高二数学立体几何专题资料:平行与垂直的综合应用
高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系知识结构图】第 3 课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行” 、“线面平行”和“面面平行”进行转化。
基础练习】1.若a、b为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线l1, l2与同一平面所成的角相等, 则l1,l2互相平行.④若直线l1, l2是异面直线,则与l1,l2都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a,在平面a内必有直线m,使m与l 垂直。
4. 已知a、b、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a∥c,b∥c a∥b;②a∥r,b∥r a∥b;③α∥c,β∥c α∥β;④α∥r,β∥r α∥β;⑤a∥c,α∥c a∥α;⑥a∥r ,α∥r a∥α.其中正确的命题是①④范例导析】例1.如图,在四面体ABCD中,截面EFGH是平行四边形.求证:AB∥平面EFG.证明:∵面EFGH是截面.∴点E,F,G,H分别在BC,BD,DA,AC上.∴ EH 面ABC,GF 面ABD,由已知,EH∥GF.∴ EH∥面ABD.又∵ EH 面BAC,面ABC∩面ABD=AB∴EH∥AB.∴ AB∥面EFG.例2.如图,在正方体ABCD—A1B1C1D1 中,点N在BD上,点M在B1C上,并且CM=DN.求证 :MN ∥平面 AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
本题可以采 用任何一种转化方式。
简证:法 1:把证“线面平行”转化为证“线线平行” 。
即在平面 ABB 1A 1内找一条直线与 MN 平行,如图所示作平行线即可 法 2 :把证“线面平行”转化为证“线线平行” 。
空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
第十一讲 立体几何(一) 平行与垂直.

第十一讲立体几何(一)平行与垂直【内容要点】垂直与平行是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解线面平行与垂直、面面平行与垂直的判定与性质,并能利用它们解决一些问题.直线与平面是立体几何的核心内容,主要包括:三条公理、三个推论、三线平行公理(公理4)、三垂线定理及其逆定理、三种位置关系(直线与直线、直线与平面、平面与平面)。
其中“平行问题”与“垂直问题”是两类重要的证明问题。
【例题剖析】例1. 如图,已知平面α∥β∥γ,A,C∈α,B,D∈γ,异面直线AB和CD分别与β交于E和G,连结AD和BC分别交β于F,H.(2)判断四边形EFGH是哪一类四边形;(3)若AC=BD=a,求四边形EFGH的周长.需经过分别与AB(或CD)共面的直线(例如AD)进行过渡,再利用平面几何知识达到论证的目标。
(2)在(1)的基础上,不难判断EFGH四边形的类型。
(3)利用(1)、(2)的结果再进一步进行探索。
解:(1)由AB,AD确定的平面,与平行平面β和γ的交线分别为(2)面CBD分别交β,γ于HG和BD.由于β∥γ,所以HG∥BD.同理EH∥AC.故EFGH为平行四边形。
评述此问题的最终解决都是利用平面几何的有关知识进行的,这里利用了辅助平面ABD和ADC是关键所在,本题也是利用线面、面面、线线平行的互相转化这一基本思想得到最后结果的.例2. 正方形ABCD和正方形ABEF所在平面互相垂直,点M,N分别在对角线AC和BF上,且AM=FN 求证:MN∥平面BEC分析:证线面平行⇐线线平行,需找出面BEC中与MN平行的直线。
证明(一):作NK∥AB交BE于K,作MH∥AB交BC于H∴MH∥NK∵ABCD与ABEF是两个有公共边AB的正方形∴它们是全等正方形∵AM=FN ∴CM=BN又∠HCM=∠KBN,∠HMC=∠KNB∴△HCM≌△KBN ∴MH=NK∴MHKN是平行四边形∴MN∥HK∵HK⊂平面BEC MN⊄平面BEC∴MN∥平面BEC证明(二):分析:利用面面平行⇒线面平行过N作NP∥BE,连MP,∵NP∥AF∴FN/FB=AP/AB∵AM=FN,AC=BF∴FN/FB=AM/AC ∴AP/AB=AM/AC∴MP∥BC ∴平面MNP∥平面BCE∴MN∥平面BCE解题中经常需要作互相平行的直线,为了使作直线的位置符合要求,构造成平行四边形,利用平行四边形对边这一关系是作平行线的依据之一。
高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。
主要方法是②、③两法在使用判定定理时关键是确定出面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD.证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥21B 1D 1.∴EF ∥21BD. ∴E 、F 、B 、D 对共面.(2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ⊂面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O ,∴四边形PA O Q 为平行四边形. ∴PA ∥O Q.而O Q ⊂平面EFBD ,∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ⊂面AMN , ∴平面AMN ∥平面EFBD.例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=46,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PEC ;证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC例4、 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE.证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE.例5、正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。
