北师大版数学八年级上册 第一章勾股定理复习 学案(含部分答案)

合集下载

北师大版八年级上册数学第一章 勾股定理 含答案

北师大版八年级上册数学第一章 勾股定理 含答案

北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为( )A.4B.8C.16D.642、已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是()A. B.3 C.6 D.93、某水库大坝高20米,背水坝的坡度为1:,则背水面的坡长为()A.40米B.60米C.30 米D.20 米4、如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,,则下列结论中:①DE=3cm;②EB=1cm;③.正确的个数为()A.0个B.1个C.2个D.3个5、如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC,CF于M,F,若EM=3,则CE2+CF2的值为( )A.36B.9C.6D.186、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.27、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了()步路(假设2步为1m),却踩伤了花草A.4B.6C.7D.88、若菱形的周长为24cm,一个内角为60°,则菱形的面积为()A.4 cm 2B.9 cm 2C.18 cm 2D.36 cm 29、在5×5的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m,水平部分的线段的长度之和记作n,则m﹣n=()A.0B.0.5C.﹣0.5D.0.7510、如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9B.C.D.1211、如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A. B. C. D.12、已知,△ABC的三边分别为a,b,c,其对角分别为∠A,∠B,∠C.下列条件能判定△ABC一定不是直角三角形的是()A.a:b:c=::B.b 2﹣a 2=c 2C.∠A:∠B:∠C =2:3:5D.∠B=∠A+∠C13、已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.14414、如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5B.4C.D.15、一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.10二、填空题(共10题,共计30分)16、如图,A是双曲线y= (k>0,x>0)上一点,B是x轴正半轴上一点,以AB 为直角边向右构造等腰直角三角形ABC,∠BAC=90°,过点A作AD⊥y轴于点D,以AD为斜边向上构造等腰直角三角形ADE,若点C,点E恰好都落在该双曲线上,△ABC与△ADE的面积之和为28,则k=________17、如图,在中,,两条直角边的长分别是6和8,则斜边AB的中线CD的长为________.18、在直角三角形中,斜边=2,则=________19、如图中的螺旋由一系列直角三角形组成,则第2017个三角形的面积为________.20、如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需________米.21、顺次连接正方形各边中点,得到一个新正方形,则新正方形与原正方形的相似比是________.22、若等边三角形ABC的边长为a,且三角形内一点P到各边的距离分别是h a , hb, hc,则ha+hb+hc=________.23、如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是________.24、如图所示,在矩形中,,.矩形绕着点逆时针旋转一定角度得到矩形.若点的对应点落在边上,则的长为________.25、在Rt△ABC中,AC=9,BC=12,则AB=________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,在四边形ABCD中,AB=4,BC=3,CD=12,AD=13,∠B=90°,求四边形ABCD的面积.28、某工厂准备翻建新的大门,厂门要求设计成轴对称的拱形曲线.已知厂门的最大宽度AB=12m,最大高度OC=4m,工厂的运输卡车的高度是3m,宽度是5.8m.现设计了两种方案.方案一:建成抛物线形状(如图1);方案二:建成圆弧形状(如图2).为确保工厂的卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.29、如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED边长,易知AE= c,这时我们把关于x的形如ax²+ cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:Ⅰ写出一个“勾系一元二次方程”;Ⅱ求证:关于x的“勾系一元二次方程”ax²+ cx+b=0必有实数根;Ⅲ若x=−1是“勾系一元二次方程”ax²+ cx+b=0的一个根,且四边形ACDE 的周长是,求△ABC面积.30、一游泳池长48m,小方和小朱进行游泳比赛,小方平均速度为3m/秒,小朱为3.1m/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14m.按各人的平均速度计算,谁先到达终点?参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、D5、A6、D7、D8、C9、A11、B12、A13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、。

第一章勾股定理 复习测试 2021-2022学年北师大版八年级数学上册(word版含答案)

第一章勾股定理  复习测试  2021-2022学年北师大版八年级数学上册(word版含答案)

