小学数学六年级总复习:求阴影部分面积方法举例
6年级数学求阴影部分面积的题

6年级数学求阴影部分面积的题一、引言在六年级数学中,求阴影部分面积是一个常见的题型。
这类题目不仅考察学生的基础几何知识,还要求他们具备一定的思维能力和解题技巧。
本文将围绕以下九个方面解析求阴影部分面积的题目。
二、圆与扇形的面积计算1.圆的面积公式:A = πr²,其中r为圆的半径。
2.扇形的面积公式:A = 1/2 × r²×θ,其中θ为扇形的圆心角(弧度制)。
三、三角形与四边形的面积计算1.三角形的面积公式:A = 1/2 × base × height。
2.四边形的面积公式:根据具体情况选择合适的公式,如矩形、平行四边形等。
四、组合图形的面积计算1.组合图形由多个基本图形组成,需要分别计算各部分的面积,然后相加得到总面积。
2.注意事项:计算过程中要保持图形形状不变,避免错误计算。
五、半圆的面积计算1.半圆的面积公式:A = πr²/2,其中r为半圆的半径。
2.注意事项:计算过程中要注意半圆的定义和范围。
六、圆环的面积计算1.圆环的面积公式:A = π(R² - r²),其中R为外圆的半径,r为内圆的半径。
2.注意事项:计算过程中要注意内外圆的位置关系和半径大小。
七、阴影部分的面积计算1.根据题目要求,选择合适的公式或方法计算阴影部分的面积。
2.注意阴影部分的形状和范围,避免出现错误计算。
八、面积与周长的关系1.在求阴影部分面积时,要考虑与之相关的周长关系,以帮助确定图形的形状和大小。
2.了解周长与面积之间的相互关系,有助于更好地解决相关问题。
九、面积与其他几何量的关系1.在求阴影部分面积时,还需要考虑与其相关的其他几何量,如长度、宽度、角度等。
2.通过建立关系式,有助于确定图形的形状和大小,从而更准确地计算阴影部分的面积。
十、面积的近似计算1.在某些情况下,由于图形的不规则性或测量误差等原因,需要进行近似计算。
六年级完整求阴影部分面积(圆)ppt课件

可编辑课件
10
17 求阴影部分面积。
10cm
可编辑课件
11
8、求阴×4×2-16 =25.12-16 =9.12(dm²)
可编辑课件
12
12 求阴影部分面积。(单位:cm)
8
8
可编辑课件
13
求圆的面积:
O·
正方形的面积是12平方厘米
2021年4月24日星期六
100米
竹溪县实验小学 吴怀忠
15 求阴影部分面积。
2021年4月24日星期六
4cm
竹溪县实验小学 吴怀忠
16 求阴影部分面积。
2021年4月24日星期六
4m
4m
竹溪县实验小学 吴怀忠
8
2021年4月24日星期六
竹溪县实验小学 吴怀忠
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
可编辑课件
14
求圆的面积:
O
三角形的面积是4平方厘米
可编辑课件
15
6 下图中,正方形面积 为10m2,求圆的面积。
2021年4月24日星期六
10m2
竹溪县实验小学 吴怀忠
计算图中蓝色部分的面积 8分米
3分米
15分米
可编辑课件
17
2 求阴影部分的周长与面积。(单位:cm
4
10
2021年4月24日星期六
我们可以说 数学是使人智慧的学问
可编辑课件
1
可编辑课件
2
一、复习
1、求圆面积的计算公式。 S = πr2
2、求正方形面积的计算公式。 S = a2
3、求三角形面积的计算公式。 S = a×h÷2
(完整版)小学六年级数学_阴影部分面积例题(含答案)

阴影部分面积专题求如图阴影部分的面积.(单位:厘米)如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012?长泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.1526356分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是 3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即: 3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.1526356专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是 6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.1526356分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.1526356分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.1526356分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.1526356分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.1526356专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.1526356分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析先求出半圆的面积 3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.1526356分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.1526356专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.1526356分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.1526356分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.1526356分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012?长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为 6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
六年级阴影面积计算技巧和方法

