高中数学第二章随机变量及其分布2.3.1离散型随机变量的均值练习(含解析)新人教A版选修2_3
高中数学第二章 随机变量及其分布教案 2.3离散型随机变量的均值与方差选修2-3

2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值教学目标:知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续若ξ是随机变量,bη是常数,则η也是随机变量并,=ξ+a,ab且不改变其属性(离散型、连续型)5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值x i(i=1,2,…)的概率为()ξ==,则称表P x p6. 分布列的两个性质:⑴P i≥0,i=1,2,…;⑵P1+P2+…=1.7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:ξ 01…k …nPnnq p C 0111-n nqp C …kn kk nqp C - …0q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,P(k A )=p ,P(k A )=q(q=1-p),那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(k =0,1,2,…, p q -=1).于是得到随机变量ξ的概率分布如下:ξ1 23 …k… Pppq2q p …1k qp -…称这样的随机变量ξ记作g (k ,p )= 1k q p -,其中k =0,1,2,…, p q -=1. 二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ4 5 6 7 8 9 10 P0.02 0.04 0.06 0.09 0.28 0.29 0.22在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有 n n P 02.0)4(=⨯=ξ 次得4环; n n P 04.0)5(=⨯=ξ 次得5环;…………n n P 22.0)10(=⨯=ξ 次得10环. 故在n 次射击的总环数大约为+⨯=02.04(++⨯ 04.05n ⨯⨯)22.010,从而,预计n 次射击的平均环数约为+⨯02.04++⨯ 04.0532.822.010=⨯.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i =0,1,2,…,10),我们可以同样预计他任意n 次射击的平均环数:+=⨯)0(0ξP +=⨯)1(1ξP …)10(10=⨯+ξP .1. 均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 =ξE +11p x +22p x ++n n p x ,简称期望.2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …np n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值 4. 均值或期望的一个性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则也是随机变量,它们的分布列为于是=ηE ++11)(p b ax ++22)(p b ax +++n n p b ax )(=+11(p x a +22p x …++n n p x …)++1(p b +2p …++n p …) =b aE +ξ,由此,我们得到了期望的一个性质:b aE b a E +=+ξξ)(5.若ξB (n,p ),则E ξ=np 证明如下:∵ k n k k n k n k k n q p C p p C k P --=-==)1()(ξ,∴ =ξE 0×n n q p C 00+1×111-n nq p C +2×222-n n q p C +…+k ×k n k k n q p C -+…+n ×0q p C n n n .又∵ 11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n k n nC k n k n n k n k n k kC ,∴ =ξE (np 0011n n C p q --+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q pC n n n ---np q p np n =+=-1)(. 故 若ξ~B (n ,p ),则=ξE np . 三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望解:因为3.0)0(,7.0)1(====ξξP P , 所以.03.007.01=⨯+⨯=ξE例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是ηξ,,则ξ~ B (20,0.9),)25.0,20(~B η,由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5ξ和5η 所以,他们在测验中的成绩的期望分别是:例3. 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0. 01.该地区某工地上有一台大型设备,遇到大洪水时要损失60 000元,遇到小洪水时要损失10000元.为保护设备,有以下3 种方案:方案1:运走设备,搬运费为3 800 元. 方案2:建保护围墙,建设费为2 000 元.但围墙只能防小洪水.方案3:不采取措施,希望不发生洪水. 试比较哪一种方案好.解:用X 1 、X 2和X 3分别表示三种方案的损失.采用第1种方案,无论有无洪水,都损失3 800 元,即 X 1 = 3 800 .采用第2 种方案,遇到大洪水时,损失2 000 + 60 000=62 000 元;没有大洪水时,损失2 000 元,即同样,采用第 3 种方案,有于是,EX 1=3 800 ,EX 2=62 000×P (X 2 = 62 000 ) + 2 00000×P (X 2 = 2 000 ) = 62000×0. 01 + 2000×(1-0.01) = 2 600 ,EX 3 = 60000×P (X 3 = 60000) + 10 000×P(X 3 =10 000 ) + 0×P (X 3 =0)= 60 000×0.01 + 10000×0.25=3100 .采取方案2的平均损失最小,所以可以选择方案2 . 值得注意的是,上述结论是通过比较“平均损失”而得出的.一般地,我们可以这样来理解“平均损失”:假设问题中的气象情况多次发生,那么采用方案 2 将会使损失减到最小.由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案 2 也不一定是最好的.例4.随机抛掷一枚骰子,求所得骰子点数ξ的期望 解:∵6,,2,1,6/1)(⋅⋅⋅===i i P ξ, 6/166/126/11⨯+⋅⋅⋅+⨯+⨯=∴ξE =3.5例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次ξ的期望(结果保留三个有效数字)解:抽查次数ξ取1ξ≤≤10的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前1-k 次取出正品而第k 次(k =1,2,…,10)取出次品的概率:15.085.0)(1⨯==-k k P ξ(k =1,2, (10)需要抽查10次即前9次取出的都是正品的概率:85.0)10(==ξP 由此可得ξ的概率分布如下:ξ 1 2 3 4 5 6 7 8 9 10P0.150.1275 0.1084 0.092 0.0783 0.0666 0.0566 0.0481 0.0409 0.2316根据以上的概率分布,可得ξ的期望例6.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望. 解:抛掷骰子所得点数ξ的概率分布为ξ 123456P61 61 61 61 61 61 所以=ξE 1×61+2×61+3×61+4×61+5×61+6×611=3.5.=(1+2+3+4+5+6)×6抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.例7.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm 加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为(Ⅰ)求租车费η关于行车路程ξ的关系式;(Ⅱ)若随机变量的分布列为求所收租车费η(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?解:(Ⅰ)依题意得η=2(ξ-4)十10,即η=2ξ+2;(Ⅱ)=ξE4.⨯+⨯15=⨯+⨯+171.016181.0165.03.0∵η=2ξ+2∴=ηE2Eξ+2=34.8 (元)故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5⨯(18-15)=15所以出租车在途中因故停车累计最多15分钟四、课堂练习:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出球的最大号码,则Eξ=()A.4;B.5;C.4.5;D.4.75答案:C2.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望;⑵他罚球2次的得分η的数学期望;⑶他罚球3次的得分ξ的数学期望.解:⑴因为7.0)1(==ξP ,3.0)0(==ξP ,所以 =ξE 1×)1(=ξP +0×7.0)0(==ξP ⑵η的概率分布为η 0 1 2P 23.0 3.07.012⨯⨯C 27.0所以 =ξE 0×09.0+1×42.0+2×98.0=1.4.⑶的概率分布为=ξE 027.0189.098.03.设有m 升水,其中含有大肠杆菌n 个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.分析:任取1升水,此升水中含一个大肠杆菌的概率是m1,事件“ξ=k ”发生,即n 个大肠杆菌中恰有k 个在此升水中,由n 次独立重复实验中事件A (在此升水中含一个大肠杆菌)恰好发生k 次的概率计算方法可求出P (ξ=k ),进而可求Eξ. 解:记事件A :“在所取的1升水中含一个大肠杆菌”,则P(A)=m1.∴ P (ξ=k )=P n (k )=C k n m1)k(1-m1)n -k(k =0,1,2,….,n ). ∴ ξ~B (n ,m1),故Eξ =n ×m 1=mn五、小结 :(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ 公式E (a ξ+b )= aE ξ+b ,以及服从二项分布的随机变量的期望E ξ=np 六、课后作业:P64-65练习1,2,3,4 P69 A 组1,2,31.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是 (用数字作答)解:令取取黄球个数ξ (=0、1、2)则ξ的要布列为于是 E (ξ)=0×103+1×53+2×101=0.8 故知红球个数的数学期望为1.22.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用ξ表示得分数 ①求ξ的概率分布列 ②求ξ的数学期望解:①依题意ξ的取值为0、1、2、3、4ξ=0时,取2黑 p(ξ=0)=612924=C Cξ=1时,取1黑1白 p(ξ=1)=31291314=⋅C C Cξ=2时,取2白或1红1黑p(ξ=2)= 2923C C +3611291412=⋅C C Cξ=3时,取1白1红,概率p(ξ=3)= 61291213=⋅C C Cξ=4时,取2红,概率p(ξ=4)= 361222=C C∴ξ分布列为 (2)期望E ξ=0×61+1×31+2×3611+3×61+4×361=914 3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p 1、p 2、p 3,求试验中三台投影仪产生故障的数学期望 解:设ξ表示产生故障的仪器数,A i 表示第i 台仪器出现故障(i=1、2、3)i A 表示第i 台仪器不出现故障,则:p(ξ=1)=p(A 1·2A ·3A )+ p(1A ·A 2·3A )+ p(1A ·2A ·A 3) =p 1(1-p 2) (1-p 3)+ p 2(1-p 1) (1-p 3)+ p 3(1-p 1) (1-p 2) = p 1+ p 2+p 3-2p 1p 2-2p 2p 3-2p 3p 1+3p 1p 2p 3p(ξ=2)=p(A 1· A 2·A )+ p(A 1·2A ·3A )+ p(1A ·A 2·A 3) = p 1p 2 (1-p 3)+ p 1p 3(1-p 2)+ p 2p 3(1-p 1) = p 1p 2+ p 1p 3+ p 2p 3-3p 1p 2p 3p(ξ=3)=p(A 1· A 2·A 3)= p 1p 2p 3∴ξE =1×p(ξ=1)+2×p(ξ=2)+3×p(ξ=3)= p 1+p 2+p 3注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.2A B A 队队员是321,,A A A ,B 队队员是321,,B B B ,按以往多次比赛的统计,A B 队最后所得分分别为ξ,(1)求ξ,η的概率分布; (2)求ξE ,ηE 解:(Ⅰ)ξ,η的可能取值分别为3,2,1,0 根据题意知3=+ηξ,所以(Ⅱ)15222530521752827583=⨯+⨯+⨯+⨯=ξE ; 因为3=+ηξ,所以15233=-=ξηE E七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ 公式E (a ξ+b )= aE ξ+b ,以及服从二项分布的随机变量的期望E ξ=np 。
人教版高中数学选修三第二单元《随机变量及其分布》测试题(包含答案解析)(2)