北师大版八年级数学上册第一章勾股定理复习测试一.选择题1.下列各组数中,是勾股数的是().A.6,9,12B.﹣9,40,41C.52,122,132D.7,24,25 2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是().A.25B.14,C.7D.7或253.如图由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是().A.16B.25C.144D.1694.同学们都学习过“赵爽弦图”,如图所示,若大正方形的面积为5,小正方形的面积为1,则每个直角三角形的两直角边的乘积为().A.1B.2C.D.5.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为().A.1B.2C.3D.46.如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了().A.2米B.4米C.6米D.8米7.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是().A.26尺B.24尺C.17尺D.15尺8.如图,在△ABD中,△D=90°,CD=6,AD=8,△ACD=2△B,则BD的长是().A.12B.14C.16D.189.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于().A.1.2米B.1.5米C.2.0米D.2.5米10.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是().A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24二.填空题11.一直角三角形的一条直角边长是6,另一条直角边与斜边长的和是18,则直角三角形的面积是12.在正方形网格中,A、B、C、D均为格点,则△BAC﹣△DAE=.13.如图,一株荷叶高出水面1m,一阵风吹过来,荷叶被风吹的贴着水面,这时它偏离原来位置有3m远,则荷叶原来的高度是.14.如图△ABC中,△C=90°,AD平分△BAC,AB=5,AC=3,则BD的长是.15.如图,台阶阶梯每一层高20cm,宽40cm,长50cm.一只蚂蚁从A点爬到B点,最短路程是.16.在Rt△ABC中,△C=90°,AC=9,BC=12,则点C到斜边AB的距离是.17.如图,OP=1,过点P作PP1△OP且PP1=1,得OP1=;再过点P1作P1P2△OP1且P1P2=1,得OP2=;又过点P2作P2P3△OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=A.B.C.D.18.如图,在Rt△ABC中,△C=90°,BE,AF分别是△ABC,△CAB平分线,BE,AF交于点O,OM△AB,AB=10,AC=8,则OM=.三.解答题19.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。

北师大版八年级上册数学第一章 勾股定理含答案

北师大版八年级上册数学第一章 勾股定理含答案

北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AD为BC边上的中线,若AB=5,AC=13,AD=6,那么BC的值为()A.18B.C.2D.122、如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.83、如图1,点P从△ABC 的顶点A出发,沿A-B-C匀速运动,到点C停止运动.点P 运动时,线段AP的长度与运动时间的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC 的面积是()A.10B.12C.20D.244、满足下列条件的△ABC中,不是直角三角形的是( )A.b²=c²-a²B.a:b:c=3:4:5C.∠C=∠A-∠BD.∠A:∠B:∠C=3:4:55、下列长度的三条线段能组成钝角三角形的是()A.2,4,B.6,8,10C. ,2,2D.5,4,66、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S 2=9,S3=8,S4=10,则S=()A.25B.31C.32D.407、如图,若正方形网格中每个小方格的边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形8、已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9、以下列各组线段为边,能构成直角三角形的是().A.1cm,2cm,3cmB. cm,cm,cmC.1cm,2cm,cmD.2cm,3cm,4cm10、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.311、如图:在△ABC中,∠B=45°,D是AB边上一点,连接CD,过A作AF⊥CD 交CD于G,交BC于点F.已知AC=CD,CG=3,DG=1,则下列结论正确的是()①∠ACD=2∠FAB ②③④ AC=AFA.①②③B.①②③④C.②③④D.①③④12、在△ABC中,∠C=90°,若AC=3,BC=4,则AB=()A. B.5 C. D.713、如图所示,在由单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成直角三角形三边的线段是( )A.CD,EF,GHB.AB,EF,GHC.AB,CD,GHD.AB,CD,EF14、下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④15、如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是( )A. B.2 C. D.2﹣二、填空题(共10题,共计30分)16、如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2 ,则AH的长为________.17、在△ABC中,若其三条边的长度分别为3、4、5,则以两个这样的三角形所拼成的长方形的面积是________.18、如图,已知△ABC中,∠B=90°,BC=3,AB=4,D是边AB上一点,DE∥BC交AC于点E,将△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,则AD长为________.19、如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=________.20、如图,等腰△ABC中,AB=AC=6,∠BAC=120°,点D,点P分别在AB,BC上运动,则线段AP和线段DP之和的最小值是________.21、如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________.22、如图,在ABC中,∠B=30°,BC=2,等腰直角三角形ACD的斜边AD在AB边上,则AB的长是________.23、已知三角形三边长分别为6,8,10,则此三角形的面积为________ .24、如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是________米.25、如图,直径AB垂直于弦CD于点E,CD=4,AE=8,⊙O的半径长为________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。

