程与方法:在探究公式的过程中,逐步培养学生学会分析问题、解决问题、合作交流的能力;通过两角差的余弦公式的简单运用,掌握不同方法求值.3. 情感态度:通过课题背景的设计,增强学生的探究、应用意识,认识到数学来源于生活,激发学生的学习积极性.教学重、难点1. 重点:两角差余弦公式的探究、证明过程和公式的初步应用.2. 难点:探究过程的组织和适当引导.学情分析学生已经掌握了利用单位圆上点的坐标定义任意角的三角函数,也学习了同角三角函数式的变换;理解了平面向量及其运算的意义,并能用数量积表示两个向量的夹角,经历了用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,具有一定的推理能力、运算能力和解决实际问题的能力,但利用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨、不严密的错误,教学时需要引导学生搞清楚两角差与相应向量夹角的联系与区别. 教法、学法1. 教法:问题驱动、引导发现、合作探究相结合的教学方法展开教学.2. 学法:课前预习、小组探究、反思小结等.教学过程(一)创设情境,引入课题金城超市电梯长度约为8米,坡度(与地面夹角)约为30度,请问当我们上完电梯后,在水平方向上前进了多少米?设前进量为x 米,则3430cos 8=︒=x 米提问:当电梯坡度为45度时,其他不变,x 等于多少?8 m x︒30答:2445cos 8=︒=x 米提问:当电梯坡度为15度时,此时x 又等于多少?答:︒=15cos 8x 米问题1:︒15cos 等于多少?能否用特殊角三角函数值来表示?【设计意图】从学生的实际生活出发,自然地引出问题,培养学生把实际问题抽象为数学模型来解决的能力,让学生感知数学来源于生活,并应用于生活,激发学生的学习兴趣;(二)探究归纳,提出猜想问题2:对任意的βα,,βαβαcos cos )cos(-=-是否成立?1. 思考:︒15能否用特殊角表示?预案1:)3045cos(15cos ︒-︒=︒问:︒-︒=︒30cos 45cos 15cos 是否成立?为什么?【设计意图】让学生经历提出假设 证明假设的过程,知道要证明一个假设不成立,只需举出反例即可,即明白特殊与一般的辩证关系。

《两角差的余弦公式》优质课教学设计

《两角差的余弦公式》优质课教学设计

高中数学人教A版必修4第三章《3.1.1两角差的余弦公式》(第一学时)教学设计一、教学目标:1. 通过对两角差的余弦公式的猜想和探究过程,培养学生通过交流,探索,发现和获得新知(二)新知探究在平面直角坐标系xOy 中内作单位圆O ,以Ox 为始边作角βα,,它们的终边与单位圆的交 点分别为B A ,,则()(),sin ,cos ,sin ,cos ββαα==OB OA 由向量数量积的坐标表示有:βαβαsin sin cos cos +=⋅OB OA 。

设向量OA 与OB 的夹角为θ,由向量数量积的定义有:θθcos ==⋅OB OA ,所以βαβαθsin sin cos cos cos +=。

已知()()Z k k Z k k ∈+=∈++=πθβαπθβα2-2或,所以()Z k k ∈±=-θπβα2,所以()θβαcos cos =-,又因为βαβαθsin sin cos cos cos +=,所以可知对任意角βα,,都有()βαβαβαsin sin cos cos cos +=-。

(三)巩固理解例1、利用差角余弦公式求o15cos 的值。

分析:本题关键是将o15角分成o45与o30的差或者分解成o60与o45的差,再利用两角差的余弦公式即可求解。

例2、已知,135cos ,,2,54sin -=⎪⎭⎫⎝⎛∈=βππααβ是第三象限角,求()βα-cos 的值。

分析:观察公式()βα-cos 与本题已知条件应先计算出αcos ,βsin ,再代入公式求值。

求βαsin ,cos 的值可借助于同角三角函数的平方关系,并注意βα,的取值范围来求解。

例3、求值(1)oooo35sin 65sin 35cos 65cos + (2)απααπαsin 3sin cos 3cos ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+(3)oooo 40cos 110sin 50cos 110cos + (4)oooo42sin 78cos 42cos 12cos +为o50sin ,再逆向使用两角差余弦公,即可将原式化为o60cos ;对于(4),可先用诱导公式化o 78cos 为o 12sin ,再逆向使用两角差余弦公,即可将原式化为o 30cos 。