一、选择题1.某人射击一发子弹的命中率为0.8,现他射击19发子弹,理论和实践都表明,这19发子弹中命中目标的子弹数n 的概率()f n 如下表,那么在他射击完19发子弹后,其中击中目标的子弹数最大可能是( )A .14发B .15发C .16发D .15或16发2.《山东省高考改革试点方案》规定:2020年高考总成绩由语文、数学、外语三门统考科目和思想政治、历史、地理、物理、化学、生物六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为A 、B +,B 、C +、C 、D +、D 、E 共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%,7%,16%,24%,24%、16%、7%、3%,选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100,[81,90],[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30、八个分数区间,得到考生的等级成绩,如果山东省某次高考模拟考试物理科目的原始成绩X ~()50,256N ,那么D 等级的原始分最高大约为( )附:①若X ~()2,Nμσ,X Y μσ-=,则Y ~()0,1N ;②当Y ~()0,1N 时,()1.30.9P Y ≤≈.A .23B .29C .36D .433.某种疾病的患病率为0.5%,已知在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为( ) A .0.495% B .0.940 5%C .0.999 5%D .0.99%4.已知随机变量()2,1XN ,其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( ) 附:若随机变量()2,N ξμσ,则()0.6826P μσξμσ-≤≤+=,()220.9544P μσξμσ-≤≤+=.A .0.1359B .0.7282C .0.6587D .0.86415.已知随机变量ξ,η的分布列如下表所示,则( )ξ1 2 3P131216η1 2 3P161213A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη= D .E E ξη=,D D ξη=6.已知随机变量()2~0,X N σ,若()10.2P X>=,则()01P X <<的值为( )A .0.1B .0.3C .0.6D .0.47.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为34,且各局比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了三局的概率为( )A .13B .25C .23D .458.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( ) A .342+B .622+C .322+D .642+9.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .1210.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于3”;事件B :“甲、乙两骰子的点数之和等于7”,则P (B /A )的值等于( ) A .118B .19C .16D .1311.随机变量()~1,4X N ,若()20.2p x ≥=,则()01p x ≤≤为( ) A .0.2B .0.3C .0.4D .0.612.下列关于正态分布2(,)(0)N μσσ>的命题: ①正态曲线关于y 轴对称;②当μ一定时,σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”; ③设随机变量~(2,4)X N ,则1()2D X 的值等于2;④当σ一定时,正态曲线的位置由μ确定,随着μ的变化曲线沿x 轴平移. 其中正确的是( ) A .①②B .③④C .②④D .①④二、填空题13.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为X ,则X 的数学期望为___________.14.随机变量X 的取值为0、1、2,()00.2P X ==,0.4DX =,则EX =______. 15.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________. 16.甲、乙等4人参加4100⨯米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是______.17.某校高二学生一次数学诊断考试成绩(单位:分)X 服从正态分布()2110,10N ,从中抽取一个同学的数学成绩ξ,记该同学的成绩90110ξ<≤为事件A ,记该同学的成绩80100ξ<≤为事件B ,则在A 事件发生的条件下B 事件发生的概率()P B A =______.(结果用分数表示)附参考数据:()0.68P X μσμσ-<≤+=;()220.95P X μσμσ-<≤+=;()330.99P X μσμσ-<≤+=.18.从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________;三、解答题19.某高校为了加快打造一流名校步伐,生源质量不断改善.据统计,该校2014年到2020年所招的学生高考成绩不低于600分的人数y 与对应年份代号x 的数据如下:(1)若关于具有较强的线性相关关系,求关于的线性回归方程y bx a =+,并预测2021年该校所招的学生高考成绩不低于600分的人数;(2)今有A 、B 、C 、D 四位同学报考该校,已知A 、B 、C 被录取的概率均为13,D 被录取的概率为12,且每位同学是否被录取相互不受影响,用X 表示此4人中被录取的人数,求X 的分布列与数学期望.参考公式:()()()121niii nii x x y y b x x ==--=-∑∑,ˆa y bx=-.参考数据:71301ii y==∑,()()71140iii x x y y =--=∑.20.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩ξ近似服从正态分布()70,100N .已知成绩在90分以上(含90分)的学生有12名.(1)此次参赛的学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,则设奖的分数线约为多少分? 说明:对任何一个正态分布()2~,X Nμσ来说,通过1X Z μσ-=转化为标准正态分布()~0,1Z N ,从而查标准正态分布表得到()()1P X X Z <=Φ. 参考数据:可供查阅的(部分)标准正态分布表()Z Φ21.魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974 年发明的.魔方与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议,而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,为333⨯⨯的正方体结构,由26个色块组成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.截至2020年,三阶魔方还原官方世界纪录是由中国的杜宇生在2018年11月24日于芜湖赛打破的纪录,单次3.475秒.(1)某魔方爱好者进行一段时间的魔方还原训练,每天魔方还原的平均速度y (秒) 与训练天数x (天)有关,经统计得到如下数据:现用y a x=+作为回归方程类型,请利用表中数据,求出该回归方程,并预测该魔方爱好者经过长期训练后最终每天魔方还原的平均速度y 约为多少秒(精确到1) ?参考数据(其中1i iz x =)对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆva u β=+的斜率和截距的最小二乘估计公式分别为:1221ˆˆˆ,ni i i nii u vnuv av u unu ββ==-==--∑∑. (2)现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面.某人按规定将魔方随机扭动两次,每次均顺时针转动90︒,记顶面白色色块的个数为X ,求X 的分布列及数学期望()E X .22.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数; (2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 23.2020年5月1日起,北京市实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类. 生活垃圾中有一部分可以回收利用,回收1吨废纸可再造出0.8吨好纸,降低造纸的污染排放,节省造纸能源消耗.某环保小组调查了北京市房山区某垃圾处理场2020年6月至12月生活垃圾回收情况,其中可回收物中废纸和塑料品的回收量(单位:吨)的折线图如图:(Ⅰ)现从2020年6月至12月中随机选取1个月,求该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的概率;(Ⅱ)从2020年6月至12月中任意选取2个月,记X 为选取的这2个月中回收的废纸可再造好纸超过3.0吨的月份的个数. 求X 的分布列及数学期望;(Ⅲ)假设2021年1月该垃圾处理场可回收物中塑料品的回收量为a 吨. 当a 为何值时,自2020年6月至2021年1月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明)(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)24.某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(1)现从去年的消费金额超过3 200元的消费者中随机抽取2人,求至少有1位消费者去年的消费金额在(3 200,4 000]内的概率;(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表: 会员等级消费金额(1 600,3 200]内的消费者都将会申请办理银卡会员,消费金额在(3 200,4 800]内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案: 方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.25.假设有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出两个零件,试求: (1)先取出的零件是一等品的概率; (2)两次取出的零件均为一等品的概率.26.学校趣味运动会上增加了一项射击比赛,比赛规则如下:向A 、B 两个靶进行射击,先向A 靶射击一次,命中得1分,没有命中得0分;再向B 靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,射击B 靶如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练甲同学的射击水平显著提高,目前的水平是:向A 靶射击,命中的概率是45;向B 靶射击,命中的概率为34.假设甲同学每次射击结果相互独立. (1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X 的分布列及数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设第k 发子弹击中目标的概率最大,根据题意,可以表示第1k -、k 、1k +发子弹击中目标的概率,进而可得()()1f k f k ≥+且()()1f k f k ≥-,即可得关于k 的不等式组,求解可得答案. 【详解】根据题意,设第k 发子弹击中目标的概率最大,而19发子弹中命中目标的子弹数n 的概率()19190.80.2k k k P n k C -⋅⋅==(0k =,1,2,,19),则有()()1f k f k ≥+且()()1f k f k ≥-,即191118191919112019190.80.20.80.20.80.20.80.2k k k k k kkk k k k kC C C C -++-----⎧⋅⋅≥⋅⋅⎨⋅⋅≥⋅⋅⎩ ,解可得1516k ≤≤ , 即第15或16发子弹击中目标的可能性最大,则他射完19发子弹后,击中目标的子弹最可能是第15或16发. 故选:D . 【点睛】本题考查n 次独立重复试验中发生k 次的概率问题,考查逻辑思维能力和运算求解能力,属于常考题.2.B解析:B 【分析】由于原始分与对应等级分的分布情况是相同的,由(P 等级分≥40)0.9=即有(P 原始分≥5016x -)0.9=,结合原始分满足X ~()50,256N 的正态分布即可得均值和标准差,而X Y μσ-=且()1.30.9P Y ≤≈知( 1.3)0.9P Y ≥-≈,即有5016x - 1.3=-求解即可 【详解】由题意知:X ~()50,256N 则有50μ=,16σ=设D 等级的原始分最高大约为x ,对应的等级分为40 ,而(P 等级分≥40)1(7%3%)0.9=-+=∴有(P 原始分≥5016x -)0.9= 而()1.30.9P Y ≤≈,由对称性知( 1.3)0.9P Y ≥-≈∴有5016x - 1.3=-,即29.229x =≈ 故选:B 【点睛】本题考查了正态分布的应用,根据两个有相同分布情况的数据集概率相等,由已知数据集上某点上的概率找到另一个数据集上有相等概率的点,即可找到等量关系,进而求点的位置。
2014年人教A版选修2-3课件 第二章小结(随机变量及其分布)

9. 数学期望 离散随机变量 X 的平均值称为变量 X 的 数学期望, 用 E(X) 表示. 在分布列中: X P x1 p1 x2 p2 … … xi pi … … xn pn
E(X)=x1p1+x2p2+…+xipi+…+xnpn.