六年级阴影面积计算技巧和方法嘿呀!今天咱们就来好好聊聊六年级阴影面积计算的那些技巧和方法!首先呢,咱们得明白啥是阴影面积。
哎呀呀,简单说就是图形中那些被阴影盖住的部分,咱们得想办法算出它的大小。
第一种方法,直接计算法!哇,这个方法可简单啦!如果阴影部分是个规则的图形,像正方形、长方形、三角形呀,那咱们就可以直接用对应的面积公式来算。
比如说三角形的面积就是底乘以高除以2 呢。
这是不是挺容易的?接下来,是割补法!哎呀呀,这个方法有点巧妙哦!如果阴影部分的形状不太规则,咱们就可以把它分割成几个规则的图形,或者给它补上一块,变成一个咱们熟悉的规则图形,然后再去计算。
比如说一个不规则的阴影图形,咱们可以把它分割成一个三角形和一个梯形,分别算出它们的面积,再相加或者相减,就能得到阴影部分的面积啦!还有呢,就是等量代换法!哇塞,这个方法可神奇啦!有时候,咱们可以通过找到图形之间的等量关系,把要求的阴影面积转换成我们能计算的图形面积。
比如说,两个三角形等底等高,那它们的面积就相等呀,就可以相互替换来计算阴影面积。
再说说添加辅助线法!嘿,这个方法可有用啦!当图形看起来很复杂,不好计算的时候,咱们就可以巧妙地添加一些辅助线,把图形分成几个部分,这样就能更清楚地看出阴影部分和其他部分的关系,从而计算出阴影面积。
还有一个很重要的方法,就是重叠法!哎呀呀,这个有点难理解,我给您好好讲讲。
比如说两个图形有一部分重叠在一起,形成了阴影部分,咱们可以先分别算出两个图形的面积,再减去重叠部分的面积,剩下的就是阴影部分的面积啦!在实际计算阴影面积的时候,咱们要仔细观察图形的特点,灵活运用这些方法。
有时候,可能需要同时使用几种方法呢!哎呀,计算阴影面积可真是个有趣又有点挑战的事情呀!您瞧瞧,这些方法是不是很实用呢?只要多练习,多思考,计算阴影面积对咱们六年级的同学来说,就不再是难题啦!哇,加油呀,同学们!相信大家都能掌握这些技巧,在数学的海洋里畅游!怎么样,您对这些方法清楚了吗?是不是感觉数学也没那么难啦?。
求阴影部分的面积六年级奥数

求阴影部分的面积(六年级奥数)前言在六年级的奥数课上,我们经常需要解答各种与几何形状相关的问题。
其中一个常见的问题是求阴影部分的面积。
通过理解并掌握一些几何知识和计算方法,我们可以轻松地应对这类问题。
本文将介绍一些常用的方法和注意事项,帮助大家解决求阴影部分面积的问题。
问题背景在解答求阴影部分面积的问题前,我们先了解一下这类问题的背景。
一般来说,这类问题会给出一个或多个几何形状,并告诉我们某个或某些部分的面积。
我们需要通过这些已知的信息,计算出未知部分的面积。
方法一:几何分析法几何分析法是求解阴影部分面积问题的常用方法之一。
它的基本思路是将问题拆分成多个几何图形,计算每个图形的面积,然后将这些面积累加起来。
下面是一个例子,以帮助我们更好地理解几何分析法:问题:如图所示,在正方形ABCD内有一圆O,圆O的半径为2cm。
求阴影部分的面积。
O -----------------| || ----------- || | | || | O | || | | || ----------- || |-------------------解题步骤:1.首先,我们计算正方形ABCD的面积。
由于ABCD是一个正方形,所以它的边长与圆O的直径相等(2cm的直径即为4cm的边长)。
所以,正方形ABCD的面积为4cm * 4cm = 16cm²。
2.接下来,我们计算圆O的面积。
圆O的半径为2cm,所以它的面积为πr² = 3.14 * 2 * 2 = 12.56cm²。
3.最后,我们计算阴影部分的面积。
由于阴影部分是正方形ABCD减去圆O后剩下的部分,所以阴影部分的面积为16cm² - 12.56cm² = 3.44cm²。
通过这个例子,我们可以体会到几何分析法在求解阴影部分面积问题时的应用。
方法二:代数法除了几何分析法,代数法也是一种常用的求解阴影部分面积问题的方法。
小学六年级数学圆求阴影部分面积

小学六年级数学圆求阴影部分面积
求阴影部分面积是小学六年级数学中的一个重要概念,它是学习几何图形的基础。
求阴影部分面积可以帮助学生更好地理解几何图形的特点,从而更好地掌握数学知识。
求阴影部分面积的基本概念是:当一个几何图形的一部分被另一个几何图形遮挡时,就会形成阴影部分,这部分被称为阴影部分。
求阴影部分面积的方法是:首先,确定几何图形的形状,然后根据几何图形的形状,计算出阴影部分的面积。
求阴影部分面积的具体步骤如下:
1.确定几何图形的形状,如圆形、三角形、矩形等。
2.根据几何图形的形状,计算出阴影部分的面积。
3.如果是圆形,可以用圆的面积公式来计算阴影部分的面积,即:阴影部分面积=πr²,其中r为圆的半径。
4.如果是三角形,可以用三角形的面积公式来计算阴影部分的面积,即:阴影部分面积=1/2×a×h,其中a为三角形的底边,h为三角形的高。
5.如果是矩形,可以用矩形的面积公式来计算阴影部分的面积,即:阴影部分面积=a×b,其中a为矩形的长,b为矩形的宽。
通过以上步骤,小学六年级学生可以更好地理解求阴影部分面积的概念,并能够根据不同几何图形的形状,计算出阴影部分的面积。
这样,学生就可以更好地掌握数学知识,为今后的学习打下坚实的基础。
【小学数学】六年级数学预习专题:求阴影部分面积(含答案)