高中数学重难点归纳:立体几何中的平行与垂直

高中数学重难点归纳:立体几何中的平行与垂直
题型一:线线、线面位置关系的证明
(1)证明立体几何问题的主要方法是定理法,解题时必须按照定理成立的条件进行推理。
(2)证明立体几何问题,要精密结合图形,有时要利用平面几何的相关知识,因此需要多画出一些图形辅助使用。
题型二:两平面之间位置关系的证明
(1)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行。
(2)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直。
题型三:空间线面位置关系的综合问题
与平行、垂直有关的存在性问题注意解题的步骤。
高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系【知识结构图】第3课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。
【基础练习】1.若ba、为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。
4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a ∥c ,b ∥c ⇒a ∥b ;②a ∥r ,b ∥r ⇒a ∥b ;③α∥c ,β∥c ⇒α∥β; ④α∥r ,β∥r ⇒α∥β;⑤a ∥c ,α∥c ⇒a ∥α;⑥a ∥r ,α∥r ⇒a ∥α. 其中正确的命题是 ①④ 。
【范例导析】例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面.∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH面ABC ,GF面ABD ,由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB∴EH ∥AB . ∴AB ∥面EFG .例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN.求证:MN ∥平面AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
高中数学-立体几何位置关系-平行与垂直证明方法汇总
高中数学-立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。
主要方法是②、③两法在使用判定定理时关键是确定岀面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.•••ABCD是平行四边形,••• A O = O C.连结0Q,则0Q在平面BDQ内,且0Q是厶APC的中位线,• PC II 0Q.•/ PC在平面BDQ夕卜,• PC I 平面BDQ.例2、在棱长为a的正方体ABCD —A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2 )面AMN I 面EFBD.证明:⑴分别连结B i D i 、ED 、FB ,如图,则由正方体性质得 B i D i // BD.•/ E 、F 分别是D i C i 和B i C i 的中点,1i ••• EF // B i D i . A EF // BD.22 •E 、 F 、 B 、 D 对共面. (2)连结A i C i 交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O .•/ M 、N 为A i B i 、A i D i 的中点,• MN // EF ,EF 面 EFBD.• MN //面 EFBD.•/ PQ /A O ,•四边形PA O Q 为平行四边形.• PA // O Q.而O Q 平面EFBD ,• PA //面 EFBD.且 PA n MN=P ,PA 、MN 面AMN ,•平面AMN //平面EFBD.例 3 女口图(i ),在直角梯形 P i DCB 中, P i D//BC , CD 丄 P i D ,且 P i D=8,BC=4,DC=4A 是P i D 的中点,沿 AB 把平面P i AB 折起到平面 PAB 的位置(如图(2)),使二面角求证:AF//平面PEC ;证明:如图,设 PC 中点为G ,连结FG,CD — B 成 45 ,设E 、F 分别是线段AB 、PD 的中点1 贝U FG//CD//AE ,且 FG= CD=AE , 2•••四边形AEGF 是平行四边形••• AF//EG ,又••• AF 平面PEC , EG 平面PEC ,• AF// 平面 PEC例4、正方形ABCD 与正方形ABEF 所在平面相交于 AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ. 求证:PQ //面BCE.证法一:如图(1 ),作PM // AB 交BE于M ,作QN // AB 交BC 于N,连接MN, 因为面 ABCD n 面 ABEF=AB,贝U AE=DB.又••• AP=DQ,• PE=QB. 又••• PM // AB// QN,BQ• PM PE QN "AB AE 'DC BD• PM QN"AB DC• P M /QN.