10. 二项分布的数学期望
若 X~B(n, p), 则 E(X)=np.
7. n 次独立重复试验
在相同条件下重复做 n 次试验称为 n 次 独立重复试验. n 次独立重复试验中, 事件 A1, A2, …, An 相互独立. P(A1· A2· …· An) = P(A1)· P(A2) · …· P(An).
8. 二项分布 n 次独立重复试验中, 设事件 A 每次试验 发生的概率为 p, 则 n 次试验中, 事件 A 恰有 k 次发生的概率为 P(X=k)=Cnkpk(1-p)n-k, k=0, 1, 2, …, n. 此时称随机变量 X 服从二项分布, 记作 X~B(n, p), 并称 p 为成功概率.
16. 正态分布的几何意义
P(a X
b b) = a m ,s ( x )dx,
随机变量 X 在 (a, b] 上的概率 P(a<X≤b) 是正 态曲线与 x 轴, x=a, x=b 所围成的面积.
y
O
a
b
x
17. 几段特殊分布 P(m-s<X≤m+s)=0.6826, P(m-2s<X≤m+2s)=0.9544, P(m-3s<X≤m+3s)=0.9974. (简记为: 68, 95, 997) X 在 (m-3s, m+3s] 以外, 概率非常小, 在这种情况下, 一次试验中事件几乎不可能 发生.
高中数学必修2-3第二章2.1 2.1.1离散型随机变量

第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量问题导航(1)随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?(2)随机变量与函数有什么区别与联系?1.随机变量(1)定义:在随机试验中,确定了一个对应关系,使得每一个________试验结果都用一个________确定的数字表示.在这个对应关系下,________数字随着________试验结果的变化而变化.像这种随着________试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母________X,Y,ξ,η,…表示.2.离散型随机变量所有取值可以________一一列出的随机变量,称为离散型随机变量.1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的取值是任意的实数.()(2)随机变量的取值可以是有限个,也可以是无限个.()(3)离散型随机变量是指某一区间内的任意值.()答案:(1)×(2)√(3)×2.下列变量中,不是随机变量的是()A.掷一枚骰子,所得的点数B.一射手射击一次的环数C.某日上证收盘指数D.标准状态下,水在100 ℃时会沸腾答案:D3.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点答案:D4.在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________.答案:共抽取3次,前两次均是正品,第3次是次品1.对随机变量的再认识(1)随机变量是用来表示不同试验结果的量.(2)试验结果和实数之间的对应关系产生了随机变量,随机变量每取一个确定的值对应着试验的不同结果,试验的结果对应着随机变量的值,即随机变量的取值实质上是试验结果所对应的数.2.离散型随机变量的特征(1)可用数值表示.(2)试验之前可以判断其出现的所有值.(3)在试验之前不能确定取何值.(4)试验结果能一一列出.随机变量的概念判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2016年5月1日的旅客数量;(2)2016年1月1日到6月1日期间所查酒驾的人数;(3)2016年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球半径长.[解](1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.1.(1)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率解析:选C.对于A中取到产品的件数是一个常量不是变量,B、D也是一个定值,而C 中取到次品的件数可能是0,1,2,是随机变量.(2)指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.①任意掷一枚质地均匀的硬币5次,出现正面向上的次数;②掷一枚质地均匀的正方体骰子出现的点数(最上面的数字);③某个人的属相随年龄的变化关系.解:①任意掷一枚质地均匀的硬币1次,可能出现正面向上也可能出现反面向上,因此掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪一个结果是随机的,因此是随机变量.②掷一枚质地均匀的骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个,而且出现哪一个结果是随机的,因此是随机变量.③属相是人出生时便确定的,不随年龄的变化而变化,不是随机变量.离散型随机变量的判定指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30 m有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获奖等次X;(3)一天内气温的变化值X.[解](1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)一天内的气温变化值X,可以在某区间内连续取值,不能一一列出,不是离散型随机变量.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.2.下面给出四个随机变量:①某高速公路上某收费站在未来1小时内经过的车辆数X是一个随机变量;②一个沿直线y=x进行随机运动的质点,它在该直线上的位置Y是一个随机变量;③某网站未来1小时内的点击量;④一天内的温度η.其中是离散型随机变量的为()A.①②B.③④C.①③D.②④解析:选C.①是,因为1小时内经过该收费站的车辆可一一列出.②不是,质点在直线y=x上运动时的位置无法一一列出.③是,1小时内网站的访问次数可一一列出.④不是,1天内的温度η是该天最低温度和最高温度这一范围内的任意实数,无法一一列出.用随机变量描述随机现象写出下列随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解](1)ξ可取0,1,2.ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(2)设所取卡片上的数字之和为X,则X=3,4,5, (11)X=3,表示取出标有1,2的两张卡片;X=4,表示取出标有1,3的两张卡片;…X =11,表示取出标有5,6的两张卡片.解答此类问题的关键在于明确随机变量的所有可能的取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.3.(1)抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是( ) A .2枚都是4点B .1枚是1点,另1枚是3点C .2枚都是2点D .1枚是1点,另1枚是3点,或者2枚都是2点解析:选D.抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2, (6)而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2. (2)写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.①在2016年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ; ②射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.解:①X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5. ②ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.(2015·南充高二检测)一个木箱中装有6个大小相同的篮球,编号为1,2,3,4,5,6,现随机抽取3个篮球,以ξ表示取出的篮球的最大号码,则ξ的试验结果有________种.[解析] 从6个球中选出3个球,当ξ=3时,另两个球从1,2中选取,有一种抽法; 当ξ=4时,另两个球从1,2,3中任取两个球,有C 23=3种; 当ξ=5时,另两个球从1,2,3,4中任取两个球,有C 24=6种; 当ξ=6时,另两个球从1,2,3,4,5中任取两个球,有C 25=10种. 所以,ξ的试验结果共有1+3+6+10=20种. [答案] 20[错因与防范] 本题易遗漏ξ=3,4,5的情况;对题目中给出的条件作出正确判断是解决数学问题的关键,如本例中“以ξ表示取出的篮球的最大号码”指的是“随机抽取3个篮球”中的最大号码,而不是ξ=6.4.袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,求随机变量的取值.解:设所需要的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)1.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色的种数解析:选 D.A.小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B.倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C.三个小球的质量之和是一个定值,不是随机变量,就更不是离散型随机变量了;D.颜色的种数是一个离散型随机变量.2.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,取后不放回直到取出的球是白球为止,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5解析:选B.因红球共有6个,在取到白球前可取6次,第7次取球只能取白球停止,所以X可能取值有1,2,3, (7)3.下列随机变量中是离散型随机变量的是________.①某鱼塘所养的鲤鱼中,重量在2.5千克以上的条数X;②任意取直线y=x上的整点的个数X;③放学后,小明同学离开学校大门的距离X;④网站中,歌曲《爱我中华》一天内被点击的次数X.解析:③中距离X可取某区间内的任意值,∴③中X不是离散型随机变量.①②④的X 可以一一列举,且②中的X是无限的.答案:①②④4.某篮球运动员在罚球时,罚中1球得2分,罚不中得0分,该队员在5次罚球中命中的次数ξ是一个随机变量.(1)写出ξ的所有取值及每一个取值所表示的结果;(2)若记该队员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果.解:(1)ξ可取0,1,2,3,4,5.表示在5次罚球中分别罚中0次,1次,2次,3次,4次,5次.(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.[A.基础达标]1.给出下列四个命题:①某次数学期中考试中,其中一个考场30名考生中做对选择题第12题的人数是随机变量;②黄河每年的最大流量是随机变量;③某体育馆共有6个出口,散场后从某一出口退场的人数是随机变量;④方程x 2-2x -3=0根的个数是随机变量.其中正确的个数是( )A .1B .2C .3D .4解析:选C.①②③是正确的,④中方程x 2-2x -3=0的根有2个是确定的,不是随机变量.2.抛掷两枚骰子一次,X 为第一枚骰子掷出的点数与第二枚掷出的点数之差,则X 的所有可能的取值为( )A .0≤X ≤5,X ∈NB .-5≤X ≤0,X ∈ZC .1≤X ≤6,X ∈ND .-5≤X ≤5,X ∈Z解析:选D.两次掷出点数均可取1~6所有整数, ∴X ∈[-5,5],X ∈Z .3.袋中有2个黑球和6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率解析:选B.