北师版数学八上第一章勾股定理知识点和常考题型 答案版

北师版数学八上第一章勾股定理知识点和常考题型 答案版

《勾股定理》【知识网络】【要点梳理】1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=) 2.拼图法验证勾股定理3.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为c ; (2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形; 若222a b c +>时,△ABC 是锐角三角形; 若222a b c +<时,△ABC 是钝角三角形. 4.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1.5、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【常考题型】类型一、面积问题1.如图,∠ACB =90°,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=1,S 2=3,则S 3为( )A .3B .4C .5D .9解析.如图,∠ACB =90°,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=1,S 2=3,则S 3为( )A .3B .4C .5D .9【分析】先设Rt △ABC 的三边分别为a 、b 、c ,再分别用a 、b 、c 表示S 1、S 2、S 3的值,由勾股定理即可得出S 3的值.【解答】解:设Rt △ABC 的三边分别为a 、b 、c , ∴S 1=a 2=1,S 2=b 2=3,S 3=c 2,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S3=S1+S2=1+3=4,故选:B.【点评】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.2、如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.【答案与解析】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC2=25,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.故四边形ABCD的面积是36.3、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【答案与解析】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.∴S△ABC=BC•AD=×14×12=84.4.(2014春•防城区期末)如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?【答案】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),∴S△PBQ=BP•BQ=×(9﹣3)×6=18(cm2).故过3秒时,△BPQ的面积为18cm2.5.如图,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,请你以线段AB为边画正方形并计算所画正方形的面积,解释你的计算方法;(2)请你在图上画出一个面积为5个单位的正方形.解析.如图,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,请你以线段AB为边画正方形并计算所画正方形的面积,解释你的计算方法;(2)请你在图上画出一个面积为5个单位的正方形.【分析】(1)根据正方形的定义画出图形即可.(2)可以利用数形结合的思想解决问题即可.【解答】解:(1)正方形ABCD如图所示.根据网格和勾股定理可知:AB2=22+62=40(个单位),∴正方形ABCD的面积为40个单位;(2)面积为5个单位的正方形如图所示.【点评】本题考查作图﹣应用与设计作图,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.类型二、判断形状1.如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【答案与解析】解:∵△BEF 是直角三角形,理由是:∵在正方形ABCD 中,AB=4,AE=2,DF=1, ∴∠A=∠C=∠D=90°,AB=AD=DC=BC=4,DE=4﹣2=2,CF=4﹣1=3,∵由勾股定理得:BE2=AB2+AE2=42+22=20,EF2=DE2+DF2=22+12=5,BF2=BC2+CF2=42+32=25, ∴BE2+EF2=BF2, ∴∠BEF=90°,即△BEF 是直角三角形.2、如果ΔABC 的三边分别为a b c 、、,且满足222506810a b c a b c +++=++,判断ΔAB C 的形状.【答案与解析】解:由222506810a b c a b c +++=++,得 : 2226981610250a a b b c c -++-++-+= ∴ 222(3)(4)(5)0a b c -+-+-=∵222(3)0(4)0(5)0a b c -≥-≥-≥,, ∴ 3,4, 5.a b c === ∵ 222345+=, ∴ 222a b c +=.由勾股定理的逆定理得:△ABC 是直角三角形.类型三、最短路径问题1.【变式】如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,使EP +BP 最短.求EP +BP 的最小值.【答案】解:根据正方形的对称性可知:BP =DP ,连接DE ,交AC 于P ,ED =EP +DP =EP +BP , 即最短距离EP +BP 也就是ED .∵ AE =3,EB =1,∴ AB =AE +EB =4,∴ AD =4,根据勾股定理得:222223425ED AE AD =+=+= .