四边形PMNQ 为平行四边形• PQ // MN.又••• MN 面 BCE ,PQ 面 BCE ,• PQ //面 BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK.•/ AD // BC,• DQ AQ"QB QK .又•••正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,A(1)A Q A P .则 PQ II EK.QK PE••• EK 面 BCE , PQ 面 BCE.••• PQ //面 BCE.例5、正方形 ABCD 交正方形 ABEF 于AB (如图所示)M 、N 在对角线 AC 、FB 上且AM= FN 求证:MN // 平面BCE证明:过N 作NP//AB 交BE 于P ,过M 作 MQ//AB 交BC 于QCM QM BN NPNP MQAC AB BF EF 又NP 〃AB 〃MQ :「MQPN于 A 、B 、C 、D 、E 、F ,若 GA=9,AB=12,BH=16 , S AEC 72,求 S BFDG/ \a E 1 1 l0 l /CAF DBHMN // PQ PQ 面BCE MN //面BCE〃,线段 GH 、GD 、HE 交 GD GH G AC // BDHE HA H AE//BFAC GA 9EAC FBDBD GB 21证明:AC // BDBF HB 16 AE II BF AE HA 28S AEC -AC2AE si nA373S BFD-BF BD sin B 7442 S BFD 96立体几何每日一练基础部分线面平行问题(中位线)1.在正方体 ABCD — A i B i C i D i 中,P 、Q 分别是 AD i 、BD 上的点,且 AP=BQ ,求证:PQ II 平面 DCC i D i 。
高中数学-立体几何平行垂直
立体几何位置关系-平行与垂直高中立体几何的学习,重点在于证明和体积表面积求解,难点在于二面角的求解。
考试题型以解答题和选择题为主,高考难度划分属于中档题。
(1)、平行于同一直线的两直线平行。
(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(4)、一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。
(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
(9)、如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。
(11)、如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
(12)、垂直于同一平面的两直线平行。
(13)、垂直于同一条直线的两个平面平行。
(14)、一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(15)、一个平面经过另一个平面的垂线,这两个平面互相垂直。
(16)、如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
公理4线线平行线面平行面面平行线线垂直线面垂直 面面垂直三垂线逆定理三垂线定理⑴⑵ ⑷ ⑶ ⑸ ⑹⑾⑿⒀⒁⑼ ⑽⒂ ⒃⑺⑻(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。
主要方法是②、③两法在使用判定定理时关键是确定出面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD.例3如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点. 求证:AF//平面PEC;例4、 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.练习1.在正方体ABCD —A 1B 1C 1D 1中,P 、Q 分别是AD 1、BD 上的点,且AP=BQ ,求证:PQ ∥平面DCC 1D 1。
立体几何最典型的平行与垂直题型归纳(带答案)(1)
专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.2.如图,在四棱锥P﹣ABCD 中,PA⊥底面ABCD ,四边形ABCD 为长方形,AD=2AB,点E、F 分别是线段PD、PC 的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)在线段AD 上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O 的位置,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M 为PD 的中点.Ⅰ)求证:CM ∥平面PAB;Ⅱ)求证:CD ⊥平面PAC.AD ∥BC ,∠ BAD =90°,PA4.如图,△ ABC 为正三角形,AE 和CD 都垂直于平而ABC,F 是BE 中点,AE=AB=2,CD=1.1)求证:DF ∥平面ABC;2)求证:AF ⊥DE;3)求异面直线AF 与BC 所成角的余弦值.5.如图,在四棱锥A﹣BCDE 中,平面ABC⊥平面BCDE ,∠ CDE =∠ BED =90°,AB=CD=2,DE=BE=1,AC=.(1)证明:D E⊥平面ACD ;2)求棱锥C﹣ABD 的体积.6.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD,PA=AD=2,AB =1,M 为线段PD 的中点.I)求证:BM ⊥PDII )求直线CM 与PB 所成角的余弦值.7.如图,在正三棱柱ABC﹣A1B1C1 中,所有棱长都等于2.