袋中有2个黑球和6个红球,从中任取两个,取到球的个数是一个固定的数字,不是随机变量,故不选A ,取到红球的个数是一个随机变量,它的可能取值是0,1,2,故B 正确;至少取到一个红球表示取到一个红球,或取到两个红球,表示一个事件,故C 不正确;至少取到一个红球的概率是一个古典概型的概率问题,不是随机变量,故D 不正确,故选B.4.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X ,则表示“放回5个球”的事件为( )A .X =4B .X =5C .X =6D .X ≤4解析:选C.第一次取到黑球,则放回1个球;第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X =6.5.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( )A .6B .7C .10D .25解析:选C.X 的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5,共计10个.6.(2015·济南高二检测)已知Y =2X 为离散型随机变量,Y 的取值为1,2,3,4,…,10,则X 的取值为______________________.解析:由题意可知X =12Y .又Y ∈{1,2,3,4,5,6,7,8,9,10}, 故X ∈⎩⎨⎧⎭⎬⎫12,1,32,2,52,3,72,4,92,5.答案:12,1,32,2,52,3,72,4,92,57.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.解析:若答对0个问题得分-300; 若答对1个问题得分-100; 若答对2个问题得分100; 若问题全答对得分300.答案:-300,-100,100,300 8.某射手射击一次所击中的环数为ξ(取整数),则“ξ>7”表示的试验结果是________. 解析:射击一次所中环数ξ的所有可能取值为0,1,2,…,10,故“ξ>7”表示的试验结果为“该射手射击一次所中环数为8环、9环或10环”.答案:射击一次所中环数为8环或9环或10环 9.(2015·南京高二检测)小王钱夹中只剩有20元、10元、5元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X 表示这两张金额之和.写出X 的可能取值,并说明所取值表示的随机试验结果.解:X 的可能取值为6,11,15,21,25,30. 其中,X =6,表示抽到的是1元和5元; X =11,表示抽到的是1元和10元; X =15,表示抽到的是5元和10元; X =21,表示抽到的是1元和20元; X =25,表示抽到的是5元和20元; X =30,表示抽到的是10元和20元.10.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ. (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分.求最终得分η的可能取值,并判定η的随机变量类型.解:(1)(2)由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},∴η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为{6,11,16,21},显然η为离散型随机变量.[B.能力提升]1.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C.前4次均未击中目标D.第4次击中目标解析:选C.ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.2.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为()A.20 B.24C.4 D.18解析:选B.由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是________.解析:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示两枚骰子中第一枚为6点,第二枚为1点.答案:第一枚为6点,第二枚为1点4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.解析:ξ=8表示3个篮球中一个编号是8,另外两个从剩余7个号中选2个,有C27种方法,即21种.答案:215.手机上网安全、方便,某地移动公司推出一款上网卡,月租费10元,上网时每分钟0.04元(不足一分钟的按一分钟计算).小张在一个月内上网的时间(分)为随机变量ξ,求小张在一个月内上网的费用η,则ξ和η是否为离散型随机变量.解:由于上网时间不足1分钟按1分钟计算,因此变量ξ的取值为1,2,3,….∴ξ是一个离散型随机变量.又η=0.04ξ+10,ξ∈N*,故η也是离散型随机变量.6.写出下面随机变量可能的取值,并说明随机变量所表示的随机试验的结果.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.解:因为x,y可能取的值为1,2,3,所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,所以ξ可能的取值为0,1,2,3,用(x,y)表示第一次抽到卡片号码为x,第二次抽得号码为y,则随机变量ξ取各值的意义为:ξ=0表示两次抽到卡片编号都是2,即(2,2).ξ=1表示(1,1),(2,1),(2,3),(3,3).ξ=2表示(1,2),(3,2).ξ=3表示(1,3),(3,1).。
【高中数学】离散型随机变量的均值与方差、正态分布

【高中数学】离散型随机变量的均值与方差、正态分布【知识讲解】1.若离散型随机变量ξ的分布列为X x 1x 2 … x i… x n Pp 1 p 2 … p i…p n(1)则称E ξ= 为随机变量ξ的均值,也称为期望,它反映了离散型随机变量取值的 。
(2)把 叫做随机变量方差,D ξ的算术平方根D ξ叫做随机变量ξ的 ,记作 。
随机变量的方差与标准差都反映了随机变量取值的 偏离于均值的平均程度 。
其中标准差与随机变量本身有 相同单位 。
2.均值与方差的计算公式(1)若η=a ξ+b (a,b 为常数),则E η=E(a ξ+b )=______________;D η=D(a ξ+b )=____________; (2)若ξ服从两点分布,则E ξ= ,D ξ= ;(3)若X 服从二项分布,即~(,)B n p ξ,则E ξ= ,D ξ= 。
3.函数,()______________x μσϕ=的图象称为正态密度曲线,简称正态曲线。
4.对于任何实数a b <,随机变量X 满足()____________,P a X b <≤≈则称X 的分布为正态分布,正态分布完全由参数 确定。
因此正态分布常记作 ,如果X 服从正态分布,则记为 。
5.正态分布的特点:(1)曲线在 ;(2)曲线关于直线 对称; (3)曲线在x μ=时 ;(4)当μ一定时,曲线的形状由σ确定,σ越大,曲线 ,表示总体的分布越 ;σ越小,曲线 ,表示总体的分布越 。
【巩固练习】离散型随机变量的均值与方差 一、选择题(每小题7分,共35分) 1.已知X 的分布列为X -1 0 1 P121316,且Y =aX +3,E (Y )=73,则a 的值为( )A .1B .2C .3D .4 2.已知随机变量X 的分布列为X -2 -10 1 2 3 P 112 m n 112 16 112其中m ,n ∈[0,1),且E (X )=16,则m ,n 的值分别为( )A.112,12B.16,16C.14,13D.13,14 3.(2010·全国)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4004.若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为()A.3·2-2B.2-4C.3·2-10 D.2-85.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X为这3支签的号码之中最大的一个,则X的数学期望为()A.5 B.5.25 C.5.8 D.4.6二、填空题(每小题6分,共24分)6.有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则E(ξ)=______. 7.(2009·上海)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E (ξ)=__________(结果用最简分数表示).8.(袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数ξ的数学期望E(ξ)=________.9.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望E(ξ)=________.三、解答题(共41分)10.(13分)袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求:(1)随机变量ξ的概率分布列;(2)随机变量ξ的数学期望与方差.11.(14分)一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.(1)若从袋子里一次取出3个球,求得4分的概率;(2)若从袋子里每次摸出一个球,看清颜色后放回,连续摸2次,求所得分数ξ的分布列及数学期望.12.(14分)某省示范高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:信息技术生物 化学 物理 数学 周一 14 14 14 14 12 周三 12 12 12 12 23 周五1313131323(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.【巩固练习】均值与方差、正态分布基础热身1.下面说法正确的是( )A .离散型随机变量X 的期望E (X )反映了X 取值的概率的平均值B .离散型随机变量X 的方差D (X )反映了X 取值的平均水平C .离散型随机变量X 的期望E (X )反映了X 取值的平均水平D .离散型随机变量X 的方差D (X )反映了X 取值的概率的平均值2.某班有14的学生数学成绩优秀,如果从班中随机地找出5名同学,那么其中数学成绩优秀的学生数X ~B ⎝⎛⎭⎫5,14,则E (2X +1)等于( )A.54B.52C .3D.72 3.一个课外兴趣小组共有5名成员,其中3名女性成员、2名男性成员,现从中随机选取2名成员进行学习汇报,记选出女性成员的人数为X ,则X 的数学期望是( )A.15B.310C.45D.654.某种摸奖活动的规则是:在一个袋子中装有大小、质地完全相同、编号分别为1,2,3,4的小球各一个,先从袋子中摸出一个小球,记下编号后放回袋子中,再从中取出一个小球,记下编号,若两次编号之和大于6,则中奖.某人参加4次这种抽奖活动,记中奖的次数为X ,则X 的数学期望是( ) A.14 B.12 C.316 D.34能力提升5.已知X ~B ⎝⎛⎭⎫n ,12,Y ~B ⎝⎛⎭⎫n ,13,且E (X )=15,则E (Y )等于( ) A .5B .10C .15D .206.[2010·课标全国卷] 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.已知离散型随机变量X的概率分布列为X 13 5P 0.5m 0.2则其方差D(X)等于()A.1 B.0.6 C.2.44 D.2.48.[2010·广东卷] 已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.6826,则P(X>4)=()A.0.1588 B.0.1587 C.0.1586 D.0.15859.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X,则X的数学期望是()A.7.8 B.8 C.16 D.15.610.某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X,则X的数学期望E(X)=________.11.