∵ ED >0,∴ ED =5,∴ 最短距离EP +BP =5.2、如图所示,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC =400米,BD =200米,CD =800米,牧童从A 处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【思路点拨】作点A 关于直线CD 的对称点G ,连接GB ,交CD 于点E ,利用“两点之间线段最短”可知应在E 处饮水,再根据对称性知GB 的长为所走的最短路程,然后构造直角三角形,利用勾股定理可解决. 【答案与解析】解:作点A 关于直线CD 的对称点G ,连接GB 交CD 于点E ,由“两点之间线段最短”可以知道在E 点处饮水,所走路程最短.说明如下:在直线CD 上任意取一异于点E 的点I ,连接AI 、AE 、BE 、BI 、GI 、GE . ∵ 点G 、A 关于直线CD 对称,∴ AI =GI ,AE =GE .由“两点之间线段最短”或“三角形中两边之和大于第三边”可得GI +BI >GB =AE +BE ,于是得证.最短路程为GB 的长,自点B 作CD 的垂线,自点G 作BD 的垂线交于点H ,在直角三角形GHB 中,∵ GH =CD =800,BH =BD +DH =BD +GC =BD +AC =200+400=600,∴ 由勾股定理得222228006001000000GB GH BH =+=+=. ∴ GB =1000,即最短路程为1000米.3.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是( )A .6B .8C .9D .15【解答】解:将台阶展开,如图, 因为AC =3×3+1×3=12,BC =9, 所以AB 2=AC 2+BC 2=225, 所以AB =15,所以蚂蚁爬行的最短线路为15. 答:蚂蚁爬行的最短线路为15. 故选:D .【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.4.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4cm的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15cm,则该圆柱底面周长为()cm.A.9 B.10 C.18 D.20解析.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为15cm,则该圆柱底面周长为()cm.A.9 B.10 C.18 D.20【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于EG的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF的长,即AF+BF=A'B=15cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=12cm,Rt△A'DB中,由勾股定理得:A'D==9cm,∴则该圆柱底面周长为18cm.故选:C.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.5.如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则蚂蚁爬行的最短距离是25cm.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB=;∵25<5,∴蚂蚁爬行的最短距离是25.故答案为:25【点评】本题主要考查两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.类型4:折叠问题1.如图所示,把长方形AOBC放在直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点C的坐标为(2,1),将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD 交x轴于点E,则点D的坐标为.【解答】解:如图,过点D作DH⊥OB于H,∵四边形AOBC是矩形,点C的坐标为(2,1),∴OA=BC=1,AC=OB=2,∵将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,∴AD=AC=2,BD=BC=1,在△AOE和△BDE中,,∴△AOE≌△BDE(AAS),∴AE=BE,OE=ED,设AE=BE=x,则OE=2﹣x,∵OA2+OE2=AE2,∴12+(2﹣x)2=x2,解得x=,∴BE=,DE=OE=,∵S△DEB=×DE×BD=×BE×DH,∴DH=,∴BH===,∴OH=,∴点D(,﹣),故答案为:(,﹣).【点评】本题考查了翻折变换,矩形的性质,全等三角形的判定和性质,勾股定理等知识,求DH的长是本题的关键.2.如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE沿AE 折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为或.【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.【点评】本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.类型5:实际应用1.古代著作《九章算术》中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?如图,其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边,则水深尺.