(1)当点M 是BC 的中点时,求异面直线AB1和MC1所成角的余弦值;专题 :立体几何最容易错的最难的平行与垂直问题汇编1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M 分别是棱 AA 1, BC 的中点.证明:2)若∠ ABC =120°,AE ⊥EC ,AB =2,求点 G 到平面 AED 的距离.3.如图,在四棱锥 P ﹣ ABCD 中,平面 PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD , AB =1,AD =2,AC =CD = .( 1)求证: PD ⊥平面 PAB ;1)证明:平面 PAB ⊥平面 PAD;AB ∥CD ,且∠ BAP =∠ CDP =90BE ⊥平面 ABCD .1)证明:平面 AEC ⊥平面 BED .2)若 PA =PD =AB =DC ,∠APD =90°,且四棱锥 P ﹣ABCD 的体积为 ,求该四棱 1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD ,若 E 为棱 BD 上与 D6.如图,在四棱锥 A ﹣EFCB 中,△ AEF 为等边三角形,平面 AEF ⊥平面 EFCB ,EF = 2,四边形 EFCB 是高为 的等腰梯形, EF ∥BC ,O 为 EF 的中点.AD =CD . 求 O 到平面 ABC 的距离.专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.A .0 B.1 C. 2 D. 3【解答】解:取AC 的中点E,连接BE,DE,∵∠ ABD=∠ CBD ,∴ BD 在平面ABC 上的射影在直线BE 上,∵△ ACD 是直角三角形,∴∠ ADC=90°,设 AB = 2,则 BE = ,DE = AC =1,BD =2,2 2 2∴DE 2+BE 2= BD 2,即 DE ⊥BE ,又 BE ⊥ AC ,DE ∩AC =E ,∴ BE ⊥平面 ACD ,∴平面 ABC ⊥平面 ACD .∵ D 在平面 ABC 上的射影为 E , B 在平面 ACD 上的射影为 E ,∴平面 ABD 与平面 ABC 不垂直,平面 BCD 与平面 ABC 不垂直,平面 ABD 与平面 ACD 不垂直,平面 BCD 与平面 ACD 不垂直, 过A 作 AF ⊥BD ,垂足为 F ,连接 CF ,由△ ABD ≌△ CBD 可得 CF ⊥BD ,故而∠ AFC 为二面角 A ﹣BD ﹣C 的平面角, ∵ AD == , ∴ cos ∠ ABD ∴ CF = AF =∴ cos ∠ AFC =∴∠ AFC ≠ 90°,∴平面 ABD 与平面 BCD 不垂直.F 分别是线段 PD 、PC 的中点.证明: EF ∥平面 PAB ;BO ⊥平面 PAC ,若存在,请指出点 O 的位置, 并证明 BO ⊥平面 PAC ;若不存在,请说明理由.2.如图, 在四棱锥 P ﹣ABCD 中, PA ⊥底面 ABCD ,四边形 ABCD 为长方形, AD = 2AB ,在线段 AD 上是否存在一点 O ,使得,∴ sin ∠ ABD=∵EF ∥CD ,∴ EF ∥AB ,∴ EF ∥平面 PAB . ⋯(6 分)此时点 O 为线段 AD 的四等分点,满足 ,⋯( 8 分) ∵长方形ABCD 中,∴△ ABO ∽△ ADC , ∴∠ ABO+∠CAB =∠ DAC + ∠CAB =90°,∴AC ⊥BO ,(10 分) 又∵ PA ⊥底面 ABCD ,BO? 底面ABCD , ∴PA ⊥BO , ∵PA ∩AC =A ,PA 、AC? 平面 PACABCD 为长方形,∴CD ∥AB ,∠ BAO =∠ ADC = 90°,四边形 ABCD 为直角梯形, AD∥BC ,∠ BAD=,PA 又∵ EF? 平面 PAB , AB? 平面 PAB ,Ⅱ) 在线段 AD 上存在一点 O ,使得 BO ⊥平面 PAC ,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M为PD 的中点.(Ⅰ)求证:CM ∥平面PAB;(Ⅱ)求证:CD ⊥平面PAC.解答】证明:(I )取PA 的中点E,连接ME 、BE,∵ ME ∥AD,ME AD,∴ ME ∥BC,ME=BC,∴四边形BCME 为平行四边形,∴ BE∥CM ,∵BE? 平面PAB,CM?平面PAB,∴ CM∥平面PAB;(II )在梯形ABCD 中,AB=BC=1,AD=2,∠ BAD=90° 过C作CH⊥AD于H,∴AC =CD=2 2 2∵AC2+CD2=AD2,∴ CD⊥AC又∵ PA⊥平面ABCD ,CD ?平面ABCD,∴ CD⊥PA∵PA∩AC=A,∴CD ⊥平面PAC4.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D是B1C1 的中点,证明:A1D⊥平面A1BC.解答】 证明:设 E 为 BC 的中点,连接 A 1E , DE ,AE ,由题意得 A 1E ⊥平面 ABC ,∴ A 1E ⊥AE .∵ AB = AC , AE ⊥BC ,∴ AE ⊥平面 A 1BC . 由 D ,E 分别为 B 1C 1,BC 的中点,得 DE ∥B 1B 且 DE =B 1B , 从而 DE ∥A 1A 且 DE =A 1A ,∴四边形 A 1AED 为平行四边形,∴ A 1D ∥AE .5.如图,△ ABC 为正三角形, AE 和 CD 都垂直于平而 ABC ,F 是 BE 中点, AE =AB = 2,CD = 1.(1)求证: DF ∥平面 ABC ;(2)求证: AF ⊥DE ;(3)求异面直线 AF 与 BC 所成角的余弦值.