体育课的投篮测试规则是:一位同学投篮一次,若投中则合格,停止投篮,若投不中,则重新投篮一次,若三次投篮均不中,则不合格,停止投篮.某位同学每次投篮的命中的概率为23,则该同学投篮次数X的数学期望E(X)=________.12.袋中有大小、形状相同的红、黑球各一个,每次摸取一个球记下颜色后放回,现连续取球8次,记取出红球的次数为X,则X的方差D(X)=________.13.据统计,一年中一个家庭万元以上的财产被窃的概率为0.005,保险公司开办一年期万元以上家庭财产保险,交保险费100元,若一年内万元以上财产被窃,保险公司赔偿a元(a>1000),为确保保险公司有可能获益,则a的取值范围是________.14.(10分)[2011·泰兴模拟] 一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sin x,f5(x)=cos x,f6(x)=2.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数X的分布列和数学期望.15.(13分)[2011·南漳一中月考] 不透明盒中装有10个形状大小一样的小球,其中有2个小球上标有数字1,有3个小球上标有数字2,还有5个小球上标有数字3.取出一球记下所标数字后放回,再取一球记下所标数字,共取两次.设两次取出的小球上的数字之和为X.(1)求随机变量X的分布列;(2)求随机变量X的期望E(X).难点突破16.(12分)[2011·衡阳联考] 低碳生活成为人们未来生活的主流,某市为此制作了两则公益广告:(1)80部手机,一年就会增加一吨二氧化碳的排放……(2)人们在享受汽车带来的便捷与舒适的同时,却不得不呼吸汽车排放的尾气……活动组织者为了解市民对这两则广告的宣传效果,随机从10~60岁的人群中抽查了n 人,统计结果如图K63-1表示抽查的n 人中,各年龄段的人数的频率分布直方图,下表表示抽查的n 人中回答正确情况的统计表.图K63-1广告一 广告二 回答正确 的人数 占本组人 数的频率 回答正确 的人数 占本组人数 的频率 [10,20) 90 0.5 45 a [20,30) 225 0.75 240 0.5 [30,40) 378 0.9 252 0.6 [40,50) 160 b 120 0.5 [50,60)150.2560.1(1)分别写出n ,a ,b 的值;(2)若上表中的频率近似值看作各年龄组正确回答广告内容的频率,规定正确回答广告一的内容得20元,正确回答广告二的内容得30元,组织者随机请一家庭的两成员(大人45岁,孩子17岁)回答两广告内容,求该家庭获得资金的期望(各人之间,两广告之间相互独立).基础知识参考答案:1.【提示】1122n n x P x P x P +++ ,平均水平,21()nii i D xE P ξξ==-∑,标准差,σξ,偏离于均值的平均程度,相同单位2.【提示】AE ξ+b ,a 2D ξ,P ,P (1-P ),nP ,nP(1-P)3.【提示】22()21,2x e x R μσπσ--∈4.【提示】,()bax d x μσϕ⎰,μ和σ,2(,)N μσ,2~(,)X N μσ5.【提示】位于x 轴上方,与x 轴不相交,x μ=,达到峰值12πσ,1,越“矮胖”,分散巩固练习参考答案:10. 解 (1)随机变量ξ可取的值为2,3,4,P (ξ=2)=C 12C 13C 12C 15C 14=35;P (ξ=3)=A 22C 13+A 23C 12C 15C 14C 13=310; P (ξ=4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量ξ的概率分布列为:ξ 23 4 P35310110(2)随机变量ξ的数学期望E (ξ)=2·35+3·310+4·110=52;随机变量ξ的方差 D (ξ)=(2-52)2·35+(3-52)2·310+(4-52)2·110=920.P (ξ=4)=⎝⎛⎭⎫252=425, 故ξ的分布列为ξ 23 4 P9251225425故ξ的数学期望E (ξ)=2×925+3×1225+4×425=145.P (ξ=1)=C 14×12×⎝⎛⎭⎫1-123×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-124×23=18; P (ξ=2)=C 24×⎝⎛⎭⎫122×⎝⎛⎭⎫1-122×⎝⎛⎭⎫1-23+C 14×12×⎝⎛⎭⎫1-123×23=724;P (ξ=3)=C 34×⎝⎛⎭⎫123×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-23+C 24×⎝⎛⎭⎫122×⎝⎛⎭⎫1-122×23=13; P (ξ=4)=⎝⎛⎭⎫124×⎝⎛⎭⎫1-23+C 34×⎝⎛⎭⎫123×⎝⎛⎭⎫1-12×23=316; P (ξ=5)=⎝⎛⎭⎫124×23=124.所以,随机变量ξ的分布列如下:ξ 01 2 3 4 5 P1481872413316124故E (ξ)=0×148+1×18+2×724+3×13+4×316+5×124=83.【基础热身】1.C [解析] 离散型随机变量X 的期望E(X)反映了X 取值的平均水平,它的方差反映X 取值的离散程度.2.D [解析] 因为X ~B ⎝⎛⎭⎫5,14,所以E(X)=54,所以E(2X +1)=2E(X)+1=2×54+1=72. 3.D [解析] X =0,1,2.P(X =0)=C 22C 25=110,P(X =1)=C 13C 12C 25=610,P(X =2)=C 23C 25=310.所以E(X)=65.4.D [解析] 根据乘法原理,基本事件的总数是4×4=16,其中随机事件“两次编号之和大于6”含有的基本事件是(3,4),(4,3),(4,4),故一次摸奖中奖的概率为316.4次摸奖中奖的次数X ~B ⎝⎛⎭⎫316,4,根据二项分布的数学期望公式,则E(X)=4×316=34.【能力提升】5.B [解析] 因为X ~B ⎝⎛⎭⎫n ,12,所以E(X)=n2,又E(X)=15,则n =30. 所以Y ~B ⎝⎛⎭⎫30,13,故E(Y)=30×13=10. 6.B [解析] X 的数学期望概率符合(n ,p)分布;n =1 000,p =0.1,∴E(X)=2×1 000×0.1=200. 7.C [解析] 因为0.5+m +0.2=1,所以m =0.3,所以E(X)=1×0.5+3×0.3+5×0.2=2.4, D(X)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.8.B [解析] 通过正态分布对称性及已知条件得P(X >4)=1-P 2≤X ≤42=1-0.68262=0.1587,故选B .9.A [解析] X 的取值为6,9,12,相应的概率P(X =6)=C 38C 310=715,P(X =9)=C 28C 12C 310=715,P(X =12)=C 18C 22C 310=115,E(X)=6×715+9×715+12×115=7.8.10.1.4 [解析] X =0,1,2.P(X =0)=0.2×0.4=0.08,P(X =1)=0.8×0.4+0.2×0.6=0.44,P(X =2)=0.8×0.6=0.48.所以E(X)=0×0.08+1×0.44+2×0.48=1.4.11.139 [解析] 试验次数X 的可能取值为1,2,3,且P(X =1)=23, P(X =2)=13×23=29,P(X =3)=13×13×⎝⎛⎭⎫23+13=19. 随机变量X 的分布列为X 1 2 3 P232919所以E(X)=1×23+2×29+3×19=139.12.2 [解析] 每次取球时,红球被取出的概率为12,8次取球看做8次独立重复试验,红球出现的次数X ~B ⎝⎛⎭⎫12,8,故D(X)=8×12×12=2.13.(1 000,20 000) [解析] X 表示保险公司在参加保险者身上的收益,其概率分布为X 100 100-a P0.9950.005E(X)=0.995×100+(100-a)×0.005=100-a200.若保险公司获益,则期望大于0,解得a<20 000,所以a ∈(1 000,20 000).14.[解答] (1)记事件A 为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知P(A)=C 23C 26=15.(2)X 可取1,2,3,4.P(X =1)=C 13C 16=12,P(X =2)=C 13C 16·C 13C 15=310,P(X =3)=C 13C 16·C 12C 15·C 13C 14=320,P(X =4)=C 13C 16·C 12C 15·C 11C 14·C 13C 13=120;故X 的分布列为X 1 2 3 4 P12310320120E(X)=1×12+2×310+3×320+4×120=74.答:X 的数学期望为74.15.[解答] (1)由题意知随机变量X 的取值为2,3,4,5,6.P(X =2)=210×210=125,P(X =3)=210×310+310×210=325,P(X =4)=210×510+510×210+310×310=29100,P(X =5)=310×510+510×310=310,P(X =6)=510×510=14.所以随机变量X 的分布列为X 2 3 4 5 6 P1253252910031014(2)随机变量X 的期望为E(X)=2×125+3×325+4×29100+5×310+6×14=235.【难点突破】16.[解答] (1)根据频率分布表,可知年龄在[10,20)岁的人数为900.5=180.根据频率分布直方图可得180n =0.015×10,得n =1200,∴a =45180=14,160b =1200×0.02×10,b =23.∴n =1200,a =14,b =23.(2)依题意:孩子正确回答广告一、广告二的内容的概率分别是P 1=12,P 2=14.大人正确回答广告一、广告二的内容的概率分别为P 3=23,P 4=12.设随机变量X 表示该家庭获得的资金数,则X 的可能取值是:0,20,30,40,50,60,70,80,100. 其分布列为X 020 30 40 50 60 70 80 100 P116316112181414816116124∴E(X)=0×116+20×316+30×112+40×18+50×14+60×148+70×16+80×116+100×124=4556.。
高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案

第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为
最新-2021高中数学选修23课件:第二章23231离散型随机变量的均值 精品
值,是随机变量 X 的一个固有的数字特征,不具有随机
性.
2.离散型随机变量的性质
如果 X 为(离散型)随机变量,则 Y=aX+b(其中 a,b 为常数)也是(离散型)随机变量,且 P(X=xi)=P(Y=axi+ b),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.
解析:(1)错,随机变量 X 的数学期望是一个常量. (2)错,随机变量的均值与样本的平均值是两个不同 的概念. (3)对,E(2X)=2E(X)=2×3=6. 答案:(1)× (2)× (3)√
2.已知 ξ 的分布列为:
ξ -1 0 1 2
P
1 4
311 848
则 ξ 的均值为( )
A.0
B.-1
法二 由于 Y=2X-3,
所以 Y 的分布列如下:
Y -7 -5 -3 -1 1
P
1 4
1 3Leabharlann 1 511 6 20所以
E(Y) =
(
-
7)× 14
+(-
5)×
1 3
+
(
- 3)× 15 + ( -
1)×16+1×210=-6125.
归纳升华 若给出的随机变量 ξ 与 X 的关系为 ξ=aX+b,a,b 为常数.一般思路是先求出 E(X),再利用公式 E(aX+b) =aE(X)+b 求 E(ξ).也可以利用 ξ 的分布列得到 η 的分 布列,关键由 ξ 的取值计算 η 的取值,对应的概率相等, 再由定义法求得 E(η).
防范措施:在求随机变量取各值的概率时,务必理解
各取值的实际意义,以免失误.另外,可以利用分布列的
n
性质:(1)pi≥0(i=1,2,3,…,n),(2) pi=1 来检验.