【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB′的长为10尺,则B′C=5尺,设出AB=AB′=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的水深.【解答】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,∵B′E=10尺,∴B′C=5尺,在Rt△AB′C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,故答案为:12.【点评】此题主要考查了勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.背景介绍:勾股定理是几何学中的明珠,充满着魅力,千百年来,人们对它的证明精彩粉呈,其中有著名的数学家,也有业余数学爱好者,向常春在1994年构造发现了一个新的证法.小试牛刀:把两个全等的直角三角形如图1放置,其三边长分别为a,b,c.显然,∠DAB=∠B=90°,AC⊥DE,请用a,b,c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:S梯形ABCD=a(a+b),S△EBC=b(a﹣b),S四边形AECD=c2,则它们满足的关系式为a(a+b)=b(a﹣b)+c2,经化简,可得到勾股定理.(提示:对角线互相垂直的四边形面积等于对角线乘积的一半)知识运用:(1)如图2,铁路上A,B两点(看作直线上的两点)相距40千米,C,D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC=16千米,则两个村庄的距离为41千米(直接填空);(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图3中作出P点的位置并求出AP的距离.(3)知识迁移:借助上面的思考过程与几何模型,求代数式+的最小值20(0<x<16).【分析】小试牛刀:根据三角形的面积和梯形的面积就可表示出.知识运用:(1)连接CD,作CE⊥AD于点E,根据AD⊥AB,BC⊥AB得到BC=AE,CE=AB,从而得到DE=AD﹣AE=24﹣16=8千米,利用勾股定理求得CD两地之间的距离.(2)连接CD,作CD的垂直平分线角AB于P,P即为所求;设AP=x千米,则BP=(40﹣x)千米,分别在Rt△APD和Rt△BPC中,利用勾股定理表示出CP和PD,然后通过PC=PD建立方程,解方程即可.(3)知识应用:根据轴对称﹣最短路线的求法即可求出【解答】解:小试牛刀:S梯形ABCD=a(a+b),S△EBC=b(a﹣b),S四边形AECD=c2,它们满足的关系式为:a(a+b)=b(a﹣b)+c2,故答案为:a(a+b),b(a﹣b),c2,a(a+b)=b(a﹣b)+c2.知识运用:(1)如图2①,连接CD,作CE⊥AD于点E,∵AD⊥AB,BC⊥AB,∴BC=AE,CE=AB,∴DE=AD﹣AE=25﹣16=9千米,∴CD===41(千米),∴两个村庄相距41千米.故答案为:41.(2)如图2②所示:设AP=x千米,则BP=(40﹣x)千米,在Rt△ADP中,DP2=AP2+AD2=x2+242,在Rt△BPC中,CP2=BP2+BC2=(40﹣x)2+162,∵PC=PD,∴x2+242=(40﹣x)2+162,解得x=16,即AP=16千米.知识迁移:如图3,先作出点C关于AB的对称点F,连接DF,过点F作EF⊥AD与E,即:DF就是代数式+的最小值.代数式+的几何意义是线段AB上一点到点D,C的距离之和,而它的最小值就是点C的对称点F和点D的连线与线段AB的交点就是它取最小值时的点,从而构造出了以AB为一条直角边,AD和BC的和为另一条直角边的直角三角形,斜边就是最小的值,∴代数式+的最小值为:===20.故答案为:20.【点评】此题是四边形是三角形综合题,主要考查了证明勾股定理,勾股定理的应用,轴对称﹣最短路线问题以及线段的垂直平分线等,证明勾股定理常用的方法是利用面积证明,是解本题的关键.构造出直角三角形DEF是解本题的难点.3.随着疫情的持续,各地政府储存了充足的防疫物品.某防疫物品储藏室的截面是由如图所示的图形构成的,图形下面是长方形ABCD,上面是半圆形,其中AB=1.8m,BC=2m,一辆装满货物的运输车,其外形高2.3m,宽1.6m,它能通过储藏室的门吗?请说明理由.【分析】本题考查矩形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.【解答】解:能通过;理由:由题意得,运输车从中间过更容易通过储藏室,能通过的最大高度为EF的长度,如图,设点O为半圆的圆心,点P为运输车的外边沿,则OP=0.8m,OE=1m,∠OPE=90°,在Rt△OPE中,由勾股定理得,EP2=OE2﹣OP2=1﹣0.82=0.36,∴EP=0.6(m),∴EF=0.6+1.8=2.4(m),∵2.4>2.3,∴运输车通过储藏室的门.【点评】本题考查了勾股定理的应用等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.类型6:勾股定理的验证1.如图①是一个边长为a+b的正方形,李明将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.(a+b)2﹣(a﹣b)2=4ab B.(a﹣b)2+2ab=a2+b2C.(a+b)2﹣(a2+b2)=2ab D.(a+b)(a﹣b)=a2﹣b2【分析】用代数式分别表示图①、图②的阴影部分面积即可得出答案.【解答】解:如图①,S阴影=S大正方形﹣S小正方形=(a+b)2﹣(a2+b2),图②菱形的对角线的长分别为2a,2b,因此S阴影=S菱形=×2a×2b=2ab,所以有(a+b)2﹣(a2+b2)=2ab,故选:C.【点评】本题考查平方差公式、完全平方公式的几何背景,用不同的方法表示阴影部分的面积是得出答案的关键.2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.。