【解答】(1)证明:取 AC 中点 O ,过 O 作平面 ABC 的垂线交 DE连结 OB ,则 OG ⊥OB , OG ⊥ OC ,∵△ ABC 是正三角形, O 是 AC 中点,∴ OB ⊥ OC ,以 O 为原点, OB 、OC 、OG 所在直线分别为 x 、y 、z轴,建立空间直角坐标系,又∵ AE ⊥平面 A 1BC , ∴ A 1D ⊥平面 A 1BC∵F 是 BE 中点, AE =AB = 2,CD =1,=(﹣ , 1, 0), =( 0,0, 1),∵CD ⊥平面 ABC ,∴ =(0,0,1)是平面 ABC 的一个法向量,又 DF? 平面 ABC ,∴ DF ∥平面 ABC .2)证明:∵ =( ), =( 0,﹣2,1),∴ = 0﹣ 1+1=0,∴AF ⊥DE .(3)解:∵ =( ), =(﹣ ,1, 0),设 AF 、 BC 所成角为 θ,cos θ= ∴异面直线 AF 与 BC 所成角的余弦值6.如图,在四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB = 1,M 为线段 PD 的中点.( I )求证: BM ⊥PD( II )求直线 CM 与 PB 所成角的余弦值.∴ =( ,0), =( ), =(0,﹣ 2,1),∵ = , ∴,D (0,1,1),E (0,﹣1,∴A (0,﹣ 1,0),B(| | =【解答】( I )证明:连接 BD ,∵四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB =1, ∴PB =BD =∵ M 为线段 PD 的中点,∴BM ⊥PD(II )解:连接 AC ,与 BD 交于 O ,连接 OM ,则∵ M 为线段 PD 的中点,∴MO ∥PB∴直线 CM 与 PB 所成角的余弦值为7.如图,在正三棱柱 ABC ﹣A 1B 1C 1 中,所有棱长都等于 2.( 1)当点 M 是 BC 的中点时,① 求异面直线 AB 1和 MC 1 所成角的余弦值;② 求二面角 M ﹣AB 1﹣C 的正弦值;(2)当点 M 在线段 BC 上(包括两个端点)运动时, 求直线 MC 1与平面 AB 1C 所成角的∴∠ CMO (或其补角)为直线 CM 与 PB 所成角,在△ MOC中, ∴ cos ∠ CMO=CM = = ,. .解答】 解:(1)取 AC 的中点为 O ,建立空间直角坐标系 O ﹣ xyz ,则 ,C ( 0,1,0),当 M 是 BC 的中点时,则 . ①, 设异面直线 AB 1 和 MC 1 所成角为 θ,则 = = .= = .② , , ,,令 x = 2,∴ ,∴ .设二面角 M ﹣ AB 1﹣ C 的平面角为 θ,则=.所以 .( 2)当 M 在 BC 上运动时,设 .设平面 MAB 1的一个法向量为 ,则 .∴ 设平面 AB 1C 的一个法向量为 ,令 ,则 y =﹣ 1,z =﹣ 1,∴,,则正弦值的取值范围.设M(x,y,z),∴,∴ ,则,∴ .设直线MC1 与平面AB1C 所成的角为θ ,则设,设t=λ+1 ∈[1,2],所以,t∈[1,2].设,∴∵ ,∴ ,∴∴直线MC 1与平面AB1C 所成的角的正弦值的取值范围为6.如图,在四棱锥 A ﹣BCDE 中,平面 ABC ⊥平面 BCDE ,∠ CDE =∠ BED =90°, AB =CD = 2,DE =BE =1,AC = .( 1)证明: DE ⊥平面 ACD ;( 2)求棱锥 C ﹣ ABD 的体积.【解答】 解:( 1)在直角梯形 BCDE 中,∵DE = BE = 1, CD = 2,∴ BC == , 又 AB =2, AC = ,∴ AB 2=AC 2+BC 2,即 AC ⊥ BC ,又平面 ABC ⊥平面 BCDE ,平面 ABC ∩平面 BCDE =BC ,AC? 平面 ABC ,∴AC ⊥平面 BCDE ,又 DE? 平面 BCDE ,∴AC ⊥ DE ,又 DE ⊥DC ,AC ∩CD =C ,∴ DE ⊥平面 ACD .1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M分别是棱 AA 1, BC 的中点.证明:S △BCD ?AC =V C ﹣ABD =V A ﹣BCD =1)AM∥平面BDC12)DC1⊥平面BDC .∴AD ∥ MN ,且 AD = MN ;∴四边形 ADNM 为平行四边形,∴DN ∥AM ;又 DN? 平面 BDC 1,AM? 平面 BDC 1,∴ AM ∥平面 BDC 1⋯( 6 分)( 2)由已知 BC ⊥CC 1,BC ⊥AC ,又 CC 1∩ AC = C ,∴ BC ⊥平面 ACC 1A 1,又 DC 1? 平面 ACC 1A 1,∴ DC 1⊥BC ;由已知得∠ A 1DC 1=∠ ADC =45°,∴∠ CDC 1= 90°,∴DC 1⊥DC ;又 DC ∩BC =C ,∴ DC 1⊥平面 BDC .⋯( 12分)【解答】 证明:( 1)如图所示,取 BC 1 的中点 N ,连接 DN ,MN .则 MN ∥ CC 1,且 M N = CC 1;又 AD ∥CC 1,且 ADV = ,2.如图,四边形 ABCD 为菱形, G 为 AC 与 BD 的交点, BE ⊥平面 ABCD .( 1)证明:平面 AEC ⊥平面 BED .因为 BE ⊥平面 ABCD , AC? 平面 ABCD ,所以 AC ⊥BE ,⋯( 2 分)又因为 DB ∩BE =B ,所以 AC ⊥平面 BED .⋯( 3分) 又 AC? 平面 AEC ,所以平面 AEC ⊥平面 BED .⋯( 5 分)2)取 AD 中点为 M ,连接 EM .因为∠ ABC = 120°.,AB =2,所以 AB =DB = 2,AG = ,DG = 1,因为 AE ⊥EC ,所以 EG == ,所以 BE = ,⋯( 6 分)所以 AE =DE = ,又所以 AD 中点为 M ,所以 EM ⊥AD 且 EM = .设点 G 到平面 AED 的距离为为 h , 则三棱锥 E ﹣ADG 的体积为求点 G 到平面 AED 的距离.