第二章 随机变量及其分布 习题
第二章 随机变量及其分布第一节 随机变量、离散型随机变量及其分布规律一、判断题 随机变量X 的分布规律1. 表 是变量X 有{}3,2,1,0,652=−==k k k X P ,则它2.若对随机是随机变量X 的分布规律3.若对随机变量X 有{},5,4,3,2,1,251=+==k k k X P 则它是随机变量X 的分布律 二、填空题1.设随机变量X 的分布律为{}N k Nak X P ⋯⋯===,4,3,2,1,,则=a 2.设随机变量X 的分布律为{}⋯⋯===−,2,1,!3k e k k X P kλ,则=λ3.设离散型随机变量X 服从两点分布,且()()()=====1,041X P X P X P 则4.设随机变量(),,~p n b X 且已知()()(),3221=====X P X P X P 则n = p =5.某试验的成功概率为43,失败概率为41,若以X 表示试验者首次成功所进行的试验次数,则X 的分布律为6.设随机变量X 服从二项分布(),,2p b 随机变量Y 服从二项分布若()p b ,3。
若(),951=≥X P 则()=≥1Y P三、在15件同类型的零件中有2件次品,从中取3次,每次任取1件,作不放回抽取。
以X 表示取出的次品的个数。
1.求X 的分布律 2.画出分布律的图形四、一大楼装有5个同类型的供水设备。
调查表明在任一时刻t 每个设备被使用的概率为0.1,问在同一时刻, 1.恰有2个设备被使用的概率是多少?2.至少有3个设备被同时使用的概率是多少?3.至多有3个设备被同时使用的概率是多少?五、设某城市在一周内发生交通事故的次数服从参数为0.3的泊松分布,试问: 1.在一周内恰好发生2次交通事故的概率是多少? 2.在一周内至少发生1次交通事故的概率是多少?六、某商店过去的销售记录表明,某种商品每月的销售数可用参数10=λ的泊松分布描述,为了以99%以上的把握该种商品不脱销,每月该种产品的库存量为多少件?七、设X 服从泊松分布,其分布律为{}⋯===−,1,0,!k k e k X P k λλ ,当k 为何值,()k X P =最大?第二节 随机变量分布函数、连续型随机变量及其概率密度一、判断题:1.(),.102,212,0⎪⎩⎪⎨⎧≥<≤−−<=x x x x F 是某个随机变量的分布函数。
2014-2015学年高中数学选修2-3 第2章 随机变量及其分布第二章2.3.1(二)
研一研·题型解法、解题更高效
题型一
本 课 时 栏 目 开 关
二项分布的均值
例 1 一次单元测验由 20 个选择题构成,每个选择题有 4 个选 项,其中仅有一个选项正确.每题选对得 5 分,不选或选错 不得分,满分 100 分.学生甲选对任意一题的概率为 0.9,学 生乙则在测验中对每题都从各选项中随机地选择一个.分别 求学生甲和学生乙在这次测验中成绩的均值. 解 设学生甲和学生乙在这次单元测验中选对的题数分别是 X1
研一研·题型解法、解题更高效
小结
本 课 时 栏 目 开 关
本题是随机变量期望的应用问题,解题的关键是正确地
设出随机变量,然后求出该随机变量的所有可能的取值,在实 际问题中应综合考虑问题的各种情形,如本题中既要考虑到这 个人的收入,又要考虑到其支出,因此就一次摸球而言,这个 人的收入情况是不确定的,有-19 元,-1 元,0.5 元,1 元四 种可能.
研一研·题型解法、解题更高效
题型二 超几何分布的均值
例 2 一名博彩者, 放 6 个白球和 6 个红球在一个袋子中, 定下 规矩:凡是愿意摸彩者,每人交 1 元作为手续费,然后可以 一次从袋中摸出 5 个球,中彩情况如下表:
本 课 时 栏 目 开 关
摸 5 个球 有 5 个白球 恰有 4 个白球 恰有 3 个白球 其他
本 课 时 栏 目 开 关
解
设甲和乙不会的题得分分别为随机变量 ξ 和 η.
由题意知 ξ~B(80,0.25),η~B(20,0.25),
故 E(ξ)=80×0.25=20,E(η)=20×0.25=5.
于是 E(ξ+20)=E(ξ)+20=40, E(η+80)=E(η)+80=85. 故甲、乙在这次测验中得分的期望分别为 40 分和 85 分.
高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)
高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)(1)离散型随机变量的均值的概念及性质 ①一般地,若离散型随机变量X 的分布列为则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平.②若Y =aX +b ,其中a ,b 为常数,则E (Y )=E (aX +b )=aE (X )+b . (2)两点分布与二项分布的均值①若随机变量X 服从两点分布,则E (X )=p . ②若X ~B (n ,p ),则E (X )=np . (2)离散型随机变量的方差、标准差 随机变量X 的分布列为则把D (X )=∑i =1n(x i -E (X ))2p i 叫做随机变量X 的方差,D (X )的算术平方根D (X )叫做随机变量X 的标准差,随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.(2)服从两点分布与二项分布的随机变量的方差 ①若X 服从两点分布,则D (X )=p (1-p );②若X 服从二项分布,即X ~B (n ,p ),则D (X )=np (1-p ). (3)离散型随机变量方差的性质 ①D (aX +b )=a 2D (X ); ②D (C )=0(C 是常数).一、离散型随机变量的均值1.袋中有4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球记2分,取到一只黑球记1分,试求得分X 的均值.解:取出4只球,颜色分布情况是:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,相应的概率为P(X=5)=C14C33C47=435.P(X=6)=C24C23C47=1835.P(X=7)=C34C13C47=1235.P(X=8)=C44C03C47=135.随机变量X的分布列为所以E(X)=5×435+6×1835+7×1235+8×135=447.注:求离散型随机变量的均值的一般步骤:(1)理解随机变量的意义,写出随机变量的所有可能的取值;(2)求随机变量取每一个值的概率;(3)列出随机变量的分布列;(4)根据均值的计算公式求出E(X).2.在10件产品中,有3件一等品、4件二等品、3件三等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X的分布列和均值.解:由题意知X的所有可能取值为0,1,2,3.P(X=0)=C03C37C310=35120=724,P(X=1)=C13C27C310=63120=2140,P(X=2)=C23C17C310=21120=740,P(X=3)=C33C07C310=1120.∴X的分布列为∴E(X)=0×724+1×2140+2×740+3×1120=910.3.篮球运动员在比赛中每次罚球命中得1分,没命中得0分,已知某篮球运动员命中的概率为0.8,则罚球一次得分ξ的均值是()A.0.2 B.0.8 C.1 D.0解析:选B因为P(ξ=1)=0.8,P(ξ=0)=0.2,所以E(ξ)=1×0.8+0×0.2=0.8.故选B.4.一个口袋中有5个球,编号为1,2,3,4,5,从中任取2个球,用X表示取出球的较大号码,则E(X)等于()A.4 B.5 C.3 D.4.5解析:选A P(X=2)=1C25=110,P(X=3)=C12C25=210=15,P(X=4)=C13C25=310,P(X=5)=C14C25=410=25,故E(X)=2×110+3×15+4×310+5×25=4.5.某中学选派40名学生参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如下表所示:(1)从这402名学生参加培训次数恰好相等的概率;(2)从这40名学生中任选2名,用X表示这2人参加培训次数之差的绝对值,求随机变量X的分布列及均值E(X).解:(1)这3名学生中至少有2名学生参加培训次数恰好相等的概率P=1-C15C115C120C340=419 494.(2)由题意知X=0,1,2,P(X=0)=C25+C215+C220C240=61156,P(X=1)=C15C115+C115C120C240=2552,P (X =2)=C 15C 120C 240=539,则随机变量X 的分布列为所以X 的均值E (X )=0×61156+1×2552+2×539=115156.二、离散型随机变量均值的性质 1.已知随机变量X 的分布列如下:(1)求m 的值; (2)求E (X );(3)若Y =2X -3,求E (Y ).解: (1)由随机变量分布列的性质,得14+13+15+m +120=1,解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215. 法二:由于Y =2X -3, 所以Y 的分布列如下:所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215. 注:若给出的随机变量Y 与X 的关系为Y =aX +b (其中a ,b 为常数),一般思路是先求出E (X ),再利用公式E (aX +b )=aE (X )+b 求E (Y ).2.掷骰子游戏:规定掷出1点,甲盒中放一球,掷出2点或3点,乙盒中放一球,掷出4点、5点或6点,丙盒中放一球,共掷6次,用x ,y ,z 分别表示掷完6次后甲、乙、丙盒中球的个数.令X =x +y ,则E (X )=( )A .2B .3C .4D .5解析:选B 将每一次掷骰子看作一次实验,实验的结果分丙盒中投入球(成功)或丙盒中不投入球(失败)两种,且丙盒中投入球(成功)的概率为12,z 表示6次实验中成功的次数,则z ~B ⎝ ⎛⎭⎪⎫6,12,∴E (z )=3,又x +y +z =6,∴X =x +y =6-z , ∴E (X )=E (6-z )=6-E (z )=6-3=3.3.随机变量X 的分布列如下表,则E (5X +4)等于( )A.16 B .11 C .2.2 解析:选A 由已知得E (X )=0×0.3+2×0.2+4×0.5=2.4,故E (5X +4)=5E (X )+4=5×2.4+4=16.故选A.5.已知η=2ξ+3,且E (ξ)=35,则E (η)=( ) A.35 B.65 C.215 D.125解析:选C E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.三、两点分布、二项分布的均值1.甲、乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中三人答对的概率分别为23,23,12,且各人回答得正确与否相互之间没有影响.(1)若用ξ表示甲队的总得分,求随机变量ξ的分布列和均值;(2)用A 表示事件“甲、乙两队总得分之和为3”,用B 表示事件“甲队总得分大于乙队总得分”,求P (AB ).解: (1)由题意知,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,23,则有 P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫1-233=127,P (ξ=1)=C 13×23×⎝ ⎛⎭⎪⎫1-232=29,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23=49,P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫233=827,所以ξ的分布列为由于随机变量ξ~B ⎝⎛⎭⎪⎫3,23,则有E (ξ)=3×23=2. (2)用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,AB =C ∪D ,C ,D 互斥.P (C )=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23×13×12+13×23×12+13×13×12=1034, P (D )=C 33×⎝⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12=435, P (AB )=P (C )+P (D )=1034+435=3435=34243. 注:此类题的解法一般分两步:一是先判断随机变量服从两点分布还是二项分布;二是代入两点分布或二项分布的均值公式计算均值.2.一次单元测验由20个选择题组成,每个选择题有4个选项,其中仅有1个选项正确,每题选对得5分,不选或选错不得分.一学生选对任意一题的概率为0.9,则该学生在这次测验中成绩的均值为________.解析:设该学生在这次测验中选对的题数为X ,该学生在这次测试中成绩为Y ,则X ~B (20,0.9),Y =5X .由二项分布的均值公式得E (X )=20×0.9=18.