反激式准谐振开关电源
反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式正激式推挽式半桥式全桥式开关电源优缺点反激式开关电源是一种常见的开关电源拓扑结构,其工作原理是利用电感储能和电容滤波器来实现电压变换。
以下是反激式、正激式、推挽式、半桥式和全桥式开关电源的优缺点分析。
1.反激式开关电源:优点:-体积小,结构简单,成本较低。
-输出电流大,适用于一些高功率应用。
-效率较高,在负载率低时仍能提供稳定的输出电压。
缺点:-输出电压稳定性较差,容易受到输入电压波动的影响。
-输入电流波形不纯净,含有较高的谐波成分。
-输出电流变化较大时容易产生振荡和噪音。
2.正激式开关电源:优点:-输出电压稳定性较好,能够提供较为纯净的输出电流。
-输出电流较大,适用于一些高负载应用。
-效率较高,在大部分负载条件下都能保持较高的效率。
缺点:-体积较大,结构相对复杂。
-成本较高。
-在负载率低时效率较低。
3.推挽式开关电源:优点:-输出频率较高,适用于一些高频应用。
-输出电压稳定性较好。
-体积相对较小,结构简单。
缺点:-输出电流相对较小。
-效率较低,在大负载条件下会有较大的功率损耗。
-容易受到电容和电感等元器件的损耗影响,导致输出电压不稳定。
4.半桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
5.全桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
总结:根据以上分析,不同的开关电源拓扑在不同应用场景中具有不同的优缺点。
在选择开关电源时,应根据具体应用需求,综合考虑输出电压稳定性、输出电流、效率、结构复杂性、成本等因素,选择最适合的拓扑结构。
详解反激式开关电源的工作原理,通俗易懂一看就会

详解反激式开关电源的工作原理,通俗易懂一看就会反激式开关电源是一种高效能、高频率的变换器,可以将输入直流电压转换为符合要求的输出电压,这一特性使其被广泛应用于电子设备、通讯设备等领域中。
其工作原理可以简单地概括为:利用脉冲反转的方式将输入电压变成貌似交流的信号,再利用变压器调节电压和电流,得到输出电压。
1. 输入脉冲变换反激式开关电源的输入电压通常是一个直流电源,输入电压首先通过全桥整流电路将输入的交流电流变为直流电流,也就是通过一个矩形波将输入电压转换为反向的脉冲信号,并抵消了电源电阻,使电源的输出电压更为稳定。
2. 电源管理器接下来,脉冲信号被送入电源管理器。
电源管理器可以分别实现过压、过流、过电压等保护,并且可以调整输出电压。
对于负载变化或输入电压波动引起的输出电压变化,反激式开关电源可以通过均衡控制电路,降低输出电压的乱跳程度,保持它的稳定性。
3. MOSFET开关接下来,反激式开关电源的信号被送入MOSFET开关,通过开关管的控制电压,使MOSFET管的开关状态取反,从而产生带有相反极性的脉冲信号。
开关管的控制信号交调宽度调制,通过控制开关管的开关时间比,使得输出电压得以调节。
4. 变压器脉冲信号至此已经变成了一定的频率和脉宽的交变电压,接下来需要利用变压器进一步转换电压和电流。
变压器是反激式开关电源的关键组成部分,主要由绕组、铁芯和绝缘材料构成。
绕组和铁芯的性质决定了变压器的工作原理:通过磁场的感应作用,在输出端产生一个转换后的电压。
5. 输出电路最后,输出电路使用整流电路,将由变压器产生的交流电压转换为直流电压。
整流电路可以采用单相整流电路或三相整流电路,通过各种电子元件将交流电转换为直流电,以供电子设备使用。
以上就是反激式开关电源的工作原理的介绍。
总的来说,反激式开关电源的优点在于其高效能、可靠性和稳定性,可以为电子设备提供高质量的能源。
反激式开关电源设计波形分析应力计算回路布局