【小学数学】六年级数学预习专题:求阴影部分面积(含答案)1) 正方形:周长=边长×4 C=4a 面积=边长×边长 S=a×a2) 正方体:表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3) 长方形:周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab4) 长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高 V=abh5) 三角形:面积=底×高÷2 s=ah÷26) 平行四边形:面积=底×高 s=ah7) 梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28) 圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr面积=半径×半径×Π9) 圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高10) 圆锥体:体积=底面积×高÷32、面积求解类型从整体图形中减去局部;割补法:将不规则图形通过割补;转化成规则图形。
重难点:观察图形的特点;根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题例1.求阴影部分的面积。
(单位:厘米) 例2.正方形面积是7平方厘米;求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米) 例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米;大圆半径是小圆的3倍;问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
小学数学必须掌握的10种求图形阴影面积方法!

小学数学必须掌握的10种求图形阴影面积方法!三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
面积及周长都有相应的公式直接计算,如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
先看三道例题感受一下例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.一句话:因为△A BE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法有一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如:下图,求阴影部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求阴影部分面积方法举例
1、用替换法求面积
“替换”就是等量代换。
用一种量(或一种量的一部分)来替代和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题难度,然后设法将这个被代换的量求出。
【例】:如图所示,正方形的面积为12 平方厘米,求阴影部分的面积。
【分析】设正方形的边长为r ,则 r ×r=r 2=12,
用12 替换r 2即可求出扇形的面积,进而求出阴影部分的面积。
列式: 12-3.14 ×12÷4=12-9.42 =2.58 (平方厘米)
同类练习:
(1)如图所示,图中正方形的面积为 10 平方厘米,求阴影部分的面积。
2
(2) 如图所示,三角形OAB的面积是 7cm,求图中阴影部分的面积。
(3)如图所示。
2
①如果图中阴影部分的面积是7cm,求环形的面积。
2
②如果环形面积是25.12cm,求阴影部分的面积。
2、用割补法求面积(这里主要讲“补”)
补一些单一图形或集合图形使之成为可以计算的形或体,再解答,这种方法称之为割补法。
【例】:求图中阴影部分面积(单位:cm)。
10
10
【分析】在原图的基础上,补上一个与原图完全相同的图形,如右图所示。
列式: 10×10-3.14×()2÷2=100-39.25=10.75(cm2)
3、用构造法求面积
在计算某些图形题时,把原来不易处理的、不规则的图形,通过平移、旋转、翻折后,重新构成一个新的更便于处理的图形来解决问题,这种方法,称之为构造法。
【例】 1:求图 3(1)a 中阴影部分的面积。
(单位:厘米)
10
1010
图3(1) b
图3(1) a
【分析】观察图 3(1)a,会发现阴影部分中包含了与左边空白部分完全相同的
扇形,将它平移到空白部分上,恰好与所剩阴影部分构成一个正方形。
如图3
(1)b 将阴影部分重新构成了一个正方形。
列式: S阴 S正=10×10=100(平方厘米)
【例】 2:如图 3(2)a,用一张斜边为 29 厘米的红色直角三角形纸片,一张
斜边为 49 厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成了一个直角
三角形。
红、蓝两张三角形纸片的面积之和是多少?
黄
黄
红蓝
蓝红红
图3(2) a 49图3(2)
b
29
【分析】将红色直角三角形纸片旋转90°,红色和蓝色的两个直角三角形就拼成了一个直角边分别是49 厘米和 29 厘米的直角三角形。
列式: 49×29÷2=710.5(平方厘米)
【例】 3:求图 3(3)a 中阴影部分的面积。
(单位:厘米)
图3(3) a
图3(3)b
10
10
【分析】观察图3(3)a,发现将右边弓形部分沿垂直的半径所在的直线翻折到左边,如图3(3)b,恰好可以和左边的阴影部分构成一个三角形,这个三角形恰好等于大三角形面积的一半。
列式: 10×10÷2=25(平方厘米)或S阴=S空白=10×(10÷2)÷ 2=25(平方厘米)
同类练习题:
求下列各图阴影部分的面积。
(单位:厘米)【以下答案分别为 50 平方厘米、18.24 平方厘米】
8
10
108
图②
图①
4、用推理法求面积
这种方法是利用推理求出阴影部分的面积。
【例】:求下图中阴影部分的面积。
(单位:厘米)
S1
8S 2
S3
8
【分析】如下所示:
1
S1+ S2=×3.14×82
4
1
+ )S2+S3=×3.14×82
4
S2+(S1+S2+S3
1
)=
×3.14×82×2 4
S正方形
所以, S2 = 扇形面积的 2倍- S正方形列式:略。
同类练习题:
求下列各图阴影部分的面积。
(单位:厘米)
8cm8cm
⑧
④①④
6cm①8cm ⑤⑦
③②③
②
⑥。