由随机变量均值的线性性质得E (Y )=E (5X )=5×18=90. 答案:903.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是( )A .np (1-p )B .npC .nD .p (1-p )解析:选B 供电网络中一天用电的单位个数服从二项分布,故所求为np .故选B.4.某班有50名学生,其中男生30名,女生20名,现随机选取1名学生背诵课文,若抽到女生的人数记为X ,则E (X )=________.解析:易知X 服从两点分布,且P (X =0)=35,P (X =1)=25,故E (X )=25. 答案:255.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这4盏装饰灯闪烁一次时:(1)求X =2时的概率; (2)求X 的均值.解:(1)依题意知{X =2}表示“4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯”,而每盏灯出现红灯的概率都是23,故X =2时的概率为C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827. (2)∵X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫4,23,∴E (X )=4×23=83.四、均值的实际应用1.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解:(1)利润X可以取6,2,1,-2;(2)利用均值的定义求值;(3)根据平均利润不小于4.73万元建立不等式求解.(1)X的所有可能取值有6,2,1,-2,P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为(2)E(X)=6×0.63万元).(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29),依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.2.某公司拟资助三位大学生自主创业,现聘请两位专家独立地对每位学生的创业方案进行评审.假设评审结果为“支持”和“不支持”的概率都是12,若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.令ξ表示该公司的资助总额,求E(ξ).解:法一:ξ的所有取值为0,5,10,15,20,25,30.P (ξ=0)=164,P (ξ=5)=332,P (ξ=10)=1564,P (ξ=15)=516,P (ξ=20)=1564,P (ξ=25)=332,P (ξ=30)=164.故ξ的分布列为因此E (ξ)=0×164+5×332+10×1564+15×516+20×1564+25×332+30×164=15.法二:设X i 为第i 名学生获得的“支持”数(i =1,2,3),ξi 为第i 名学生获得的“资助”额(i =1,2,3),则X i ~B ⎝ ⎛⎭⎪⎫2,12,且ξi =5X i (i =1,2,3),ξ=ξ1+ξ2+ξ3.因此E (ξ)=E (ξ1)+E (ξ2)+E (ξ3)=5E (X 1)+5E (X 2)+5E (X 3)=3×5×2×12=15. 3.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.解:(1)∵每张奖券是否中奖是相互独立的,∴ξ~B (4,12). ∴P (ξ=0)=C 04(12)4=116,P (ξ=1)=C 14(12)4=14, P (ξ=2)=C 24(12)4=38,P (ξ=3)=C 34(12)4=14, P (ξ=4)=C 44(12)4=116. ∴ξ的分布列为(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100.即实际支出的数学期望为2 100元.4.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.五、求离散型随机变量的方差1.袋中有20个大小相同的球,其中标记0的有10个,标记n的有n个(n =1,2,3,4).现从袋中任取一球,X表示所取球的标号.(1)求X的分布列、均值和方差;(2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.解:(1)X的分布列为则E (X )=0×12+1×120+2×110+3×320+4×15=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X ),得a 2×2.75=11,得a =±2. 又E (Y )=aE (X )+b ,所以,当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4. 所以⎩⎨⎧ a =2,b =-2或⎩⎨⎧a =-2,b =4.注求离散型随机变量ξ的方差的步骤: (1)理解ξ的意义,明确其可能取值;(2)判定ξ是否服从特殊分布(如两点分布、二项分布等),若服从特殊分布,则可利用公式直接求解;若不服从特殊分布则继续下面步骤;(3)求ξ取每个值的概率;(4)写出ξ的分布列,并利用分布列性质检验;(5)根据方差定义求D (ξ).2.了激发学生了解数学史的热情,在班内进行数学家和其国籍的连线游戏,参加连线的同学每连对一个得1分.假定一个学生对这些数学家没有了解,只是随机地连线,试求该学生得分X 的分布列及其数学期望、方差.解:该学生连线的情况:连对0个,连对1个,连对2个,连对4个,故其得分可能为0分,1分,2分,4分.P (X =0)=3×3A 44=38,P (X =1)=C 14×2A 44=13,P (X =2)=C 24×1A 44=14,P (X =4)=1A 44=124.故X 的分布列为∴E (X )=0×38+1×13+2×14+4×124=1,D (X )=(0-1)2×38+(1-1)2×13+(2-1)2×14+(4-1)2×124=1. 3.已知随机变量X 的分布列如下:若E (X )=13,则D (X )的值是( ) A.13 B.23 C.59 D.79解析:选C 由分布列的性质可知a +b +12=1,∴a +b =12.又E (X )=-a +12=13,解得a =16,b =13,∴D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59. 4.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片上的数字之和为X ,求D (X ).解:由题知X =6,9,12.P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.∴X 的分布列为∴E (X )=6×715+9×715+12×115=7.8.D (X )=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.六、常见分布的方差1.(1)抛掷一枚硬币1次,正面向上得1分,反面向上得0分.用ξ表示抛掷一枚硬币的得分数,求E (ξ),D (ξ);(2)某人每次投篮时投中的概率都是12.若投篮10次,求他投中的次数ξ的均值和方差;(3)5件产品中含有2件次品,从产品中选出3件,所含的次品数设为X ,求X 的分布列及其均值、方差.解: (1)ξ服从两点分布,抛掷一枚硬币1次,正面向上的概率为12,所以E (ξ)=12,D (ξ)=14.(2)ξ~B ⎝ ⎛⎭⎪⎫10,12,所以E (ξ)=10×12=5.D (ξ)=10×12×12=52. (3)X 可能取的值是0,1,2.P (X =0)=C 02C 33C 35=110,P (X =1)=C 12C 23C 35=35,P (X =2)=C 22C 13C 35=310,所以X 的分布列为E (X )=0×110+1×35+2×310=1.2.D (X )=(0-1.2)2×110+(1-1.2)2×35+(2-1.2)2×310=0.36.2.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,均值E (ξ)为3,标准差D (ξ)为62.(1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:由题意知,ξ~B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k,k =0.1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32, 得1-p =12,从而n =6,p =12. ξ的分布列为(2)记“得P (A )=164+332+1564+516=2132, 所以需要补种沙柳的概率为2132.3.从装有3个白球和7个红球的口袋中任取1个球,用X 表示是否取到白球,即X =⎩⎨⎧1(当取到白球时),0(当取到红球时),则X 的方差D (X )=( )A.21100B.750C.110D.310解析:选A 显然X 服从两点分布,P (X =0)=710,P (X =1)=310.故X 的分布列为所以E (X )=310,故D (X )=710×310=21100.4.已知一批产品中有12件正品,4件次品,有放回地任取4件,若X 表示取到次品的件数,则D (X )=( )A.34B.89C.38D.25解析:选B 由题意,可知每次取得次品的概率都为13,X ~B ⎝ ⎛⎭⎪⎫4,13,则D (X )=4×13×23=89.5.设随机变量X 的分布列为P (X =k )=C k n ⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (X )=24,则D (X )的值为( )A .8B .12 C.29 D .16解析:选A 由题意可知X ~B ⎝ ⎛⎭⎪⎫n ,23,∴E (X )=23n =24. ∴n =36.∴D (X )=36×23×⎝ ⎛⎭⎪⎫1-23=8.6.某出租车司机从某饭店到火车站途中需经过六个交通岗,假设他在各个交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯次数X 的均值与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间Y 的均值与方差. 解:(1)易知司机遇上红灯次数X 服从二项分布,且X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知得Y=30X,∴E(Y)=30E(X)=60,D(Y)=900D(X)=1 200.七、离散型随机变量的均值与方差的应用1.A,B两台机床同时加工零件,每生产一批数量较大的产品时,出现次品的概率如下表所示.A机床B机床问哪一台机床加工的质量较好?解:由表中数据可知,E(X1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E(X2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.所以它们的期望相同,再比较它们的方差.D(X1)=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.606 4,D(X2)=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.926 4.因为0.606 4<0.926 4,所以A机床加工的质量较好.2.已知海关大楼顶端镶有A,B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列如下:解:∵由题意得E(X1)=0,E(X2)=0,∴E(X1)=E(X2).∵D(X1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5,D(X2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2,∴D(X1)<D(X2).综上可知,A大钟的质量较好.3.由以往的统计资料表明,甲、乙两名运动员在比赛中的得分情况为:A.甲B.乙C.甲、乙均可D.无法确定解析:选A E(X1)=E(X2)=1.1,D(X1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D(X2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D(X1)<D(X2),即甲比乙得分稳定,甲运动员参加较好.4.根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:为0.3,0.7,0.9,求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件和概率的加法公式有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为于是,E (Y )=0×D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.