反激式开关电源设计波形分析应力计算回路布局
一、反激式开关电源设计波形分析
1.开关信号波形:
反激式开关电源的主要工作是利用开关控制器的输出,控制MOSFET 的开启和关闭,从而实现交流波的改变。
MOSFET的开启和关闭状态,只受开关控制器输出信号的影响。
因此,开关控制器输出的波形是反激开关电源设计的重要参数。
一般情况下,开关控制器输出的波形有脉冲宽度调制波形(PWM)和恒定周期调制波形(FPWM)两种。
PWM波形由正弦波组成,经过两个对称的截止点,形成周期性正方形波,控制MOSFET的端极变化产生脉冲宽度调制波形,以控制交流波形。
而FPWM波形,在它的正弦波上增加了一个脉冲,形成了一个在宽度上恒定的正弦波,控制MOSFET的端极变化产生恒定周期调制波形,来控制交流波形。
2.交流波形:
当MOSFET开启和关闭时,变压器的交流波形会随之发生变化,其形式可以用下式表示:
Vac(t)=Vm*sin(ωt+θm)
其中Vm为交流波形的最大电压,ω为开关控制器输出信号的频率,θm为交流相位角。
反激式开关电源设计详解(上)教材

NTC的选择依据
Rt Rne
1 1 [ B ( )] T1 Tn
公式中: 1. Rt 是热敏电阻在T1温度下的阻值; 2. Rn是热敏电阻在常温Tn下的标称阻值; 3. B是材质参数(常用范围2000K~6000K); 4. exp是以自然数 e 为底的指数( e =2.71828 ); 5. T1和Tn为绝对温度K(即开尔文温度),K度 =273.15(绝对温度)+摄氏度;
安规电容之--X电容
• X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种 类型的电容,体积较大,但其允许瞬间充放电的电流也很大, 而其内阻相应较小。 • X电容容值选取是μF级,此时必须在X电容的两端并联一 个安全电阻,用于防止电源线拔掉时,由于该电容被充电荷 没泄放而致电源线插头长时间带电。 安全标准规定,当正 在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插 头两端带电的电压(或对地电位)必须小于原来额定工作电 压的30%。 • 作为安全电容之一的X电容,也要求必须取得安全检测机构 的认证。X电容一般都标有安全认证标志和耐压AC250V 或AC275V字样,但其真正的直流耐压高达2000V以上,使用 的时候不要随意使用标称耐压AC250V或者DC400V之类 的普通电容来代用。
aVrms bc
2,V1mA 488.042 V
a 为电路电压波动系数,一般取值1.2; Vrms 为交流输入电压有效值; b 为压敏电阻误差,一般取值0.85; C 为元件的老化系数,一般取值0.9; √2 为交流状态下要考虑峰峰值; V1mA 为压敏电阻电压实际取值近似值; 通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规 定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超 过± 10%时的最大脉冲电流值。
反激开关电源问题解决措施

反激开关电源问题解决措施激开关电源是一种常见的电源转换方式,具有高效率、小体积和大功率特点,广泛应用于各种电子设备中。
然而,由于其工作原理的特殊性,也存在着一些问题,如电磁干扰、热量过高、噪音大等。
本文将围绕这些问题提出相应的解决措施。
首先是电磁干扰问题。
激开关电源工作时,会产生高频电流和高频噪声,对周围的其他电子设备产生干扰。
针对这个问题,可以采取以下几个解决措施。
1. 优化线路布局:在设计电路板时,合理布局各个元件之间的距离,减小互相之间的电磁干扰。
同时,应尽量将高频信号的传输线路和低频信号的传输线路分开,减少相互干扰。
2. 添加滤波器:在输入和输出端口添加适当的滤波器,可以有效地滤除高频噪声,并减少干扰。
常见的滤波器有LC滤波器和脉冲变压器,能够通过消除回路共振或提供额外的电感来抑制噪声。
3. 外壳屏蔽:对于特别敏感的设备,可以在电源的外壳和线路之间添加合适的屏蔽层,有效地隔绝电磁干扰的传播。
其次是激开关电源热量过高问题。
由于激开关电源工作时会产生较多的热量,如果散热不良,可能会导致设备损坏。
为了解决这个问题,可以采取以下几个措施。
1. 散热设计:在电源的电路板上布置合理的散热元件,如散热片、散热鳍片等,以增加散热面积和散热效果。
如果设备的空间够大,还可以加装散热风扇来提高散热效果。
2. 优化元件选择:选择低损耗的开关管和电容,减少能量的损失和热量的产生。
此外,还可以选择工作频率更高的开关电源,因为频率越高,电源的体积就越小,相同功率下热量产生较少。
3. 合理布局:在设备设计中,应合理布局各个元件和线路,避免堆积,以便热量能够得到有效传导和散发。
另外,噪音问题也是激开关电源常见的一个问题。
激开关电源工作时,会产生一定的噪音,影响设备的稳定性和使用效果。
要解决这个问题,可以采取以下几个手段。
1. 优化电源设计:在设计电源时,应采用合适的开关管和电容,以减少电源开关时产生的噪声。
此外,还可以采取一些降低噪电流的措施,如增大电容容值、提高滤波效果等。
一种准谐振开关电源的分析与设计