北师大版八年级上册数学第一章 勾股定理含答案

北师大版八年级上册数学第一章 勾股定理含答案

北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图,王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A.50 mB.100mC.150mD.100 m2、如图所示,点B,D在数轴上,OB=3,OD=BC=1,,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A. B. C. D.3、如图,四个全等的直角三角形围成一个正方形ABCD和正方形EFGH,即赵爽,弦图,连接AC,FN交EF,GH分别于点M,N已知AH=3DH,且S正方形ABCD则图中阴影部分的面积之和为()A. B. C. D.4、如图,在菱形中,对角线相交于点为中点,.则线段的长为:()A. B. C.3 D.55、在平面直角坐标系中,Rt△ABC按如图方式放置(直角顶点为A),已知A(2,0),B(0,4),点C在双曲线y= (x>0)上,且AC= .将△ABC沿X 轴正方向向右平移,当点B落在该双曲线上时,点A的横坐标变成( )A.3B.4C.5D.66、以下列线段长为边,能构成直角三角形的是()A.2,3,5B.2,3,4C.3,,4D.2,4,57、在Rt△ABC中,∠C=90°,AB=3,AC=2,则BC的值()A. B. C. D.8、如图,为半圆O的直径,且,射线交半圆O 的切线于点E,交于F,若,则的半径长为()A. B. C. D.9、如图,每个小正方形的边长为,在中,点为的中点,则线段的长为().A. B. C. D.10、设三角形的三边长分别等于下列各组数,能构成直角三角形的是()。

A.1,1,B. ,,C.0.2,0.3,0.5 D. ,,11、如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是()A.6,8,10B.4,5,6C. ,1,D. ,4,512、如图,在正方形网格中,以格点为顶点的的面积等于3,则点A到边BC的距离为()A. B. C.4 D.313、下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,2314、在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为( )A.6B.7C.8D.915、如图,O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为()A. B. C. D.3二、填空题(共10题,共计30分)16、如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF的长为________.17、如图,△ABC和△DCE都是边长为2的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为________.18、如图,在菱形中,O是对角线上一点,经过点A,B,C,若的半径为2,,则的长为________.19、存矩形ABCD中,AB=6,AD=5,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为________.20、等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是________cm.21、如图所示,已知四边形ABCD中,,,,,且求四边形ABCD的面积________.22、如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(片在结合部分不重叠无缝隙),则图2中阴影部分面积为________。

北师大版八年级上册第一章勾股定理复习教案

北师大版八年级上册第一章勾股定理复习教案
-掌握勾股数的概念及其特点,能列举出常见的勾股数,并能够根据勾股数的性质进行判断。
举例解释:
-面积法证明勾股定理:通过将直角三角形分割成两个相似的小直角三角形和一个矩形,证明两个小三角形的面积和等于大矩形面积,从而推导出勾股定理。
-实际问题:假设某房屋的斜坡屋顶为直角三角形,已知斜边长度和一边长度,求另一边的长度。
在实践活动和小组讨论中,学生们表现得相当积极。他们通过实际操作和讨论,不仅加深了对勾股定理的理解,还学会了如何将理论知识应用到解决实际问题中去。尤其是讨论环节,学生们的想法和观点让我感到惊喜,他们能够从不同的角度思考问题,这无疑是对他们批判性思维的一种锻炼。
我也意识到,在今后的教学中,我需要更多地采用直观教具和实际案例,让学生在视觉和操作上更直观地感受勾股定理的原理。同时,对于教学难点,我应该设计更多的层次性练习,让学生逐步攻克难点,而不是一次性灌输太多信息。
五、教学反思
在今天的勾股定理复习课中,我发现学生们对于定理的基本概念和应用已经有了较好的掌握。他们能够快速回答出勾股定理的定义,并在简单的习题中正确应用。这让我感到很欣慰,说明之前的教学取得了成效。
不过,我也注意到在逆定理的应用和勾股数的识别上,部分学生还存在一些困难。逆定理的部分,学生需要更加熟悉直角三角形的边长关系,才能更好地判断一个三角形是否为直角三角形。在勾股数的识别上,非整数勾股数对学生来说是一个挑战,我需要在今后的教学中加强这一部分的讲解和练习。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