巩固练习:1.已知随机变量X 和Y ,其中Y =12X +7,且E (Y )=34,若X 的分布列如表,则m 的值为( )A.13B.14C.16D.18解析:选A 由Y =12X +7得E (Y )=12E (X )+7=34,从而E (X )=94,所以E (X )=1×14+2×m +3×n +4×112=94,又m +n +112+14=1,联立解得m =13.故选A.2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的均值为2,则2a +13b 的最小值为()A.323 B.283 C.143 D.163解析:选D由已知得3a+2b+0×c=2,即3a+2b=2,其中0<a<23,0<b<1.2 a+13b=3a+2b2⎝⎛⎭⎪⎫2a+13b=3+13+2ba+a2b≥103+22ba·a2b=16 3,当且仅当2ba=a2b,即a=2b时取“等号”,故2a+13b的最小值为163.故选D.3.设l为平面上过点(0,1)的直线,l的斜率k等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离d,则随机变量ξ的数学期望E(ξ)为()A.37 B.47 C.27 D.17解析:选B当k=±22时,直线l的方程为±22x-y+1=0,此时d=1 3;当k=±3时,d=12;当k=±52时,d=23;当k为0时,d=1.由等可能事件的概率公式可得ξ的分布列为所以E(ξ)=13×27+12×27+23×27+1×17=47.4.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则随机变量ξ的数学期望E(ξ)=________(结果用分数表示).解析:随机变量ξ的所有可能取值为0,1,2,因为P (ξ=0)=C 25C 27=1021,P (ξ=1)=C 15C 12C 27=1021,P (ξ=2)=C 22C 27=121,所以E (ξ)=0×1021+1×1021+2×121=47.答案:475.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的均值E (X )=________.解析:由P (X =0)=⎝ ⎛⎭⎪⎫1-23(1-p )(1-p )=112可得p =12⎝ ⎛⎭⎪⎫p =32舍去, 从而P (X =1)=23·⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·C 12·⎝ ⎛⎭⎪⎫122=13, P (X =2)=23·C 12⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·⎝ ⎛⎭⎪⎫122=512, P (X =3)=23·⎝ ⎛⎭⎪⎫122=16. 所以E (X )=0×112+1×13+2×512+3×16=53. 答案:536.“键盘侠”是指部分在现实生活中不爱说话,却在网上习惯性地、集中性地发表各种言论的人群,人们对这种现象有着不同的看法.某调查组织在某广场上邀请了10名男士和10名女士请他们分别谈一下对“键盘侠”这种社会现象的认识,其中有4名男士和5名女士认为它的出现是“社会进步的表现”,其他人认为它的出现是“社会冷漠的表现”.(1)从这些男士和女士中各抽取1人,求至少有1人认为“键盘侠”这种社会现象是“社会进步的表现”的概率;(2)从男士中抽取2人,女士中抽取1人,3人中认为“键盘侠”这种社会现象是“社会进步的表现”的人数记为X ,求X 的分布列和数学期望.解:(1)由题意可知10名男士中有4人认为“键盘侠”的出现是“社会进步的表现”,10名女士中有5人也这样认为.记事件A={从这些男士和女士中各抽取1人,至少有1人认为“键盘侠”的出现是“社会进步的表现”},则P(A)=1-C16C15C110C110=1-30100=710.(2)X的所有可能取值为0,1,2,3.P(X=0)=C26C210×C15C110=16,P(X=1)=C14C16C210×C15C110+C26C210×C15C110=1330,P(X=2)=C24C210×C15C110+C14C16C210×C15C110=13,P(X=3)=C24C210×C15C110=115,所以X的分布列为数学期望E(X)=0×16+1×1330+2×13+3×115=1310.7.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32.(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P (A )=1-P (A )=0.91.8.若ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则P (ξ=1)=( ) A .3×2-2 B .3×2-10 C .2-4 D .2-8解析:选B 由E (ξ)=np =6,D (ξ)=np (1-p )=3,得p =12,n =12,所以p (ξ=1)=C 112⎝ ⎛⎭⎪⎫1212=3210=3×2-10.故选B. 9.设X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,现已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113解析:选C 由题意得P (X =x 1)+P (X =x 2)=1,所以随机变量X 只有x 1,x 2两个取值,所以⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29.解得x 1=1,x 2=2x 1=53,x 2=23舍去,所以x 1+x 2=3,故选C.10.若p 为非负实数,随机变量X 的分布列为则E (X )的最大值是.解析:由分布列的性质可知p ∈⎣⎢⎡⎦⎥⎤0,12,则E (X )=p +1∈⎣⎢⎡⎦⎥⎤1,32,故E (X )的最大值为32.∵D (X )=⎝ ⎛⎭⎪⎫12-p (p +1)2+p (p +1-1)2+12(p +1-2)2=-p 2-p +1=-⎝ ⎛⎭⎪⎫p +122+54,又p ∈⎣⎢⎡⎦⎥⎤0,12,∴当p =0时,D (X )取得最大值1. 答案:32 111.已知随机变量X 的分布列为①E (X )=-13;②E (X +4)=-13;③D (X )=2327; ④D (3X +1)=5;⑤P (X >0)=13.解析:E (X )=(-1)×12+0×13+1×16=-13,E (X +4)=113,故①正确,②错误.D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,D (3X +1)=9D (X )=5,故③错误,④正确.P (X >0)=P (X =1)=16,故⑤错误.答案:212.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(1)在A ,B 两个项目上各投资100万元,Y 1(万元)和Y 2(万元)分别表示投资项目A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.解:(1)由题设可知Y 1和Y 2的分布列分别为E (Y 1)=5×0.8+10×0.2=6,D (Y 1)=(5-6)2×0.8+(10-6)2×0.2=4;E (Y 2)=2×0.2+8×0.5+12×0.3=8,D (Y 2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12. (2)f (x )=D ⎝ ⎛⎭⎪⎫x 100·Y 1+D ⎝ ⎛⎭⎪⎫100-x 100·Y 2 =⎝ ⎛⎭⎪⎫x 1002D (Y 1)+⎝⎛⎭⎪⎫100-x 1002D (Y 2) =41002[x 2+3(100-x )2] =41002(4x 2-600x +3×1002). 所以当x =6002×4=75时,f (x )取最小值3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 离散型随机变量的均值
课后作业提升
1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=
1)的值为( )
A.2×0.44 B.2×0.45
C.3×0.44 D.3×0.64
解析:E(ξ)=0.6n=3,∴n=5,∴ξ~B(5,0.6),
∴P(ξ=1)=×0.6×0.44=3×0.44.
答案:C
2.
设随机变量ξ的分布列如下表:
ξ0 123
P0.1 ab
0
.
1
且E(ξ)=1.6,则a-b等于( )
A.0.2 B.0.1 C.-0.2 D.-0.4
解析:根据题意,
解得所以a-b=-0.2.
答案:C
3.某种种子每粒发芽的概率都为0.
9,现播种了1000粒,对于没有发芽的种子,每粒需再补
种2粒,补种的种子数记为X,则X的数学期望为( )
A.100 B.200 C.300 D.400
解析:E(X)=1000×0.9×0+1000×0.1×2=200.
答案:B
4.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.
6,现有4发子弹,则命中后
剩余子弹数的均值为( )
A.2.44 B.3.376 C.2.376 D.2.4
解析:记命中后剩余子弹数为ξ,则ξ可能取值为0,1,2,3.
P(ξ=0)=0.44+0.43×0.6=0.064,P(ξ=1)=0.42×0.6=0.
096,
P(ξ=2)=0.4×0.6=0.24,P(ξ=3)=0.6.
所以,E(ξ)=0×0.064+0.096×1+0.24×2+0.6×3=2.376.
答案:C
5.
有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片
上的数字之和为X,则X的数学期望是( )
A.7.8 B.8 C.16 D.15.6
解析:X的取值为
6,9,12,P(X=6)=,P(X=9)=,P(X=12)=.
E(X)=6×+9×+12×=7.8.
答案:A
6.在一次商业活动中,某人获利300元的概率为0.6,亏损100元的概率为0.
4,此人在这
样的一次商业活动中获利的均值是 .
解析:设此人获利为随机变量X,则X的取值是300,-100,其概率分布列为:
X
3
00 -100
P
0.6 0
.
4
所以E(X)=300×0.6+(-100)×0.4=140.
答案:140
7.随机抛掷一枚骰子,所得点数X的均值为 .
解析:X的分布列为P(X=k)=(k=1,2,3,4,5,6),
所以E(X)=(1+2+3+4+5+6)=3.5.
答案:3.5
8.
一个随机变量ξ的概率分布列如下表:
x
123
P
(ξ=x) ?!?
某同学计算ξ的数学期望,尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定
这两个“?”处的数值相同.据此,该同学给出了正确答案E(ξ)= .
解析:设P(ξ=1)=P(ξ=3)=a,P(ξ=2)=b,则2a+b=1,于是E(ξ)=a+2b+3a=2(2a+b)=2.
答案:2
9.
如图所示是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方
图.
(1)求直方图中x的值;
(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量
在3至4吨的居民数X的分布列和数学期望.
解:(1)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.
(2)由题意知,X~B(3,0.1).
因此
P(X=0)=×0.93=0.729,P(X=1)=×0.1×0.92=0.243,P(X=2)=×0.12×0.
9
=0.027,P(X=3)=×0.13=0.001.
故随机变量X的分布列为
X
0 1 2 3
P0.729 0.243 0.027 0.
00
1
X的数学期望为E(X)=3×0.1=0.3.
10.在甲、乙等6个单位参加的一次“唱读讲传”
演出活动中,每个单位的节目集中安排在
一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:
(1)甲、乙两单位的演出序号至少有一个为奇数的概率;
(2)甲、乙两单位之间的演出单位个数ξ的分布列与数学期望.
解:只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数.
(1)设A表示“甲、乙的演出序号至少有一个为奇数”,则表示“甲、乙的序号均为
偶数”,由等可能性事件的概率计算公式得
P(A)=1-P()=1-=1-.
(2)ξ的所有可能值为0,1,2,3,4,且
P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=
4
)=.
从而知ξ的分布列为
ξ01 2 3 4
P
所以,E(ξ)=0×+1×+2×+3×+4
×.