的值 近似 为 1 , 此时 c o s 2 p f ( t 4 一 l 3 ) = -1 , 即这 段 时 间 为 :
f W = p ( 6 )
准谐 振 技 术 就 是 在 开 关 管 漏 源 极 问 电压 下 降 到 谷 底 电压 时
开通 主开 关 管 M0S F E T ,从 而 可 以 敲 大 程 度地 减 小 开 关 管 的 开
正反激励式准谐振软开关电源冰

正反激励式准谐振 软开关 电源
陈庭 勋 。 胡 佳 文
( 浙 江 海 洋 学 院 船 舶 与海 洋 工 程 学 院 , 浙江 舟 山3 1 6 0 0 4)
略 高 于输 入 线 电压 ; 有 效 发挥 谐振 作 用 , 降低 激 励 管 开 通损 耗 和 开通 噪 声 , 利 用 滤 波 电 感 的 续 流 作 用
消 除 正激 励 整 流 二 极 管 的 关 闭噪 声 。所设 计 的开 关 电源具 有 高度 洁 净 的输 出 电压 ,电 源输 出 口的扰 讯 电压 和 开 关 周 期 的 脉 动 电 压 均 限 制 在 5 mV 以 下 , 整体工作效率达 8 5 %, 开 关 电 源 中正 、 反 激 励 共 用
Q u a s i r e s o n a n t s o f t s w i t c h i n g p o w e r s u p p l y f o r
p o s i t i v e a n d n e g a t i v e i n c e n t i v e mo d e
Ab s t r a c t :T h i s p a p e r d e s i g n e d a k i n d o f q u a s i r e s o n a n t s o f t s wi t c h i n g s o we r s u p p l y b a s e d o n c h i p UC C 2 8 6 0 0 D a s t h e c o r e ,
s p o t l e s s o u t p u t v o l t a g e ,t h e d i s t u r b a n c e v o l t a g e o f p o we r o u t p u t p o r t a n d p u l s a t i n g v o l t a g e o f s w i t c h i n g c y c l e a r e b e l o w 5 mV,a n d
反激开关电源原理详解

反激开关电源原理详解
反激开关电源是一种常见的电源供电方式,它主要由开关管、变压器、整流滤波电路、电压反馈电路和控制电路等部分组成。
其基本工作原理如下:
1. 工作周期开始时,开关管通态:当输入电压施加到开关管上时,开关管处于导通状态,电流通过变压器的一侧绕组,产生磁场,同时能量储存在磁场中。
2. 断开开关管:当开关管导通时间达到一定时间后,通过控制电路切断开关管的导通,使开关管进入关断状态。
3. 能量传递:当开关管关断后,存储在磁场中的能量会以电感的形式向输出电路传递。
由于电感具有阻抗特性,能量会以电感的方向逆向流动。
4. 反馈电路:在输出电路上设置反馈电路,反馈电路会监测输出电压,一旦输出电压低于设定值,反馈信号会通过控制电路控制开关管恢复导通。
5. 周期重复:以上步骤会周期性重复,使得输出电流和电压保持稳定。
反激开关电源工作原理的关键在于控制开关管的导通和关断。
通过控制电路对开关管进行控制,可以根据输出电压的变化来调整开关管的导通时间和关断时间,从而调节输出电压的稳定性和精确度。
总结起来,反激开关电源通过变压器和开关管的周期性工作,将输入电源转换成稳定的输出电压。
其优点是具有高效率、体积小、重量轻以及输出电压稳定等特点,广泛应用于电子产品和电力系统中。