《两角差的余弦公式教案》及说明

《两角差的余弦公式教案》及说明
cos 120 cos 30 sin 120 sin 30
依据特殊情 况进行猜想往往 是人们探索问题
1 2
3 2
3 2
1 2
的第一步.
学生再举特例进行验证. (各抒己见) 利用几何画板,对更多的情况加以验证。 三、提出猜想: cos( ) cos cos sin sin 师:要让猜想更有说服力,我们还要进行理论证明. 四、理论证明: 引导探究:研究三角函数问题,我们常用的一种方法就是利用单位圆, 在单位圆中,角的余弦值可用余弦线来表示. 我们先来讨论最简单的情况: 鼓励学生对 各种可能的情况 进行探索,培养 他们的交流合作 意识,在探索的 过程中获得成就 感.

2
, 则: cos( ) cos(

2
) sin
分析:可见,我们的公式的形式应该与 cos cos 和sin sin 均有关 题、挑战困难的 系?他们之间存在怎样的代数关系呢?会不会是 “+” 、 “-” 、 “” 、 “÷” ? 勇气. 请同学们根据下表中数据,相互交流讨论,提出你的猜想. 用具体值检验猜想的合理性. 令 120, 30 则 cos( ) cos(120 30) cos90 = 0 三角函数 三角函数值
引入:同学们,在第一章我们学习了同角三角函数式的变换,今天我们
将一起探究一种包含两个角的三角函数式的变换: 两角差的余弦公式。 先让 入,体现数学与 我们走入生活,看一个例子: 实际生活的联
例: 如图所示,一个斜坡的高为 6m,斜坡的水平长度为 8m,已知作用在物 系,增强学生的 体上的力 F 与水平方向的夹角为 60°,且大小为 10N ,在力 F 的作用下物体 应用意识,激发 沿斜坡运动了3m,求力 F 作用在物体上的功 W. 解: W = F S F S cos(60 ) = 30 cos(60 ) . 提问:1、解决问题需要求什么? 2、你能找到哪些与 有关的条件?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角差的余弦公式详细教案
一、教学目标
1.理解余弦公式的基本概念和原理;
2.掌握利用余弦公式解决两角差问题的方法;
3.能够灵活运用余弦公式解决实际问题;
4.培养学生分析问题和解决问题的能力。

二、教学重点
1.余弦公式的概念和原理;
2.掌握利用余弦公式解决两角差问题的方法。

三、教学难点
1.理解余弦公式的原理和推导过程;
2.能够灵活运用余弦公式解决实际问题。

四、教学过程
步骤一:导入新知识
1.引入:通过一个例子引入余弦公式的概念和应用,例如:已知三角形的两边长度和它们夹角的余弦值,求第三边的长度。

2.提问:学过正弦定理的同学,你们能说说余弦公式和正弦定理有什么区别吗?
步骤二:讲解余弦公式的原理和推导过程
1.从图形的角度解释余弦公式的原理:已知三角形的三个边长度a、
b、c,求它们对应的角A、B、C的余弦值。

2.利用余弦定理,推导出两角差的余弦公式。

步骤三:讲解应用举例
1.通过具体的例子和计算过程,讲解如何利用余弦公式解决两角差问题。

例如:已知两角和一条边的长度,求另一条边的长度。

2.提供更多的练习题,让学生通过练习提高运用余弦公式的能力。

步骤四:梳理归纳知识点
1.整理余弦公式的公式表达;
2.归纳余弦公式的适用条件和注意事项。

步骤五:拓展延伸
1.提供更多的实际问题让学生运用余弦公式解决;
2.引导学生思考如何利用余弦公式解决更复杂的问题。

步骤六:小结概括
1.总结余弦公式的基本原理和应用方法;
2.强调学生在实际问题中的应用能力和解决问题的思维方式。

五、教学反思
通过引入例子、讲解原理、举例解题等多种教学方法,能够帮助学生更好地理解和应用余弦公式。

同时,在教学中提供大量的练习题和实际问
题,可以提高学生运用余弦公式解决问题的能力。

在讲解过程中,要注重对学生的巩固和拓展,引导学生提高解决问题的思维方式和能力。

相关文档
最新文档