为菱形,所以 AC ⊥BD ,⋯( 1 分)即,解得 h = .PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,ABCD ,且平面 PAD ∩平面 ABCD =AD ,AB ⊥AD ,AB? 平面 ABCD ,∴ AB ⊥平面 PAD ,∵PD? 平面 PAD ,∴AB ⊥PD ,又 PD ⊥PA ,且 PA ∩AB =A ,∴ PD ⊥平面 PAB ;( 2)解:取 AD 中点 O ,连接 PO ,则 PO ⊥ AD , 又平面 PAD ⊥平面 ABCD , ∴PO ⊥平面 ABCD ,∵PA ⊥PD ,PA =PD ,AD =2,∴ PO =1.10 分) 所以点 G 到平面 AED 的距离为AB =1,AD =2,AC =CD = .1)求证: PD ⊥平面PAB ;在△ ACD 中,由 AD =2,AC =CD = ,可得 .4.如图,在四棱锥 P ﹣ABCD 中, AB ∥CD ,且∠ BAP =∠ CDP =901)证明:平面 PAB ⊥平面 PAD ;P ﹣ABCD 中,∠ BAP =∠ CDP = 90°,∴AB ⊥PA ,CD ⊥PD ,又 AB ∥ CD ,∴ AB ⊥PD ,∵PA ∩PD =P ,∴ AB ⊥平面 PAD ,∵AB? 平面 PAB ,∴平面 PAB ⊥平面 PAD .解:(2)设 PA =PD =AB =DC =a ,取 AD 中点O ,连结 PO ,∵PA =PD =AB =DC ,∠ APD =90°,平面 PAB ⊥平面 PAD ,∵四棱锥 P ﹣ABCD 的体积为由 AB ⊥平面 PAD ,得 AB ⊥ AD ,∴V P ﹣ABCD =2)若 PA =PD = AB = DC ,∠ APD =90°,且四棱锥 P ﹣ ABCD 的体积为求该四棱 ∴ PO ⊥底面ABCD , O P= = = = , 解得 a =2,∴ PA =PD =AB =DC =2,AD =BC =2 ,PO = , ∴ PB = PC = =2 ,∴该四棱锥的侧面积:S 侧= S △PAD +S △PAB +S △PDC +S △PBC=+1)证明: AC ⊥ BD ;2)已知△ ACD 是直角三角形, AB = BD ,若 E 为棱 BD 上与 D 不重合的点, ∵△ ABC 是正三角形, AD =CD ,∴DO ⊥AC ,BO ⊥AC ,∵DO ∩BO =O ,∴ AC ⊥平面 BDO ,∵BD? 平面 BDO ,∴AC ⊥BD . 解:(2)法一:连结 OE ,由( 1)知 AC ⊥平面 OBD , ∵OE? 平面 OBD ,∴ OE ⊥ AC , 设 AD = CD = ,则 OC = OA = 1, EC = EA ,2 2 2 ∵AE ⊥CE ,AC =2,∴ EC 2+EA 2=AC 2,∴ EC = EA = = CD ,∴E 是线段 AC 垂直平分线上的点,∴ EC =EA =CD = ,由余弦定理得:AE ⊥= 6+2 .AD =CD .∵BE<<BD=2,∴BE=1,∴ BE=ED ,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵ BE=ED ,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴ BO==,∴ BO2+DO2=BD2,∴ BO⊥DO,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系,则C(﹣1,0,0),D(0,0,1),B(0,,0),A(1,0,0),设E(a,b,c),,(0≤λ≤1),则(a,b,c﹣1)=λ(0,,﹣1),解得E(0,,1﹣λ),∴ =(1,),=(﹣ 1 ,),∵AE⊥EC,∴=﹣1+3λ2+ (1﹣λ)2=0,由λ∈[0 ,1],解得,∴ DE=BE,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵DE=BE,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.AEF⊥平面EFCB,EF=2,四边形EFCB 是高为的等腰梯形,EF∥BC,O 为EF 的中点.1)求证:AO⊥CF;O 为EF 的中点,所以AO⊥ EF ⋯( 1 分)又因为平面AEF⊥平面EFCB,AO? 平面AEF,平面AEF ∩平面EFCB =EF ,所以AO ⊥平面EFCB,⋯( 4 分)又CF? 平面EFCB ,所以AO⊥ CF ⋯( 5 分)(2)解:取BC 的中点G,连接OG.由题设知,OG⊥BC ⋯( 6 分)由(1)知AO⊥平面EFCB ,又BC? 平面EFCB ,所以OA⊥BC,因为OG∩OA=O,所以BC⊥平面AOG⋯(8 分)过O 作OH⊥AG,垂足为H,则BC⊥ OH ,因为AG∩BC=G,所以OH⊥平面ABC.⋯(10 分)因为,所以,即O 到平面ABC 的距离为.(另外用等体积法亦可)⋯(12 分)10.直三棱柱ABC﹣A1B1C1 中,若∠ BAC=90°,AB=AC=AA1,则异面直线BA1 与B1C 所成角的余弦值为(A.0 B.C.。
高中数学2.9空间几何中的平行和垂直的综合应用练习(含解析)新人教A版必修2