北师大版八年级上册数学第一章 勾股定理 含答案

北师大版八年级上册数学第一章 勾股定理 含答案

北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为()A. B. C. D.2、如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是().A.0B.1C.D.3、一个直角三角形的两边长是6和8,那么第三边的长是()A.10B.2C.10或 2D.50或284、如图.在中,,垂直平分斜边,交于,是垂足,连接,若,则的长是()A.2B.4C.D.5、直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则cos∠CBE的值是( )A. B. C. D.6、在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l 上一点,且AP=AB.则点P到BC所在直线的距离是()A.1B.1或C.1或D. 或7、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE 的长为()A.5B.4C.3D.28、等腰三角形腰长为5,底边长为8,则其底边上的高为()A.3B.4C.6D.109、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.1,2,3B. ,,C.3,5,7D.5,7,910、如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M所代表的正方形面积是( )A.400+64B.C.400-64D.400 2-64 211、如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1, l2, l3上,且l1, l2之间的距离为2,l2, l3之间的距离为3,则AC的长是()A. B. C.4 D.712、如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,若矩形的对角线长为4,则AD的长是()A.2B.4C.2D.413、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.14、在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形15、如图,在Rt△ABC中,∠C=90°,CDEF为内接正方形,若AE=2cm,BE=1cm,则图中阴影部分的面积为()λA.1cm 2B. cm 2C. cm 2D.2cm 2二、填空题(共10题,共计30分)16、如图,将锐角为的直角三角板MPN的一个锐角顶点P与边长为4的正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,的两边分别与正方形的边BC、DC或其延长线相交于点E、F,连结EF.在三角板旋转过程中,当的一边恰好经过BC边的中点时,则EF 的长为________.17、公园新增设了一台滑梯,该滑梯高度AC=1米,滑梯AB的坡比是1:3,则该滑梯AB的长是________米.18、一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为________ cm2.19、如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为________。

北师大版最新八年级上第一章勾股定理复习教案与学案

北师大版最新八年级上第一章勾股定理复习教案与学案

第一章 探索勾股定理复习 、教学目标知识与技能:掌握直角三角形的边、角之间分别存在着的关系,熟练地运用直角三角形的勾股定理和其他性质解决实际问题。

过程与方法:正确使用勾股定理的逆定理,准确地判断三角形的形状.情感态度价值观:熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发学生的爱国热情,培养探索知识的良好习惯。

教学重点:掌握勾股定理及其逆定理.教学难点:准确应用勾股定理及其逆定理。

(一)基本知识回顾:1. 直角三角形的边,角之间分别存在着什么关系? 答:角的关系:锐角互余,即∠A+∠B=90° 边的关系:两直角边的平方和等于斜边的平方.a b c ab c a 2222222+==-⎧⎨⎪⎩⎪ 直角三角形还有哪些性质?2. 如何判断一个三角形是直角三角形? ①有一个角是直角②如果三角形的三边长a 、b 、c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形,满足a 2+b 2=c 2的三个正整数,称为勾股数。

3、最短距离:将立体图形展开,利用直角三角形的勾股定理求出最短距离(斜边长)。

注意:(1)勾股数是一组数据,必须满足两个条件:①满足222c b a =+;②三个数都为正整数.(2)11~20十个数的平方值: (二)专题总结1、 勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。

求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题例 1、已知:一个直角三角形的两直角边长分别是3cm 和4cm ,求:第三边的长。

例 2、已知:一个直角三角形的两边长分别是3cm 和4cm,求第三边得长。

课堂 训练1、已知△ABC 中,∠C=90°,若c=34,a :b=8:15,则a= ,b= 。

2、如图,求下列直角三角形中未知边的长度x= x=3、已知直角三角形两直角边分别为5,12,则三边上的高为___ _. 题型二 勾股定理逆定理的应用如何判定一个三角形是直角三角形: ① 先确定最大边(如c); ② 验证2c 与22b a +是否具有相等关系Ab C a Bx817x26246CA BE D③ 若2c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若2c ≠22b a +,则△ABC 不是直角三角形.例3、若三角形的三边长依次为15,39,36,求这个三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八上期末复习一勾股定理
班级学号姓名
一、知识点归纳:
1.勾股定理:直角三角形两边的平方和等于的平方.
2.勾股定理的逆定理:
在△ABC中,若a、b、c三边满足___________,则△ABC为___________,斜边为 . 3.勾股数:
边长为0.3,0.4,0.5的三角形是否为一个直角三角形? 0.3,0.4,0.5是勾股数吗?
总结:满足_____ ___的三个___ _____,称为勾股数.
4.直角三角形中边的特殊关系:
(1)在Rt△ABC,∠C=90°,a=b=5,则c=
(2)在Rt△ABC,∠C=90°,a=1,c=2, 则b=
(3)在Rt△ABC,∠C=90°,b=15,∠A=30°,则a= ,c= 。