2.9空间几何中的平行和垂直的综合应用练习1.已知m,n表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列三个命题:(1)⇒m∥n;(2)⇒n∥α;(3)⇒m⊥n.其中推理正确的个数为().A.0B.1C.2D.3【解析】若则m∥n,即命题(1)正确;若则n∥α或n⊂α,即命题(2)不正确;若则m⊥n,即命题(3)正确.故选C.【答案】C2.如图,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是().A.直线ACB.直线ABC.直线CDD.直线BC【解析】∵D∈l,l⊄平面β,∴D∈平面β.∵D∈AB,AB⊄平面ABC,∴D∈平面ABC,∴D在平面ABC与平面β的交线上.∵C∈平面ABC,且C∈平面β,∴C在平面β与平面ABC的交线上,∴平面ABC∩平面β=CD.【答案】C3.如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于.【解析】由EF∥平面AB1C,可知EF∥AC,所以EF=AC=×2=.【答案】4.如图,正方形的边长为2,PA⊥平面ABCD,DE∥PA,且PA=2DE=2,F是PC的中点.(1)求证:EF∥平面ABCD;(2)求证:平面PEC⊥平面PAC.【解析】 (1)连接BD交AC于O点,连接FO,∵F是PC的中点,O是AC的中点,∴FO∥PA且FO=PA,又DE//PA,且DE=PA,∴FO ED,∴四边形EFOD为平行四边形,∴EF∥OD ,又EF⊄平面ABCD,OD⊂平面ABCD,∴EF∥平面ABCD.(2)∵PA⊥平面ABCD,∴PA⊥OD,又OD⊥AC,且PA∩AC=C,∴OD⊥平面PAC,又EF∥OD,∴EF⊥平面PAC,又EF⊂平面PEC,∴平面PEC⊥平面PAC.5.对于平面α、β、γ和直线a、b、m、n,下列命题中真命题是().A.若a⊥m,a⊥n,m⊂α,则a⊥αB.若a∥b,b⊂α,则a∥αC.若α∥β,α∩γ=a,β∩γ=b,则a∥bD.若a⊂β,b⊂β,a∥α,b∥α,则β∥α【解析】A中m,n应为相交直线;B中a可能在α上;D中a,b也应为相交直线;故选C.【答案】C6.四面体ABCD中,AD与BC互相垂直,且AB+BD=AC+CD.则下列结论中错误的是().A.若分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面B.若分别作△BAD和△CAD的边AD上的高,则这两条高长度相等C.AB=AC且DB=DCD.∠DAB=∠DAC【解析】作BE⊥AD交AD于点E,连接CE,因为AD⊥AC,所以AD⊥平面BEC,所以AD⊥CE,所以A错误;设AB+BD=AC+CD=m,则BE2=AB2-AE2=(m-AB)2-DE2,可得:AB=,同理AC=,∴A B=AC,故B,C,D正确.【答案】A7.在正四面体ABCD(棱长均相等的三棱锥)中,O为底面△BCD的中心,M是线段AO上一点,且使得∠BMC=90°,则的值为.【解析】如图,设正四面体ABCD的棱长为2,由∠BMC=90°,得BM=,又可得BO=,在Rt△BOM中,MO=,由勾股定理得AO=,所以=1.【答案】18.三棱锥P-ABC,底面是边长为2的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为PA上一点,AD=2DP,O为底面三角形中心.(1)求证:DO∥平面PBC;(2)求证:BD⊥AC.【解析】(1)连接AO交BC于点E,连接PE,∵O为正三角形ABC的中心,∴AO=2EO,又AD=2DP,∴DO∥PE,∵DO⊄平面PBC,PE⊂平面PBC,∴DO∥面PBC.(2)∵PB=PC,且E为BC中点,∴PE⊥BC,又平面PBC⊥平面ABC,∴PE⊥平面ABC,由(1)知,DO∥PE,∴DO⊥平面ABC,∴DO⊥AC.连接BO,则AC⊥BO,又DO∩BO=O,∴AC⊥平面DOB,∴AC⊥BD.9.在边长为4 cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为B,构成一个三棱锥,则MN与平面AEF的位置关系是.【解析】如图,由题意可知点M、N在折叠前后都分别是AB、CF的中点(折叠后B、C两点重合),所以MN∥AF,又因为MN⊄平面AEF,AF⊂平面AEF,所以MN∥平面AEF.【答案】MN∥平面AEF10.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.(1)若点M是棱PC的中点,求证:PA∥平面BMQ;(2)求证:平面PQB⊥平面PAD.【解析】连接AC,交BQ于N,连接MN,∵BC∥AD且BC=AD,即BC AQ,∴四边形BCQA为平行四边形,∴N为AC中点,又∵点M是棱PC的中点,∴MN∥PA,∵MN⊂平面BMQ,PA⊄平面BMQ,∴PA∥平面BMQ.(2)(法一)∵AD∥BC,BC=AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD∥BQ,∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD,∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.(法二)∵AD∥BC,BC=AD,Q为AD的中点, ∴BC∥DQ且BC=DQ,∴四边形BCDQ为平行四边形,∴CD∥BQ, ∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.∵PA=PD,∴PQ⊥AD,∵PQ∩BQ=Q,∴AD⊥平面PBQ,∵AD⊂平面PAD,∴平面PQB⊥平面PAD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行与垂直的综合应用
[基础要点]
⑴ ⑵ ⑷ ⑶
⑸
⑹
⑺ ⑻
⑼ ⑾
⑽ ⑿
指出每个箭头方向表示的定理:
⑴ ⑵
⑶ ⑷
⑸ ⑹
⑺ ⑻
⑼ ⑽
⑾ ⑿
题型一、平行关系的综合应用
例1、如图示,正三棱柱111ABCABC的底面边长为2,点E、F分别是
棱上11,CCBB的点,点M是线段AC上的动点,EC=2FB=2
(1)当点M在何位置时,MB∥平面AFE
(2)若MB∥平面AFE,判断MB与EF的位置关系,说明理由,并求
MB与EF所成角的余弦值。
变式:如图示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,
试问:截面在什么位置时,其截面的面积最大?