总结:①在中,30°所对的边是边的一半。

②在Rt△ABC中,若∠A=45°, ∠C=90°,则△ABC是一个三角形。

其中,
= 。

二、典例讲解:
例1、已知直角三角形的两边长分别为5和12,求第三边。

例2、一个直角三角形的周长为9,斜边为4,求这个三角形的面积。

例3、如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.求此时EC的长.
例4.已知ABC ∆为等腰直角三角形,∠A =︒90,AB=AC, D 为BC 的中点,E 为AB 上一点, BE =12,F 为AC 上一点,FC=5,且∠EDF =︒90,求EF 的长度。

例5、如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是_____________
例6、已知,如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD 于点D ,且CD 2+AD 2=2AB 2
. (1)求证AB =BC ;
(2)当BE ⊥AD 于点E 时,试证明:BE =AE +CD .
例7、如图,等边三角形ABC 内一点P ,AP =3,BP =4,CP =5,求∠APB 的度数.
B
C
D
E
F
A
作业:
一、选择题
1、下列说法中正确的有()
(1)如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形;(2)如果∠A+∠B=∠C,那么△ABC是
直角三角形;(3)如果三角形三边为111
,,
345
,则∆ABC是直角三角形;(4)如果三边长分别是
2222
, 2,
m n mn m n
+-,则∆ABC是直角三角形。

A. 1个
B.2个
C.3个
D.4个
2、一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为()
A.4
B.8
C.10
D.12
3、若三角形三边长为a,b,c,且满足等式(a+b)2-c2=2ab,则此三角形是( ).
A.锐角三角形B.钝角三角形 C.等腰直角三角形 D.直角三角形
4、在△ABC中,AB=15,AC=13,BC边上的高AD=12,则△ABC的面积为( ).
A.84 B.24 C.24或84 D.48
5、一只蚂蚁沿直角三角形的边长爬行一周需2 s,如果将该直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).
A.6 s B.5 s C.4 s D.3 s
6、如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径
作半圆,面积分别记为S1,S2,则S1+S2的值等于( ).
A.2πB.3π C.4π D.8π
二、填空题
7、在Rt⊿ABC中,斜边AB = 2,则______
2
2
2=
+
+CA
BC
AB;
8、直角三角形的周长为12cm,斜边的长为5 cm,则两直角边分别为;
9、△ABC中,AB=AC=10cm,BC=16cm,AD⊥BC于D,则AD=____。

10、直角三角形两直角边长的比为3:4,斜边长为10cm,则这个直角三角形的面积为 cm2,斜边上的高为 cm。

三、解答题
11、如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋90°
后得到△CBE.
⑴求∠DCE的度数;⑵当AB=4,AD:DC=1: 3时,求DE的长.
12、已知⊿ABC中,AB = 10,BC = 21,AC = 17,求BC边上的高。

D
C A
B
E
A
E D
B
13、如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD 的长和四边形ABCD 的面积.
14、如图,在△ABC 和△DBC 中,90,ACB DBC ∠=∠=E 为BC 的中点,DE AB ⊥,垂足为F,且AB=DE.求证:(1)△BCD 为等腰直角三角形;
(2)若BD=8cm,求AC 的长; (3)在(2)的条件下,求BF 的长。

15、如图,C 为线段BD 上的一动点,分别过点B ,D 作AB ⊥BD ,ED ⊥BD ,连接AC ,EC 。

已知AB=5,DE=1,BD=8;
(1)请作图说明,当C 在何处时, AC+CE 的值最小?并求出最小值为多少? (2)①设CD=x ,用含x 的代数式表示AC+CE 的长;
②根据上述问题和解决方法,请构图求出代数式9)12(422+-++x x 的最小值。

相关文档
最新文档