题型二、垂直关系的综合应用
例2、如图示,已知平行六面体1111ABCDABCD的底面ABCD是菱
形,且11CCBCCDBCD
(1)求证:1CCBD
线面平行
面面平行 线线平行
线面垂直
线线垂直 面面垂直
AB
C
1
A
1
B
1
C
E
F
N
M
B
H
C
A
D
G
F
E
AB
C
D
1A1
B
1C1
D
(2)当1CDCC的值为多少时,能使1AC平面1CBD?请给出证明
变式:平面内有一个半圆,直径为AB,过A作SA⊥平面,在半圆上任取一点M,连
SM、SB,且N、H分别是A在SM、SB上的射影
(1)求证:NH⊥SB
(2)这个图形中有多少个线面垂直关系?
(3)这个图形中有多少个直角三角形?
(4)这个图形中有多少对相互垂直的直线?
题型三、空间角的问题
例3、如图示,在正四棱柱1111ABCDABCD中,
1
1,31ABBB
,E为1BB上使11BE的点,平面
1
AEC
交1DD于F,交11AD的延长线于G,求:
(1)异面直线AD与1CG所成的角的大小
(2)二面角11ACGA的正弦值
变式:如图示,在四棱锥S-ABCD中,底面ABCD为正方形,SB
⊥面ABCD,SB=AB,设Q为SD的中点,M为AB的中点,
(1)求证:MQ∥平面SBC
(2)求证:平面SDM⊥平面SCD
(3)求锐二面角S-M-C的大小
题型四、探索性、开放型问题
例4、已知正方体中1111ABCDABCD,E为棱1CC上的动点,
(1)求证:1AE⊥BD
(2) 当E恰为棱1CC的中点时,求证:平面1ABD⊥平面EBD
(3)在棱1CC上是否存在一个点E,可以使二面角1ABDE的大小为45?如果存在,
C1A1DBCB1
GFAE
D1
A
BCDSMQA
试确定E在棱1CC上的位置;如果不存在,请说明理由。
变式:已知△ABC中,90,1BCDBCCD,AB⊥平面BCD,60ADB,E、F分
别是AC、AD上的动点,且(01)AEAFACAD
(1)求证:不论为何值,总有平面BEF⊥平面ABC
(2)当为何值时,平面BEF⊥平面ACD?
[自测训练]
1、若直线a与平面,所成的角相等,则平面与的位置关系是( )
A、// B、不一定平行于 C、不平行于 D、以上结论都不正确
2、在斜三棱柱111ABCABC,90BAC,又1BCAC,过1C作1CH⊥底面ABC,垂足
为H ,则H一定在( )
A、直线AC上 B、直线AB上 C、直线BC上 D、△ABC的内部
3、有如下三个命题:①分别在两个平面内的两条直线一定是异面直线②垂直于同一个平面
的两条直线是平行直线③过平面的一条斜线有一个平面与平面垂直,基中真命题的个
数是( )
A、0 B、1 C、2 D、3
4、如图示,平面⊥平面,,,ABAB与两平面,所
成的角分别为4和6,过A、B分别作两平面交线的垂线,垂足为
,AB
,则:ABAB( )
A、2:1 B、3:1 C、3:2 D、4:3
5、已知平面,和直线,lm,使//的一个充分条件是( )
A、//,//,//lmlm B、,//,//lmlm
C、//,,lmlm D、,//,lmlm
6、正三棱锥P-ABC的三条侧棱两两垂直,则该正三棱锥的内切球与外接球的半径之比为
( )
A、1:3 B、1:(33) C、(31):3 D、(31):3
B`
A`
B
A
7、如图示,正四面体ABCD的棱长为1,平面过棱AB,且CD∥,
则正四面体上的所有点在平面内的射影构成的图形面积为
8、如图示,直三棱柱11ABBDCC中,190,4ABBAB,
12,1BCCCDC上有一动点P,则△1
APC
周长的最小值是
9、在正棱锥S-ABC中,M、N分别是棱SC、BC的中点,AM⊥MN,
若SA3,则此正三棱锥的外接球表面积为
10、PA垂直于矩形ABCD所在平面,M、E、N分别是AB、CD和PC
的中点,
(1)求证:MN∥平面PAD
(2)若二面角P-DC-A为4,求证:
平面MND⊥平面PDC
11、如图示,ABCD为长方形,SA垂直于ABCD所在平面,过A
且垂直于SC的平面分别交SB、SC、SD于E、F、G,求证:AE
⊥SB,AG⊥SD
12、四棱锥P-ABCD底面为一直角梯形,AB⊥AD,CD⊥AD,
CD=2AB,PA⊥面ABCD,E为PC中点,
(1)求证:平面PDC⊥平面PAD
(2)求证:BE∥平面PAD
(3)假定PA=AD=CD,求二面角E-BC-C的平面角的正切值
A
B
C
D
A
B
C
D
1
B
1
C
A
B
C
S
M
N
D
C
B
A
P
E
D
C
B
A
S
G
E
F
C
B
A
D
P
E
M
N